ra-ra.texi 104 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589
  1. @c -*- mode: texinfo; coding: utf-8 -*-
  2. @c %**start of header
  3. @setfilename ra-ra.info
  4. @documentencoding UTF-8
  5. @settitle ra:: — An array library for C++20
  6. @c %**end of header
  7. @c Keep track of
  8. @c http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0834r0.html
  9. @c http://open-std.org/JTC1/SC22/WG21/docs/papers/2017/p0573r2.html
  10. @c http://open-std.org/JTC1/SC22/WG21/docs/papers/2017/p0356r2.html
  11. @c References to source [ma··] or [ma···] current last is 117.
  12. @set VERSION 21
  13. @set UPDATED 2023 July 8
  14. @copying
  15. @code{ra::} (version @value{VERSION}, updated @value{UPDATED})
  16. (c) Daniel Llorens 2005--2023
  17. @smalldisplay
  18. Permission is granted to copy, distribute and/or modify this document
  19. under the terms of the GNU Free Documentation License, Version 1.3 or
  20. any later version published by the Free Software Foundation; with no
  21. Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
  22. @end smalldisplay
  23. @end copying
  24. @dircategory C++ libraries
  25. @direntry
  26. * ra-ra: (ra-ra.info). Expression template and multidimensional array library for C++.
  27. @end direntry
  28. @include my-bib-macros.texi
  29. @mybibuselist{Sources}
  30. @titlepage
  31. @title ra::
  32. @subtitle version @value{VERSION}, updated @value{UPDATED}
  33. @author Daniel Llorens
  34. @page
  35. @vskip 0pt plus 1filll
  36. @insertcopying
  37. @end titlepage
  38. @ifnottex
  39. @node Top
  40. @top @code{ra::}
  41. @insertcopying
  42. @code{ra::}@footnote{/ə'ɹ-eɪ/, I guess.} is a general purpose multidimensional array and expression template library for C++20. Please keep in mind that this manual is a work in progress. There are many errors and whole sections unwritten.
  43. @menu
  44. * Overview:: Array programming and C++.
  45. * Usage:: Everything you can do with @code{ra::}.
  46. * Extras:: Additional libraries provided with @code{ra::}.
  47. * Hazards:: User beware.
  48. * Internals:: For all the world to see.
  49. * The future:: Could be even better.
  50. * Reference:: Systematic list of types and functions.
  51. * @mybibnode{}:: It's been done before.
  52. * Indices:: Or try the search function.
  53. * Notes:: Technically...
  54. @end menu
  55. @end ifnottex
  56. @iftex
  57. @shortcontents
  58. @end iftex
  59. @c ------------------------------------------------
  60. @node Overview
  61. @chapter Overview
  62. @c ------------------------------------------------
  63. @cindex length
  64. @cindex rank
  65. @cindex shape
  66. A multidimensional array is a container whose elements can be looked up using a multi-index (i₀, i₁, ...). Each of the indices i₀, i₁, ... has a constant range [0, n₀), [0, n₁), ... independent of the values of the other indices, so the array is ‘rectangular’. The number of indices in the multi-index is the @dfn{rank} of the array, and the list of all the @dfn{lengths} (n₀, n₁, ... nᵣ₋₁) is the @dfn{shape} of the array. We speak of a rank-@math{r} array or of an @math{r}-array.
  67. Often we deal with multidimensional @emph{expressions} where the elements aren't stored anywhere, but are computed on demand when the expression is looked up. In this general sense, an ‘array’ is just a function of integers with a rectangular domain.
  68. Arrays (as a representation of @dfn{matrices}, @dfn{vectors}, or @dfn{tensors}) are common objects in math and programming, and it is very useful to be able to manipulate arrays as individual entities rather than as aggregates. Not only is
  69. @verbatim
  70. A = B+C;
  71. @end verbatim
  72. much more compact and easier to read than
  73. @verbatim
  74. for (int i=0; i!=m; ++i)
  75. for (int j=0; j!=n; ++j)
  76. for (int k=0; k!=p; ++k)
  77. A(i, j, k) = B(i, j, k)+C(i, j, k);
  78. @end verbatim
  79. but it's also safer and less redundant. For example, the order of the loops may be something you don't really care about.
  80. However, if array operations are implemented naively, a piece of code such as @code{A=B+C} may result in the creation of a temporary to hold @code{B+C} which is then assigned to @code{A}. This is wasteful if the arrays involved are large.
  81. @cindex Blitz++
  82. Fortunately the problem is almost as old as aggregate data types, and other programming languages have addressed it with optimizations such as @url{https://en.wikipedia.org/wiki/Loop_fission_and_fusion, ‘loop fusion’}, ‘drag along’ @mybibcite{Abr70}, or ‘deforestation’ @mybibcite{Wad90}. In the C++ context the technique of ‘expression templates’ was pioneered in the late 90s by libraries such as Blitz++ @mybibcite{bli17}. It works by making @code{B+C} into an ‘expression object’ which holds references to its arguments and performs the sum only when its elements are looked up. The compiler removes the temporary expression objects during optimization, so that @code{A=B+C} results (in principle) in the same generated code as the complicated loop nest above.
  83. @menu
  84. * Rank polymorphism:: What makes arrays special.
  85. * Drag along and beating:: The basic array optimizations.
  86. * Why C++:: High level, low level.
  87. * Guidelines:: How @code{ra::} tries to do things.
  88. * Other libraries:: Inspiration and desperation.
  89. @end menu
  90. @c ------------------------------------------------
  91. @node Rank polymorphism
  92. @section Rank polymorphism
  93. @c ------------------------------------------------
  94. @dfn{Rank polymorphism} is the ability to treat an array of rank @math{r} as an array of lower rank where the elements are themselves arrays.
  95. @cindex cell
  96. @cindex frame
  97. For example, think of a matrix A, a 2-array with shape (n₀, n₁) where the elements A(i₀, i₁) are numbers. If we consider the subarrays A(0, ...), A(1, ...), ..., A(n₀-1, ...) as individual elements, then we have a new view of A as a 1-array of length n₀ with those rows as elements. We say that the rows A(i₀)≡A(i₀, ...) are the 1-@dfn{cells} of A, and the numbers A(i₀, i₁) are 0-cells of A. For an array of arbitrary rank @math{r} the (@math{r}-1)-cells of A are called its @dfn{items}. The prefix of the shape (n₀, n₁, ... nₙ₋₁₋ₖ) that is not taken up by the k-cell is called the k-@dfn{frame}.
  98. An obvious way to store an array in linearly addressed memory is to place its items one after another. So we would store a 3-array as
  99. @quotation
  100. A: [A(0), A(1), ...]
  101. @end quotation
  102. and the items of A(i₀), etc. are in turn stored in the same way, so
  103. @quotation
  104. A: [A(0): [A(0, 0), A(0, 1) ...], ...]
  105. @end quotation
  106. and the same for the items of A(i₀, i₁), etc.
  107. @quotation
  108. A: [[A(0, 0): [A(0, 0, 0), A(0, 0, 1) ...], A(0, 1): [A(0, 1, 0), A(0, 1, 1) ...]], ...]
  109. @end quotation
  110. @cindex order, row-major
  111. This way to lay out an array in memory is called @dfn{row-major order} or @dfn{C-order}, since it's the default order for built-in arrays in C (@pxref{Other libraries}). A row-major array A with shape (n₀, n₁, ... nᵣ₋₁) can be looked up like this:
  112. @anchor{x-steps}
  113. @quotation
  114. A(i₀, i₁, ...) = (storage-of-A) [(((i₀n₁ + i₁)n₂ + i₂)n₃ + ...)+iᵣ₋₁] = (storage-of-A) [o + s₀i₀ + s₁i₁ + ...]
  115. @end quotation
  116. @cindex step
  117. @cindex stride
  118. where the numbers (s₀, s₁, ...) are called the @dfn{steps}@footnote{Sometimes `strides'. Cf. @url{https://en.wikipedia.org/wiki/Dope_vector, @dfn{dope vector}}}. Note that the ‘linear’ or ‘raveled’ address [o + s₀i₀ + s₁i₁ + ...] is an affine function of (i₀, i₁, ...). If we represent an array as a tuple
  119. @quotation
  120. A ≡ ((storage-of-A), o, (s₀, s₁, ...))
  121. @end quotation
  122. then any affine transformation of the indices can be achieved simply by modifying the numbers (o, (s₀, s₁, ...)), with no need to touch the storage. This includes common operations such as: @ref{x-transpose,transposing} axes, @ref{x-reverse,reversing} the order along an axis, most cases of @ref{Slicing,slicing}, and sometimes even reshaping or tiling the array.
