proof_test.go 5.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219
  1. // Copyright 2015 The go-ethereum Authors
  2. // This file is part of the go-ethereum library.
  3. //
  4. // The go-ethereum library is free software: you can redistribute it and/or modify
  5. // it under the terms of the GNU Lesser General Public License as published by
  6. // the Free Software Foundation, either version 3 of the License, or
  7. // (at your option) any later version.
  8. //
  9. // The go-ethereum library is distributed in the hope that it will be useful,
  10. // but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. // GNU Lesser General Public License for more details.
  13. //
  14. // You should have received a copy of the GNU Lesser General Public License
  15. // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
  16. package trie
  17. import (
  18. "bytes"
  19. crand "crypto/rand"
  20. mrand "math/rand"
  21. "testing"
  22. "time"
  23. "github.com/ethereum/go-ethereum/common"
  24. "github.com/ethereum/go-ethereum/crypto"
  25. "github.com/ethereum/go-ethereum/ethdb"
  26. )
  27. func init() {
  28. mrand.Seed(time.Now().Unix())
  29. }
  30. // makeProvers creates Merkle trie provers based on different implementations to
  31. // test all variations.
  32. func makeProvers(trie *Trie) []func(key []byte) *ethdb.MemDatabase {
  33. var provers []func(key []byte) *ethdb.MemDatabase
  34. // Create a direct trie based Merkle prover
  35. provers = append(provers, func(key []byte) *ethdb.MemDatabase {
  36. proof := ethdb.NewMemDatabase()
  37. trie.Prove(key, 0, proof)
  38. return proof
  39. })
  40. // Create a leaf iterator based Merkle prover
  41. provers = append(provers, func(key []byte) *ethdb.MemDatabase {
  42. proof := ethdb.NewMemDatabase()
  43. if it := NewIterator(trie.NodeIterator(key)); it.Next() && bytes.Equal(key, it.Key) {
  44. for _, p := range it.Prove() {
  45. proof.Put(crypto.Keccak256(p), p)
  46. }
  47. }
  48. return proof
  49. })
  50. return provers
  51. }
  52. func TestProof(t *testing.T) {
  53. trie, vals := randomTrie(500)
  54. root := trie.Hash()
  55. for i, prover := range makeProvers(trie) {
  56. for _, kv := range vals {
  57. proof := prover(kv.k)
  58. if proof == nil {
  59. t.Fatalf("prover %d: missing key %x while constructing proof", i, kv.k)
  60. }
  61. val, _, err := VerifyProof(root, kv.k, proof)
  62. if err != nil {
  63. t.Fatalf("prover %d: failed to verify proof for key %x: %v\nraw proof: %x", i, kv.k, err, proof)
  64. }
  65. if !bytes.Equal(val, kv.v) {
  66. t.Fatalf("prover %d: verified value mismatch for key %x: have %x, want %x", i, kv.k, val, kv.v)
  67. }
  68. }
  69. }
  70. }
  71. func TestOneElementProof(t *testing.T) {
  72. trie := new(Trie)
  73. updateString(trie, "k", "v")
  74. for i, prover := range makeProvers(trie) {
  75. proof := prover([]byte("k"))
  76. if proof == nil {
  77. t.Fatalf("prover %d: nil proof", i)
  78. }
  79. if proof.Len() != 1 {
  80. t.Errorf("prover %d: proof should have one element", i)
  81. }
  82. val, _, err := VerifyProof(trie.Hash(), []byte("k"), proof)
  83. if err != nil {
  84. t.Fatalf("prover %d: failed to verify proof: %v\nraw proof: %x", i, err, proof)
  85. }
  86. if !bytes.Equal(val, []byte("v")) {
  87. t.Fatalf("prover %d: verified value mismatch: have %x, want 'k'", i, val)
  88. }
  89. }
  90. }
  91. func TestBadProof(t *testing.T) {
  92. trie, vals := randomTrie(800)
  93. root := trie.Hash()
  94. for i, prover := range makeProvers(trie) {
  95. for _, kv := range vals {
  96. proof := prover(kv.k)
  97. if proof == nil {
  98. t.Fatalf("prover %d: nil proof", i)
  99. }
  100. key := proof.Keys()[mrand.Intn(proof.Len())]
  101. val, _ := proof.Get(key)
  102. proof.Delete(key)
  103. mutateByte(val)
  104. proof.Put(crypto.Keccak256(val), val)
  105. if _, _, err := VerifyProof(root, kv.k, proof); err == nil {
  106. t.Fatalf("prover %d: expected proof to fail for key %x", i, kv.k)
  107. }
  108. }
  109. }
  110. }
  111. // Tests that missing keys can also be proven. The test explicitly uses a single
  112. // entry trie and checks for missing keys both before and after the single entry.