  123. A basic example is obtaining the i₀-th item of A:
  124. @quotation
  125. A(i₀) ≡ ((storage-of-A), o+s₀i₀, (s₁, ...))
  126. @end quotation
  127. Note that we can iterate over these items by simply bumping the pointer o+s₀i₀. This means that iterating over (k>0)-cells doesn't cost any more than iterating over 0-cells (@pxref{Cell iteration}).
  128. @c ------------------------------------------------
  129. @node Drag along and beating
  130. @section Drag along and beating
  131. @c ------------------------------------------------
  132. These two fundamental array optimizations are described in @mybibcite{Abr70}.
  133. @dfn{Drag-along} is the process that delays evaluation of array operations. Expression templates can be seen as an implementation of drag-along. Drag-along isn't an optimization in and of itself; it simply preserves the necessary information up to the point where the expression can be executed efficiently.
  134. @dfn{Beating} is the implementation of certain array operations on the array @ref{Containers and views,view} descriptor instead of on the array contents. For example, if @code{A} is a 1-array, one can implement @ref{x-reverse,@code{reverse(A, 0)}} by negating the @ref{x-steps,step} and moving the offset to the other end of the array, without having to move any elements. More generally, beating applies to any function-of-indices (generator) that can take the place of an array in an array expression. For instance, an expression such as @ref{x-iota,@code{1+iota(3, 0)}} can be beaten into @code{iota(3, 1)}, and this can enable further optimizations.
  135. @c ------------------------------------------------
  136. @node Why C++
  137. @section Why C++
  138. @c ------------------------------------------------
  139. Of course the main reason is that (this being a personal project) I'm more familiar with C++ than with other languages to which the following might apply.
  140. C++ supports the low level control that is necessary for interoperation with external libraries and languages, but still has the abstraction power to create the features we want even though the language has no native support for most of them.
  141. @cindex APL
  142. @cindex J
  143. The classic array languages, APL @mybibcite{FI73} and J @mybibcite{Ric08}, have array support baked in. The same is true for other languages with array facilities such as Fortran or Octave/Matlab. Array libraries for general purpose languages usually depend heavily on C extensions. In Numpy's case @mybibcite{num17} this is both for reasons of flexibility (e.g. to obtain predictable memory layout and machine types) and of performance.
  144. On the other extreme, an array library for C would be hampered by the limited means of abstraction in the language (no polymorphism, no metaprogramming, etc.) so the natural choice of C programmers is to resort to code generators, which eventually turn into new languages.
  145. In C++, a library is enough.
  146. @c ------------------------------------------------
  147. @node Guidelines
  148. @section Guidelines
  149. @c ------------------------------------------------
  150. @code{ra::} attempts to be general, consistent, and transparent.
  151. @c @cindex J # TODO makeinfo can't handle an entry appearing more than once (it creates multiple entries in the index).
  152. Generality is achieved by removing arbitrary restrictions and by adopting the rank extension mechanism of J. @code{ra::} supports array operations with an arbitrary number of arguments. Any of the arguments in an array expression can be read from or written to. Arrays or array expressions can be of any rank. Slicing operations work for subscripts of any rank, as in APL. You can use your own types as array elements.
  153. Consistency is achieved by having a clear set of concepts and having the realizations of those concepts adhere to the concept as closely as possible. @code{ra::} offers a few different types of views and containers, but it should be possible to use them interchangeably whenever the properties that justify their existence are not involved. When this isn't possible, it's a bug. For example, it used to be the case that you couldn't create a higher rank iterator on a @code{SmallView}, even though you could do it on a @code{View}; this was a bug.
  154. Sometimes consistency requires a choice. For example, given array views A and B, @code{A=B} copies the contents of view B into view A. To change view A instead (to treat A as a pointer) would be the default meaning of A=B for C++ types, and result in better consistency with the rest of the language, but I have decided that having consistency between views and containers (which ‘are’ their contents in a sense that views aren't) is more important.@footnote{This particular decision may be revisited in the future.}
  155. Transparency is achieved by avoiding unnecessary abstraction. An array view consists of a pointer and a list of steps and I see no point in hiding that. Manipulating the steps directly is often useful. A container consists of storage and a view and that isn't hidden either. Some of the types have an obscure implementation but I consider that a defect. Ideally you should be able to rewrite expressions on the fly, or plug in your own traversal methods or storage handling.
  156. That isn't to mean that you need to be in command of a lot of internal detail to be able to use the library. I hope to have provided a high level interface to most operations and a reasonably usable syntax. However, transparency is critical to achieve interoperation with external libraries and languages. When you need to, you'll be able to guarantee that an array is stored in compact columns, or that the real parts are interleaved with the imaginary parts.
  157. @c ------------------------------------------------
  158. @node Other libraries
  159. @section Other array libraries
  160. @c ------------------------------------------------
  161. Here I try to list the C++ array libraries that I know of, or libraries that I think deserve a mention for the way they deal with arrays. It is not an extensive review, since I have only used a few of these libraries myself. Please follow the links if you want to be properly informed.
  162. Since the C++ standard library doesn't offer a standard multidimensional array type, some libraries for specific tasks (linear algebra operations, finite elements, optimization) offer an accessory array library, which may be more or less general. Other libraries have generic array interfaces without needing to provide an array type. FFTW is a good example, maybe because it isn't C++!
  163. @subsection Standard C++
  164. The C++ language offers multidimensional arrays as a legacy feature from C, e.g. @code{int a[3][4]}. These decay to pointers when you do nearly anything with them, don't know their own shape or rank at runtime, and are generally too limited.
  165. The C++ standard library also offers a number of contiguous storage containers that can be used as 1-arrays: @code{<array>}, @code{<vector>} and @code{<valarray>}. Neither supports higher ranks out of the box, but @code{<valarray>} offers array operations for 1-arrays. @code{ra::} makes use of @code{<array>} and @code{<vector>} for storage and bootstrapping.
  166. @code{ra::} accepts built-in arrays and standard library types as array objects (@pxref{Compatibility}).
  167. @subsection Blitz++
  168. @cindex Blitz++
  169. Blitz++ @mybibcite{bli17} pioneered the use of expression templates in C++. It supported higher rank arrays, as high as it was practical in C++98, but not runtime rank. It also supported small arrays with compile time shape (@code{Tiny}), and convenience features such as Fortran-order constructors and arbitrary lower bounds for the array indices (both of which @code{ra::} chooses not to support). It placed a strong emphasis on performance, with array traversal methods such as blocking, space filling curves, etc.
  170. However, the implementation had to fight the limitations of C++98, and it offered no general rank extension mechanism.
  171. One important difference between Blitz++ and @code{ra::} is that Blitz++'s arrays were reference counted. @code{ra::} doesn't do any memory management on its own: the default container (data-owning) types are values, and views are distinct types. You can select your own storage for the data-owning objects, including reference-counted storage (@code{ra::} declares a type using @code{std::shared_ptr}), but this is not the default.
  172. @subsection Other C++ libraries
  173. TODO
  174. @subsection Other languages
  175. TODO Maybe review other languages, at least the big ones (Fortran / APL / J / Matlab / Python-Numpy).
  176. @c ------------------------------------------------
  177. @node Usage
  178. @chapter Usage
  179. @c ------------------------------------------------
  180. This is an extended exposition of the features of @code{ra::} and is probably best read in order. For details on specific functions or types, please @pxref{Reference}.
  181. @menu
  182. * Using the library:: @code{ra::} is a header-only library.
  183. * Containers and views:: Data objects.
  184. * Array operations:: Building and traversing expressions.
  185. * Rank extension:: How array operands are matched.
  186. * Cell iteration:: At any rank.
  187. * Slicing:: Subscripting is a special operation.
  188. * Special objects:: Not arrays, yet arrays.
  189. * The rank conjunction:: J comes to C++.
  190. * Compatibility:: With the STL and other libraries.
  191. * Extension:: Using your own types and more.
  192. * Functions:: Ready to go.
  193. * Error handling:: What to check and what to do.
  194. @end menu
  195. @c ------------------------------------------------
  196. @node Using the library
  197. @section Using @code{ra::}
  198. @c ------------------------------------------------
  199. @code{ra::} is a header only library with no dependencies other than the standard library, so you just need to place the @samp{ra/} folder somewhere in your include path and add @code{#include "ra/ra.hh"} at the top of your sources.
  200. A compiler with C++20 support is required. At the time of writing this means @b{gcc 11} or with @option{-std=c++20}. Some C++23 features are available with @option{-std=c++2b}. Check the top README.md for more up-to-date information.
  201. Here is a minimal program@footnote{Examples given without context assume that one has declared @code{using std::cout;}, etc.}:
  202. @example @c readme.cc [ma101]
  203. @verbatim
  204. #include "ra/ra.hh"
  205. #include <iostream>
  206. int main()
  207. {
  208. ra::Big<char, 2> A({2, 5}, "helloworld");
  209. std::cout << ra::noshape << format_array(transpose<1, 0>(A), "|") << std::endl;
  210. }
  211. @end verbatim
  212. @print{} h|w
  213. e|o
  214. l|r
  215. l|l
  216. d|d
  217. @end example
  218. The following headers are @emph{not} included by default:
  219. @itemize
  220. @item @code{"ra/dual.hh"}: A dual number type for simple uses of automatic differentiation.
  221. @item @code{"ra/mpdebug.hh"}: Functions to help in debugging template tangles.
  222. @item @code{"ra/test.hh"}, @code{"ra/bench.hh"}: Used by the test and benchmark suites.
  223. @end itemize
  224. The header @code{"ra/bootstrap.hh"} can be used to configure @ref{Error handling}. You don't need to modify the header, but the configuration depends on including @code{"ra/bootstrap.hh"} before the rest of @code{ra::}.
  225. All other headers are for internal use by @code{ra::}@footnote{Diagram generated using Graphviz and @url{https://www.flourish.org/cinclude2dot}.
  226. @verbatim
  227. cd ra && cinclude2dot.pl --include . > headers.dot
  228. dot -Tpng headers.dot -Gdpi=100 > headers.png
  229. @end verbatim
  230. }
  231. @image{headers,4cm}
  232. @cindex container
  233. @c ------------------------------------------------
  234. @node Containers and views
  235. @section Containers and views
  236. @c ------------------------------------------------
  237. @code{ra::} offers two kinds of data objects. The first kind, the @dfn{container}, owns its data. Creating a container uses up memory and destroying it causes that memory to be freed.
  238. @cindex compile-time
  239. @cindex ct
  240. @cindex runtime
  241. @cindex rt
  242. There are three kinds of containers (ct: compile-time, rt: runtime): 1) ct size, 2) ct rank/rt shape, and 3) rt rank; rt rank implies rt shape. Some rt size arrays can be resized but rt rank arrays cannot normally have their rank changed. Instead, you create a new container or view with the rank you want.
  243. For example:
  244. @example
  245. @verbatim
  246. {
  247. ra::Small<double, 2, 3> a(0.); // a ct size 2x3 array
  248. ra::Big<double, 2> b({2, 3}, 0.); // a rt size 2x3 array
  249. ra::Big<double> c({2, 3}, 0.); // a rt rank 2x3 array
  250. // a, b, c destroyed at end of scope
  251. }
  252. @end verbatim
  253. @end example
  254. Using the right kind of container can result in better performance. Ct shapes do not need to be stored in memory, which matters when you have many small arrays. Ct shape or ct rank arrays are also safer to use; sometimes @code{ra::} will be able to detect errors in the shapes or ranks of array operands at compile time, if the appropriate types are used.
  255. Container constructors come in two forms. The first form takes a single argument which is copied into the new container. This argument provides shape information if the container type requires it.@footnote{The brace-list constructors of rank 2 and higher aren't supported on types of rt rank, because in the C++ grammar, a nested initializer list doesn't always define a rank unambiguously.}
  256. @c [ma111]
  257. @example
  258. @verbatim
  259. using ra::Small, ra::Big;
  260. Small<int, 2, 2> a = {{1, 2}, {3, 4}}; // explicit contents
  261. Big<int, 2> a1 = {{1, 2}, {3, 4}}; // explicit contents
  262. Small<int, 2, 2> a2 = {{1, 2}}; // error: bad shape
  263. Small<int, 2, 2> b = 7; // 7 is copied into b
  264. Small<int, 2, 2> c = a; // the contents of a are copied into c
  265. Big<int> d = a; // d takes the shape of a and a is copied into d
  266. Big<int> e = 0; // e is a 0-array with one element f()==0.
  267. @end verbatim
  268. @end example
  269. The second form takes two arguments, one giving the shape, the second the contents.
  270. @cindex @code{none}
  271. @cindex uninitialized container
  272. @example
  273. @verbatim
  274. ra::Big<double, 2> a({2, 3}, 1.); // a has shape [2 3], filled with 1.
  275. ra::Big<double> b({2, 3}, ra::none); // b has shape [2 3], default initialized
  276. ra::Big<double> c({2, 3}, a); // c has shape [2 3], a is copied into c
  277. @end verbatim
  278. @end example
  279. The last example may result in an error if the shape of @code{a} and (2,@w{ }3) don't match. Here the shape of @code{1.} [which is ()] matches (2,@w{ }3) by a mechanism of rank extension (@pxref{Rank extension}). The special value @code{ra::none} can be used to request @url{https://en.cppreference.com/w/cpp/language/default_initialization, default initialization} of the container's elements.