  113. func TestMissingKeyProof(t *testing.T) {
  114. trie := new(Trie)
  115. updateString(trie, "k", "v")
  116. for i, key := range []string{"a", "j", "l", "z"} {
  117. proof := ethdb.NewMemDatabase()
  118. trie.Prove([]byte(key), 0, proof)
  119. if proof.Len() != 1 {
  120. t.Errorf("test %d: proof should have one element", i)
  121. }
  122. val, _, err := VerifyProof(trie.Hash(), []byte(key), proof)
  123. if err != nil {
  124. t.Fatalf("test %d: failed to verify proof: %v\nraw proof: %x", i, err, proof)
  125. }
  126. if val != nil {
  127. t.Fatalf("test %d: verified value mismatch: have %x, want nil", i, val)
  128. }
  129. }
  130. }
  131. // mutateByte changes one byte in b.
  132. func mutateByte(b []byte) {
  133. for r := mrand.Intn(len(b)); ; {
  134. new := byte(mrand.Intn(255))
  135. if new != b[r] {
  136. b[r] = new
  137. break
  138. }
  139. }
  140. }
  141. func BenchmarkProve(b *testing.B) {
  142. trie, vals := randomTrie(100)
  143. var keys []string
  144. for k := range vals {
  145. keys = append(keys, k)
  146. }
  147. b.ResetTimer()
  148. for i := 0; i < b.N; i++ {
  149. kv := vals[keys[i%len(keys)]]
  150. proofs := ethdb.NewMemDatabase()
  151. if trie.Prove(kv.k, 0, proofs); len(proofs.Keys()) == 0 {
  152. b.Fatalf("zero length proof for %x", kv.k)
  153. }
  154. }
  155. }
  156. func BenchmarkVerifyProof(b *testing.B) {
  157. trie, vals := randomTrie(100)
  158. root := trie.Hash()
  159. var keys []string
  160. var proofs []*ethdb.MemDatabase
  161. for k := range vals {
  162. keys = append(keys, k)
  163. proof := ethdb.NewMemDatabase()
  164. trie.Prove([]byte(k), 0, proof)
  165. proofs = append(proofs, proof)
  166. }
  167. b.ResetTimer()
  168. for i := 0; i < b.N; i++ {
  169. im := i % len(keys)
  170. if _, _, err := VerifyProof(root, []byte(keys[im]), proofs[im]); err != nil {
  171. b.Fatalf("key %x: %v", keys[im], err)
  172. }
  173. }
  174. }
  175. func randomTrie(n int) (*Trie, map[string]*kv) {
  176. trie := new(Trie)
  177. vals := make(map[string]*kv)
  178. for i := byte(0); i < 100; i++ {
  179. value := &kv{common.LeftPadBytes([]byte{i}, 32), []byte{i}, false}
  180. value2 := &kv{common.LeftPadBytes([]byte{i + 10}, 32), []byte{i}, false}
  181. trie.Update(value.k, value.v)
  182. trie.Update(value2.k, value2.v)
  183. vals[string(value.k)] = value
  184. vals[string(value2.k)] = value2
  185. }
  186. for i := 0; i < n; i++ {
  187. value := &kv{randBytes(32), randBytes(20), false}
  188. trie.Update(value.k, value.v)
  189. vals[string(value.k)] = value
  190. }
  191. return trie, vals
  192. }
  193. func randBytes(n int) []byte {
  194. r := make([]byte, n)
  195. crand.Read(r)
  196. return r
  197. }