  280. The shape argument can have rank 0 only for rank 1 arrays.
  281. @cindex @code{none}
  282. @cindex uninitialized container
  283. @example
  284. @verbatim
  285. ra::Big<int> c(3, 0); // ok {0, 0, 0}, same as ra::Big<int> c({3}, 0)
  286. ra::Big<int, 1> c(3, 0); // ok {0, 0, 0}, same as ra::Big<int, 1> c({3}, 0)
  287. ra::Big<int, 2> c({3}, 0); // error: bad length for shape
  288. ra::Big<int, 2> c(3, 0); // error: bad length for shape
  289. @end verbatim
  290. @end example
  291. When the content argument is a pointer or a 1D brace list, it's handled especially, not for shape@footnote{You can still use pointers or @code{std::initializer_list}s for shape by wrapping them in the functions @code{ptr} or @code{vector}, respectively.}, but only as the (row-major) ravel of the content. The pointer constructor is unsafe —use at your own risk!@footnote{The brace-list constructors aren't rank extending, because giving the ravel is incompatible with rank extension. They are shape-strict —you must give every element.}
  292. @cindex order, column-major
  293. @example
  294. @verbatim
  295. Small<int, 2, 2> aa = {1, 2, 3, 4}; // ravel of the content
  296. ra::Big<double, 2> a({2, 3}, {1, 2, 3, 4, 5, 6}); // same as a = {{1, 2, 3}, {4, 5, 6}}
  297. @end verbatim
  298. @end example
  299. @c [ma112]
  300. @example
  301. @verbatim
  302. double bx[6] = {1, 2, 3, 4, 5, 6}
  303. ra::Big<double, 2> b({3, 2}, bx); // {{1, 2}, {3, 4}, {5, 6}}
  304. double cx[4] = {1, 2, 3, 4}
  305. ra::Big<double, 2> c({3, 2}, cx); // *** WHO NOSE ***
  306. @end verbatim
  307. @end example
  308. @c [ma114]
  309. @example
  310. @verbatim
  311. using lens = mp::int_list<2, 3>;
  312. using steps = mp::int_list<1, 2>;
  313. ra::SmallArray<double, lens, steps> a {{1, 2, 3}, {4, 5, 6}}; // stored column-major: 1 4 2 5 3 6
  314. @end verbatim
  315. @end example
  316. These produce compile time errors:
  317. @example
  318. @verbatim
  319. Big<int, 2> b = {1, 2, 3, 4}; // error: shape cannot be deduced from ravel
  320. Small<int, 2, 2> b = {1, 2, 3, 4 5}; // error: bad size
  321. Small<int, 2, 2> b = {1, 2, 3}; // error: bad size
  322. @end verbatim
  323. @end example
  324. @anchor{x-scalar-char-star}
  325. Sometimes the pointer constructor gets in the way (see @ref{x-scalar,@code{scalar}}): @c [ma102]
  326. @example
  327. @verbatim
  328. ra::Big<char const *, 1> A({3}, "hello"); // error: try to convert char to char const *
  329. ra::Big<char const *, 1> A({3}, ra::scalar("hello")); // ok, "hello" is a single item
  330. cout << ra::noshape << format_array(A, "|") << endl;
  331. @end verbatim
  332. @print{} hello|hello|hello
  333. @end example
  334. @cindex view
  335. A @dfn{view} is similar to a container in that it points to actual data in memory. However, the view doesn't own that data and destroying the view won't affect it. For example:
  336. @example
  337. @verbatim
  338. ra::Big<double> c({2, 3}, 0.); // a rt rank 2x3 array
  339. {
  340. auto c1 = c(1); // the second row of array c
  341. // c1 is destroyed here
  342. }
  343. cout << c(1, 1) << endl; // ok
  344. @end verbatim
  345. @end example
  346. The data accessed through a view is the data of the ‘root’ container, so modifying the former will be reflected in the latter.
  347. @example
  348. @verbatim
  349. ra::Big<double> c({2, 3}, 0.);
  350. auto c1 = c(1);
  351. c1(2) = 9.; // c(1, 2) = 9.
  352. @end verbatim
  353. @end example
  354. Just as for containers, there are separate types of views depending on whether the shape is known at compile time, the rank is known at compile time but the shape is not, or neither the shape nor the rank are known at compile time. @code{ra::} has functions to create the most common kinds of views:
  355. @example
  356. @verbatim
  357. ra::Big<double> c {{1, 2, 3}, {4, 5, 6}};
  358. auto ct = transpose<1, 0>(c); // {{1, 4}, {2, 5}, {3, 6}}
  359. auto cr = reverse(c, 0); // {{4, 5, 6}, {1, 2, 3}}
  360. @end verbatim
  361. @end example
  362. However, views can point to anywhere in memory and that memory doesn't have to belong to an @code{ra::} container. For example:
  363. @example
  364. @verbatim
  365. int raw[6] = {1, 2, 3, 4, 5, 6};
  366. ra::View<int> v1({{2, 3}, {3, 1}}, raw); // view with shape [2, 3] steps [3, 1]
  367. ra::View<int> v2({2, 3}, raw); // same, default C (row-major) steps
  368. @end verbatim
  369. @end example
  370. Containers can be treated as views of the same kind (rt or ct) . If you declare a function
  371. @example
  372. @verbatim
  373. void f(ra::View<int, 3> & v);
  374. @end verbatim
  375. @end example
  376. you may pass it an object of type @code{ra::Big<int, 3>}.
  377. @c ------------------------------------------------
  378. @node Array operations
  379. @section Array operations
  380. @c ------------------------------------------------
  381. To apply an operation to each element of an array, use the function @code{for_each}. The array is traversed in an order that is decided by the library.
  382. @example
  383. @verbatim
  384. ra::Small<double, 2, 3> a = {{1, 2, 3}, {4, 5, 6}};
  385. double s = 0.;
  386. for_each([&s](auto && a) { s+=a; }, a);
  387. @end verbatim
  388. @result{} s = 21.
  389. @end example
  390. To construct an array expression but stop short of traversing it, use the function @code{map}. The expression will be traversed when it is assigned to a view, printed out, etc.
  391. @example
  392. @verbatim
  393. using T = ra::Small<double, 2, 2>;
  394. T a = {{1, 2}, {3, 4}};
  395. T b = {{10, 20}, {30, 40}};
  396. T c = map([](auto && a, auto && b) { return a+b; }, a, b); // (1)
  397. @end verbatim
  398. @result{} c = @{@{11, 22@}, @{33, 44@}@}
  399. @end example
  400. Expressions may take any number of arguments and be nested arbitrarily.
  401. @example
  402. @verbatim
  403. T d = 0;
  404. for_each([](auto && a, auto && b, auto && d) { d = a+b; },
  405. a, b, d); // same as (1)
  406. for_each([](auto && ab, auto && d) { d = ab; },
  407. map([](auto && a, auto && b) { return a+b; },
  408. a, b),
  409. d); // same as (1)
  410. @end verbatim
  411. @end example
  412. The operator of an expression may return a reference and you may assign to an expression in that case. @code{ra::} will complain if the expression is somehow not assignable.
  413. @example
  414. @verbatim
  415. T d = 0;
  416. map([](auto & d) -> decltype(auto) { return d; }, d) // just pass d along
  417. = map([](auto && a, auto && b) { return a+b; }, a, b); // same as (1)
  418. @end verbatim
  419. @end example
  420. @code{ra::} defines many shortcuts for common array operations. You can of course just do:
  421. @example
  422. @verbatim
  423. T c = a+b; // same as (1)
  424. @end verbatim
  425. @end example
  426. @c ------------------------------------------------
  427. @node Rank extension
  428. @section Rank extension
  429. @c ------------------------------------------------
  430. Rank extension is the mechanism that allows @code{R+S} to be defined even when @code{R}, @code{S} may have different ranks. The idea is an interpolation of the following basic cases.
  431. Suppose first that @code{R} and @code{S} have the same rank. We require that the shapes be the same. Then the shape of @code{R+S} will be the same as the shape of either @code{R} or @code{S} and the elements of @code{R+S} will be
  432. @quotation
  433. @code{(R+S)(i₀ i₁ ... i₍ᵣ₋₁₎) = R(i₀ i₁ ... i₍ᵣ₋₁₎) + S(i₀ i₁ ... i₍ᵣ₋₁₎)}
  434. @end quotation
  435. where @code{r} is the rank of @code{R}.
  436. Now suppose that @code{S} has rank 0. The shape of @code{R+S} is the same as the shape of @code{R} and the elements of @code{R+S} will be
  437. @quotation
  438. @code{(R+S)(i₀ i₁ ... i₍ᵣ₋₁₎) = R(i₀ i₁ ... i₍ᵣ₋₁₎) + S()}.
  439. @end quotation
  440. The two rules above are supported by all primitive array languages, e.g. Matlab @mybibcite{Mat}. But suppose that @code{S} has rank @code{s}, where @code{0<s<r}. Looking at the expressions above, it seems natural to define @code{R+S} by
  441. @quotation
  442. @code{(R+S)(i₀ i₁ ... i₍ₛ₋₁₎ ... i₍ᵣ₋₁₎) = R(i₀ i₁ ... i₍ₛ₋₁₎ ... i₍ᵣ₋₁₎) + S(i₀ i₁ ... i₍ₛ₋₁₎)}.
  443. @end quotation
  444. That is, after we run out of indices in @code{S}, we simply repeat the elements. We have aligned the shapes so:
  445. @quotation
  446. @verbatim
  447. [n₀ n₁ ... n₍ₛ₋₁₎ ... n₍ᵣ₋₁₎]
  448. [n₀ n₁ ... n₍ₛ₋₁₎]
  449. @end verbatim
  450. @end quotation
  451. @cindex shape agreement, prefix
  452. @cindex shape agreement, suffix
  453. @c @cindex J
  454. @cindex Numpy
  455. This rank extension rule is used by the J language @mybibcite{J S} and is known as @dfn{prefix agreement}. The opposite rule of @dfn{suffix agreement} is used, for example, in Numpy @mybibcite{num17}@footnote{Prefix agreement is chosen for @code{ra::} because of the availability of a @ref{The rank conjunction,rank conjunction} @mybibcite{Ber87} and @ref{Cell iteration, cell iterators of arbitrary rank}. This allows rank extension to be performed at multiple axes of an array expression.}.
  456. As you can verify, the prefix agreement rule is distributive. Therefore it can be applied to nested expressions or to expressions with any number of arguments. It is applied systematically throughout @code{ra::}, even in assignments. For example,
  457. @example
  458. @verbatim
  459. ra::Small<int, 3> x {3, 5, 9};
  460. ra::Small<int, 3, 2> a = x; // assign x(i) to each a(i, j)
  461. @end verbatim
  462. @result{} a = @{@{3, 3@}, @{5, 5@}, @{9, 9@}@}
  463. @end example
  464. @example
  465. @verbatim
  466. ra::Small<int, 3> x(0.);
  467. ra::Small<int, 3, 2> a = {{1, 2}, {3, 4}, {5, 6}};
  468. x += a; // sum the rows of a
  469. @end verbatim
  470. @result{} x = @{3, 7, 11@}
  471. @end example
  472. @example
  473. @verbatim
  474. ra::Big<double, 3> a({5, 3, 3}, ra::_0);
  475. ra::Big<double, 1> b({5}, 0.);
  476. b += transpose<0, 1, 1>(a); // b(i) = ∑ⱼ a(i, j, j)
  477. @end verbatim
  478. @result{} b = @{0, 3, 6, 9, 12@}
  479. @end example
  480. @cindex Numpy
  481. @cindex broadcasting, singleton, newaxis
  482. An weakness of prefix agreement is that the axes you want to match aren't always the prefix axes. Other array systems offer a feature similar to rank extension called ‘broadcasting’ that is a bit more flexible. For example, in the way it's implemented in Numpy @mybibcite{num17}, an array of shape [A B 1 D] will match an array of shape [A B C D]. The process of broadcasting consists in inserting so-called ‘singleton dimensions’ (axes with length one) to align the axes that one wishes to match. You can think of prefix agreement as a particular case of broadcasting where the singleton dimensions are added to the end of the shorter shapes automatically.
  483. A drawback of singleton broadcasting is that it muddles the distinction between a scalar and a vector of length 1. Sometimes, an axis of length 1 is no more than that, and if 2≠3 is a size mismatch, it isn't obvious why 1≠2 shouldn't be. To avoid this problem, @code{ra::} supports broadcasting with undefined length axes (see @ref{x-insert,@code{insert}}).
  484. @example
  485. @verbatim
  486. ra::Big<double, 3> a({5, 3}, ra::_0);
  487. ra::Big<double, 1> b({3}, 0.);
  488. ra::Big<double, 3> c({1, 3}, ra::_0);
  489. // b(?, i) += a(j, i) → b(i) = ∑ⱼ a(j, i) (sum columns)
  490. b(ra::insert<1>) += a;
  491. c = a; // 1 ≠ 5, still an agreement error
  492. @end verbatim
  493. @end example
  494. Still another way to align array axes is provided by the @ref{The rank conjunction,rank conjunction}.
  495. Even with axis insertion, it is still necessary that the axes one wishes to match are in the same order in all the arguments.
  496. @ref{x-transpose,Transposing} the axes before extension is a possible workaround.
  497. @c ------------------------------------------------
  498. @node Cell iteration
  499. @section Cell iteration
  500. @c ------------------------------------------------
  501. @code{map} and @code{for_each} apply their operators to each element of their arguments; in other words, to the 0-cells of the arguments. But it is possible to specify directly the rank of the cells that one iterates over:
  502. @example
  503. @verbatim
  504. ra::Big<double, 3> a({5, 4, 3}, ra::_0);
  505. for_each([](auto && b) { /* b has shape (5 4 3) */ }, iter<3>(a));
  506. for_each([](auto && b) { /* b has shape (4 3) */ }, iter<2>(a));
  507. for_each([](auto && b) { /* b has shape (3) */ }, iter<1>(a));
  508. for_each([](auto && b) { /* b has shape () */ }, iter<0>(a)); // elements
  509. for_each([](auto && b) { /* b has shape () */ }, a); // same as iter<0>(a); default
  510. @end verbatim
  511. @end example
  512. One may specify the @emph{frame} rank instead:
  513. @example
  514. @verbatim
  515. for_each([](auto && b) { /* b has shape () */ }, iter<-3>(a)); // same as iter<0>(a)
  516. for_each([](auto && b) { /* b has shape (3) */ }, iter<-2>(a)); // same as iter<1>(a)
  517. for_each([](auto && b) { /* b has shape (4 3) */ }, iter<-1>(a)); // same as iter<2>(a)
  518. @end verbatim
  519. @end example
  520. In this way it is possible to match shapes in various ways. Compare
  521. @example
  522. @verbatim
  523. ra::Big<double, 2> a = {{1, 2, 3}, {4, 5, 6}};
  524. ra::Big<double, 1> b = {10, 20};
  525. ra::Big<double, 2> c = a * b; // multiply (each item of a) by (each item of b)
  526. @end verbatim
  527. @result{} a = @{@{10, 20, 30@}, @{80, 100, 120@}@}
  528. @end example
  529. with
  530. @example @c [ma105]
  531. @verbatim
  532. ra::Big<double, 2> a = {{1, 2, 3}, {4, 5, 6}};
  533. ra::Big<double, 1> b = {10, 20, 30};
  534. ra::Big<double, 2> c({2, 3}, 0.);
  535. iter<1>(c) = iter<1>(a) * iter<1>(b); // multiply (each item of a) by (b)
  536. @end verbatim
  537. @result{} a = @{@{10, 40, 90@}, @{40, 100, 180@}@}
  538. @end example
  539. Note that in this case we cannot construct @code{c} directly from @code{iter<1>(a) * iter<1>(b)}, since the constructor for @code{ra::Big} matches its argument using (the equivalent of) @code{iter<0>(*this)}. See @ref{x-iter,@code{iter}} for more examples.
  540. Cell iteration is appropriate when the operations take naturally operands of rank > 0; for instance, the operation ‘determinant of a matrix’ is naturally of rank 2. When the operation is of rank 0, such as @code{*} above, there may be faster ways to rearrange shapes for matching (@pxref{The rank conjunction}).
  541. FIXME More examples.
  542. @c ------------------------------------------------
  543. @node Slicing
  544. @section Slicing
  545. @c ------------------------------------------------
  546. Slicing is an array extension of the subscripting operation. However, tradition and convenience have given it a special status in most array languages, together with some peculiar semantics that @code{ra::} supports.
  547. The form of the scripting operator @code{A(i₀, i₁, ...)} makes it plain that @code{A} is a function of @code{rank(A)} integer arguments@footnote{The multi-argument square bracket form @code{A[i₀, i₁, ...]} is supported under C++23 compilers (e.g. gcc ≥ 12 with @code{-std=c++2b}), with the same meaning as @code{A(i₀, i₁, ...)}. Under C++20 only a single-argument square bracket form @code{A[i₀]} is available.}. An array extension is immediately available through @code{map}. For example:
  548. @example
  549. @verbatim
  550. ra::Big<double, 1> a = {1., 2., 3., 4.};
  551. ra::Big<int, 1> i = {1, 3};
  552. map(a, i) = 77.;
  553. @end verbatim
  554. @result{} a = @{1., 77., 3, 77.@}
  555. @end example
  556. Just as with any use of @code{map}, array arguments are subject to the prefix agreement rule.
  557. @example
  558. @verbatim
  559. ra::Big<double, 2> a({2, 2}, {1., 2., 3., 4.});
  560. ra::Big<int, 1> i = {1, 0};
  561. ra::Big<double, 1> b = map(a, i, 0);
  562. @end verbatim
  563. @result{} b = @{3., 1.@} // @{a(1, 0), a(0, 0)@}
  564. @end example
  565. @example
  566. @verbatim
  567. ra::Big<int, 1> j = {0, 1};
  568. b = map(a, i, j);
  569. @end verbatim
  570. @result{} b = @{3., 2.@} // @{a(1, 0), a(0, 1)@}
  571. @end example
  572. The latter is a form of sparse subscripting.
  573. Most array operations (e.g. @code{+}) are defined through @code{map} in this way. For example, @code{A+B+C} is defined as @code{map(+, A, B, C)} (or the equivalent @code{map(+, map(+, A, B), C)}). Not so for the subscripting operation:
  574. @example
  575. @verbatim
  576. ra::Big<double, 2> A {{1., 2.}, {3., 4.}};
  577. ra::Big<int, 1> i = {1, 0};
  578. ra::Big<int, 1> j = {0, 1};
  579. // {{A(i₀, j₀), A(i₀, j₁)}, {A(i₁, j₀), A(i₁, j₁)}}
  580. ra::Big<double, 2> b = A(i, j);
  581. @end verbatim
  582. @result{} b = @{@{3., 4.@}, @{1., 2.@}@}
  583. @end example
  584. @anchor{x-subscript-outer-product}
  585. @code{A(i, j, ...)} is defined as the @emph{outer product} of the indices @code{(i, j, ...)} with operator @code{A}, because this operation sees much more use in practice than @code{map(A, i, j ...)}.
  586. @cindex elision, index
  587. You may give fewer subscripts than the rank of the array. The full extent is assumed for the missing subscripts (cf @ref{x-all,@code{all}} below):
  588. @example
  589. @verbatim
  590. ra::Big<int, 3> a({2, 2, 2}, {1, 2, 3, 4, 5, 6, 7, 8});
  591. auto a0 = a(0); // same as a(0, ra::all, ra::all)
  592. auto a10 = a(1, 0); // same as a(1, 0, ra::all)
  593. @end verbatim
  594. @result{} a0 = @{@{1, 2@}, @{3, 4@}@}
  595. @result{} a10 = @{5, 6@}
  596. @end example
  597. This supports the notion (@pxref{Rank polymorphism}) that a 3-array is also an 2-array where the elements are 1-arrays themselves, or a 1-array where the elements are 2-arrays. This important property is directly related to the mechanism of rank extension (@pxref{Rank extension}).
  598. Besides, when the subscripts @code{i, j, ...} are scalars or integer sequences of the form @code{(o, o+s, ..., o+s*(n-1))} (@dfn{linear ranges}), the subscripting can be performed inmediately at constant cost, and without needing to construct an expression object. This optimization is called @ref{Drag along and beating,@dfn{beating}}.
  599. @code{ra::} isn't smart enough to know when an arbitrary expression might be a linear range, so the following special objects are provided:
  600. @anchor{x-iota}
  601. @deffn @w{Special object} iota count [start:0 [step:1]]
  602. Create a linear range @code{start, start+step, ... start+step*(count-1)}.
  603. This can used anywhere an array expression is expected.
  604. @example
  605. @verbatim
  606. ra::Big<int, 1> a = ra::iota(4, 3 -2);
  607. @end verbatim
  608. @result{} a = @{3, 1, -1, -3@}
  609. @end example
  610. Here, @code{b} and @code{c} are @code{View}s (@pxref{Containers and views}).
  611. @example
  612. @verbatim
  613. ra::Big<int, 1> a = {1, 2, 3, 4, 5, 6};
  614. auto b = a(iota(3));
  615. auto c = a(iota(3, 3));
  616. @end verbatim
  617. @result{} a = @{1, 2, 3@}
  618. @result{} a = @{4, 5, 6@}
  619. @end example
  620. @end deffn
  621. @anchor{x-all}
  622. @deffn @w{Special object} all
  623. Create a linear range @code{0, 1, ... (nᵢ-1)} when used as a subscript at the @var{i}-th place of a subscripting expression. This might not be the @var{i}-th argument; see @ref{x-insert,@code{insert}}, @ref{x-dots,@code{dots}}.
  624. This object cannot stand alone as an array expression. All the examples below result in @code{View} objects:
  625. @example
  626. @verbatim
  627. ra::Big<int, 2> a({3, 2}, {1, 2, 3, 4, 5, 6});
  628. auto b = a(ra::all, ra::all); // (1) a view of the whole of a
  629. auto c = a(iota(3), iota(2)); // same as (1)
  630. auto d = a(iota(3), ra::all); // same as (1)
  631. auto e = a(ra:all, iota(2)); // same as (1)
  632. auto f = a(0, ra::all); // first row of a
  633. auto g = a(ra::all, 1); // second column of a
  634. auto g = a(ra::all, ra::dots<0>, 1); // same
  635. @end verbatim
  636. @end example
  637. @code{all} is a special case (@code{dots<1>}) of the more general object @code{dots}.
  638. @end deffn
  639. @anchor{x-dots}
  640. @deffn @w{Special object} dots<n>
  641. Equivalent to as many instances of @code{ra::all} as indicated by @code{n}, which must not be negative. Each instance takes the place of one argument to the subscripting operation.
  642. If @var{n} is defaulted (@code{dots<>}), all available places will be used; this can only be done once in a given subscript list.
  643. This object cannot stand alone as an array expression. All the examples below result in @code{View} objects:
  644. @example
  645. @verbatim
  646. ra::Big<int, 3> a({3, 2, 4}, ...);
  647. auto h = a(); // all of a
  648. auto b = a(ra::all, ra::all, ra::all); // (1) all of a
  649. auto c = a(ra::dots<3>); // same as (1)
  650. auto d = a(ra::all, ra::dots<2>); // same as (1)
  651. auto e = a(ra::dots<2>, ra::all); // same as (1)
  652. auto f = a(ra::dots<>); // same as (1)
  653. auto j0 = a(0, ra::dots<2>); // first page of a
  654. auto j1 = a(0); // same
  655. auto j2 = a(0, ra::dots<>); // same
  656. auto k0 = a(ra::all, 0); // first row of a
  657. auto k1 = a(ra::all, 0, ra::all); // same
  658. auto k2 = a(ra::all, 0, ra::dots<>); // same
  659. auto k3 = a(ra::dots<>, 0, ra::all); // same
  660. // auto k = a(ra::dots<>, 0, ra::dots<>); // error
  661. auto l0 = a(ra::all, ra::all, 0); // first column of a
  662. auto l1 = a(ra::dots<2>, 0); // same
  663. auto l2 = a(ra::dots<>, 0); // same
  664. @end verbatim
  665. @end example
  666. This is useful when writing rank-generic code, see @code{examples/maxwell.cc} in the distribution for an example.
  667. @end deffn
  668. The following special objects aren't related to linear ranges, but they are meant to be used in a subscript context.
  669. @cindex @code{insert}
  670. @anchor{x-insert}
  671. @deffn @w{Special object} insert<n>
  672. Inserts @code{n} new axes at the subscript position. @code{n} must not be negative.
  673. The new axes have step 0 and undefined length, so they will match any length on those axes by repeating items. @code{insert} objects cannot stand alone as an array expression. The examples below result in @code{View} objects:
  674. @example
  675. @verbatim
  676. auto h = a(insert<0>); // same as (1)
  677. auto k = a(insert<1>); // shape [undefined, 3, 2]
  678. @end verbatim
  679. @end example
  680. @cindex broadcasting, singleton, Numpy
  681. @code{insert<n>} main use is to prepare arguments for broadcasting. In other array systems (e.g. Numpy) broadcasting is done with singleton dimensions, that is, dimensions of length one match dimensions of any length. In @code{ra::} singleton dimensions aren't special, so broadcasting requires the use of @code{insert}. For example: @c [ma115]
  682. @example
  683. @verbatim
  684. ra::Big<int, 1> x = {1, 10};
  685. // match shapes [2, U, U] with [U, 3, 2] to produce [2, 3, 2]
  686. cout << x(ra::all, ra::insert<2>) * a(insert<1>) << endl;
  687. @end verbatim
  688. @print{} 2 3 2
  689. 1 2
  690. 3 4
  691. 5 6
  692. 10 20
  693. 30 40
  694. 50 60
  695. @end example
  696. @end deffn
  697. @cindex @code{len}
  698. @cindex @code{end}, Octave/Matlab
  699. @anchor{x-len}
  700. @deffn @w{Special object} len
  701. Represents the length of the @var{i}-th axis of a subscripted expression, when used at the @var{i}-th place of a subscripting expression.
  702. This works like @code{end} in Octave/Matlab, but note that the last element of a vector @code{a} is @code{a(ra::len-1)}.
  703. @example
  704. @verbatim
  705. ra::Big<int, 2> a({10, 10}, 100 + ra::_0 - ra::_1);
  706. auto a0 = a(ra::len-1); // last row of a; ra::len is a.len(0)
  707. auto a1 = a(ra::all, ra::len-1); // last column a; ra::len is a.len(1)
  708. auto a2 = a(ra::len-1, ra::len-1); // last element of last row; the first ra::len is a.len(0) and the second one is a.len(1)
  709. auto a3 = a(ra::all, ra::iota(2, ra::len-2)); // last two columns of a
  710. auto a4 = a(ra::iota(ra::len/2, 1, 2)); // odd rows of a
  711. a(ra::len - std::array {1, 3, 4}) = 0; // set to 0 the 1st, 3rd and 4th rows of a, counting from the end
  712. @end verbatim
  713. @end example
  714. @example
  715. @verbatim
  716. ra::Big<int, 3> b({2, 3, 4}, ...);
  717. auto b0 = b(ra::dots<2>, ra::len-1); // ra::len is a.len(2)
  718. auto b1 = b(ra::insert<1>, ra::len-1); // ra::len is a.len(0)
  719. @end verbatim
  720. @end example
  721. Using @code{ra::len} outside of a subscript context will result in a compile time error.@footnote{Currently, @code{ra::len} can only be used in scalar expressions or @code{ra::iota} expressions.}
  722. @end deffn
  723. We were speaking earlier of the outer product of the subscripts with operator @code{A}. Here's a way to perform the actual outer product (with operator @code{*}) of two @code{Views}, through broadcasting. All three lines are equivalent. See @ref{x-from,@code{from}} for a more general way to compute outer products.
  724. @example
  725. @verbatim
  726. cout << (A(ra::dots<A.rank()>, ra::insert<B.rank()>) * B(ra::insert<A.rank()>, ra::dots<B.rank()>)) << endl;
  727. cout << (A(ra::dots<>, ra::insert<B.rank()>) * B(ra::insert<A.rank()>, ra::dots<>)) << endl; // default dots<>
  728. cout << (A * B(ra::insert<A.rank()>)) << endl; // index elision + prefix matching
  729. @end verbatim
  730. @end example
  731. @subsection Subscripting and rank-0 views
  732. @cindex view, rank 0
  733. @cindex rank, runtime
  734. @cindex rank, compile-time
  735. When the result of the subscripting operation would have rank 0, the type returned is the type of the view @emph{element} and not a rank-0 view as long as the rank of the result can be determined at compile time. When that's not possible (for instance, the subscripted view has rt rank) then a rank-0 view is returned instead. An automatic conversion is defined for rank-0 views, but manual conversion may be needed in some contexts.
  736. @example
  737. @verbatim
  738. using T = std::complex<double>;
  739. int f(T &);
  740. Big<T, 2> a({2, 3}, 0); // ct rank
  741. Big<T> b({2, 3}, 0); // rt rank
  742. cout << a(0, 0).real_part() << endl; // ok, a(0, 0) returns complex &
  743. // cout << b(0, 0).real_part() << endl; // error, View<T> has no member real_part
  744. cout << ((T &)(b(0, 0))).real_part() << endl; // ok, manual conversion to T &
  745. cout << f(b(0, 0)) << endl; // ok, automatic conversion from View<T> to T &
  746. // cout << f(a(0)) << endl; // compile time error, conversion failed since ct rank of a(0) is not 0
  747. // cout << f(b(0)) << endl; // runtime error, conversion failed since rt rank of b(0) is not 0
  748. @end verbatim
  749. @end example
  750. @c ------------------------------------------------
  751. @node Special objects
  752. @section Special objects
  753. @c ------------------------------------------------
  754. @deffn @w{Special object} TensorIndex<n, integer_type=ra::dim_t>
  755. @code{TensorIndex<n>} represents the @code{n}-th index of an array expression. @code{TensorIndex<n>} is itself an array expression of rank @code{n}-1 and length undefined. It must be used with other terms whose dimensions are defined, so that the overall shape of the array expression can be determined.
  756. @code{ra::} offers the shortcut @code{ra::_0} for @code{ra::TensorIndex<0>@{@}}, etc.
  757. @end deffn
  758. @example
  759. @verbatim
  760. ra::Big<int, 1> v = {1, 2, 3};
  761. cout << (v - ra::_0) << endl; // { 1-0, 2-1, 3-2 }
  762. // cout << (ra::_0) << endl; // error: TensorIndex cannot drive array expression
  763. // cout << (v - ra::_1) << endl; // error: TensorIndex cannot drive array expression
  764. ra::Big<int, 2> a({3, 2}, 0);
  765. cout << (a + ra::_0 - ra::_1) << endl; // {{0, -1, -2}, {1, 0, -1}, {2, 1, 0}}
  766. @end verbatim
  767. @end example
  768. @c FIXME the rest
  769. @c ------------------------------------------------
  770. @node The rank conjunction
  771. @section The rank conjunction
  772. @c ------------------------------------------------
  773. We have seen in @ref{Cell iteration} that it is possible to treat an r-array as an array of lower rank with subarrays as its elements. With the @ref{x-iter,@code{iter<cell rank>}} construction, this ‘exploding’ is performed (notionally) on the argument; the operation of the array expression is applied blindly to these cells, whatever they turn out to be.
  774. @example
  775. @verbatim
  776. for_each(my_sort, iter<1>(A)); // (in ra::) my_sort is a regular function, cell rank must be given
  777. for_each(my_sort, iter<0>(A)); // (in ra::) error, bad cell rank
  778. @end verbatim
  779. @end example
  780. @c @cindex J
  781. The array language J has instead the concept of @dfn{verb rank}. Every function (or @dfn{verb}) has an associated cell rank for each of its arguments. Therefore @code{iter<cell rank>} is not needed.
  782. @example
  783. @verbatim
  784. for_each(sort_rows, A); // (not in ra::) will iterate over 1-cells of A, sort_rows knows
  785. @end verbatim
  786. @end example
  787. @c @cindex J
  788. @code{ra::} doesn't have ‘verb ranks’ yet. In practice one can think of @code{ra::}'s operations as having a verb rank of 0. However, @code{ra::} supports a limited form of J's @dfn{rank conjunction} with the function @ref{x-wrank,@code{wrank}}.
  789. @c @cindex J
  790. This is an operator that takes one verb (such operators are known as @dfn{adverbs} in J) and produces another verb with different ranks. These ranks are used for rank extension through prefix agreement, but then the original verb is used on the cells that result. The rank conjunction can be nested, and this allows repeated rank extension before the innermost operation is applied.
  791. A standard example is ‘outer product’.
  792. @example
  793. @verbatim
  794. ra::Big<int, 1> a = {1, 2, 3};
  795. ra::Big<int, 1> b = {40, 50};
  796. ra::Big<int, 2> axb = map(ra::wrank<0, 1>([](auto && a, auto && b) { return a*b; }),
  797. a, b)
  798. @end verbatim
  799. @result{} axb = @{@{40, 80, 120@}, @{50, 100, 150@}@}
  800. @end example
  801. It works like this. The verb @code{ra::wrank<0, 1>([](auto && a, auto && b) @{ return a*b; @})} has verb ranks (0, 1), so the 0-cells of @code{a} are paired with the 1-cells of @code{b}. In this case @code{b} has a single 1-cell. The frames and the cell shapes of each operand are:
  802. @example
  803. @verbatim
  804. a: 3 |
  805. b: | 2
  806. @end verbatim
  807. @end example
  808. Now the frames are rank-extended through prefix agreement.
  809. @example
  810. @verbatim
  811. a: 3 |
  812. b: 3 | 2
  813. @end verbatim
  814. @end example
  815. Now we need to perform the operation on each cell. The verb @code{[](auto && a, auto && b) @{ return a*b; @}} has verb ranks (0, 0). This results in the 0-cells of @code{a} (which have shape ()) being rank-extended to the shape of the 1-cells of @code{b} (which is (2)).
  816. @example
  817. @verbatim
  818. a: 3 | 2
  819. b: 3 | 2
  820. @end verbatim
  821. @end example
  822. This use of the rank conjunction is packaged in @code{ra::} as the @ref{x-from,@code{from}} operator. It supports any number of arguments, not only two.
  823. @example
  824. @verbatim
  825. ra::Big<int, 1> a = {1, 2, 3};
  826. ra::Big<int, 1> b = {40, 50};
  827. ra::Big<int, 2> axb = from([](auto && a, auto && b) { return a*b; }), a, b)
  828. @end verbatim
  829. @result{} axb = @{@{40, 80, 120@}, @{50, 100, 150@}@}
  830. @end example
  831. Another example is matrix multiplication. For 2-array arguments C, A and B with shapes C: (m, n) A: (m, p) and B: (p, n), we want to perform the operation C(i, j) += A(i, k)*B(k, j). The axis alignment gives us the ranks we need to use.
  832. @example
  833. @verbatim
  834. C: m | | n
  835. A: m | p |
  836. B: | p | n
  837. @end verbatim
  838. @end example
  839. First we'll align the first axes of C and A using the cell ranks (1, 1, 2). The cell shapes are:
  840. @example
  841. @verbatim
  842. C: m | n
  843. A: m | p
  844. B: | p n
  845. @end verbatim
  846. @end example
  847. Then we'll use the ranks (1, 0, 1) on the cells:
  848. @example
  849. @verbatim
  850. C: m | | n
  851. A: m | p |
  852. B: | p | n
  853. @end verbatim
  854. @end example
  855. The final operation is a standard operation on arrays of scalars. In actual @code{ra::} syntax:
  856. @example @c [ma103]
  857. @verbatim
  858. ra::Big A({3, 2}, {1, 2, 3, 4, 5, 6});
  859. ra::Big B({2, 3}, {7, 8, 9, 10, 11, 12});
  860. ra::Big C({3, 3}, 0.);
  861. for_each(ra::wrank<1, 1, 2>(ra::wrank<1, 0, 1>([](auto && c, auto && a, auto && b) { c += a*b; })), C, A, B);
  862. @end verbatim
  863. @result{} C = @{@{27, 30, 33@}, @{61, 68, 75@}, @{95, 106, 117@}@}
  864. @end example
  865. Note that @code{wrank} cannot be used to transpose axes in general.
  866. I hope that in the future something like @code{C(i, j) += A(i, k)*B(k, j)}, where @code{i, j, k} are special objects, can be automatically translated to the requisite combination of @code{wrank} and perhaps also @ref{x-transpose,@code{transpose}}. For the time being, you have to align or transpose the axes yourself.
  867. @c ------------------------------------------------
  868. @node Compatibility
  869. @section Compatibility
  870. @c ------------------------------------------------
  871. @subsection Using other C and C++ types with @code{ra::}
  872. @cindex foreign type
  873. @code{ra::} accepts certain types from outside @code{ra::} (@dfn{foreign types}) as array expressions. Generally it is enough to mix the foreign type with a type from @code{ra::} and let deduction work.
  874. @example
  875. @verbatim
  876. std::vector<int> x = {1, 2, 3};
  877. ra::Small<int, 3> y = {6, 5, 4};
  878. cout << (x-y) << endl;
  879. @end verbatim
  880. @print{} -5 -3 -1
  881. @end example
  882. @cindex @code{start}
  883. Foreign types can be brought into @code{ra::} explicitly with the function @ref{x-start,@code{start}}.
  884. @example
  885. @verbatim
  886. std::vector<int> x = {1, 2, 3};
  887. // cout << sum(x) << endl; // error, sum not found
  888. cout << sum(ra::start(x)) << endl;
  889. cout << ra::sum(x) << endl;
  890. @end verbatim
  891. @print{} 6
  892. @end example
  893. The following types are accepted as foreign types:
  894. @itemize
  895. @item Built-in arrays @cindex built-in array
  896. produce an expression of positive rank and ct size.
  897. @item @code{std::array}
  898. produces an expression of rank 1 and ct size.
  899. @item Other types conforming to @code{std::ranges::random_access_range}, including @code{std::vector}, @code{std::string}, etc.
  900. produce an expression of rank 1 and rt size.
  901. @end itemize
  902. Raw pointers must be brought into @code{ra::} explicitly using the function @ref{x-ptr,@code{ptr}}, which produces an expression of rank 1 and @emph{undefined} size.
  903. Compare:
  904. @example @c [ma106]
  905. @verbatim
  906. int p[] = {1, 2, 3};
  907. int * z = p;
  908. ra::Big<int, 1> q {1, 2, 3};
  909. q += p; // ok, q is ra::, p is foreign object with shape info
  910. ra::start(p) += q; // can't redefine operator+=(int[]), foreign needs ra::start()
  911. // z += q; // error: raw pointer needs ra::ptr()
  912. ra::ptr(z) += p; // ok, shape is determined by foreign object p
  913. @end verbatim
  914. @end example
  915. @anchor{x-is-scalar}
  916. Some types are accepted automatically as scalars. These include:
  917. @itemize
  918. @item
  919. Any type @code{T} for which @code{std::is_scalar_v<T>} is true, @emph{except} pointers. These include @code{char}, @code{int}, @code{double}, etc.
  920. @item
  921. @code{std::complex<T>}, if you import @code{ra/complex.hh}.
  922. @end itemize
  923. You can add your own types as scalar types with the following declaration (see @code{ra/complex.hh}):
  924. @verbatim
  925. namespace ra { template <> constexpr bool is_scalar_def<MYTYPE> = true; }
  926. @end verbatim
  927. Otherwise, you can bring a scalar object into @code{ra::} on the spot, with the function @ref{x-scalar,@code{scalar}}.
  928. @subsection Using @code{ra::} types with the STL
  929. General @code{ra::} @ref{Containers and views,views} provide STL compatible @code{ForwardIterator}s through the members @code{begin()} and @code{end()}. These iterators traverse the elements of the array (0-cells) in row major order, regardless of the storage order of the view.
  930. For @ref{Containers and views,containers} @code{begin()} provides @code{RandomAccessIterator}s, which is handy for certain functions such as @code{sort}. There's no reason why all views couldn't provide @code{RandomAccessIterator}, but these wouldn't be efficient for ranks above 1, and I haven't implemented them. The container @code{RandomAccessIterator}s that are provided are in fact raw pointers.
  931. @example @c [ma106]
  932. @verbatim
  933. ra::Big<int> x {3, 2, 1}; // x is a Container
  934. auto y = x(); // y is a View on x
  935. // std::sort(y.begin(), y.end()); // error: y.begin() is not RandomAccessIterator
  936. std::sort(x.begin(), x.end()); // ok, we know x is stored in row-major order
  937. @end verbatim
  938. @result{} x = @{1, 2, 3@}
  939. @end example
  940. @cindex other libraries, interfacing with
  941. @subsection Using @code{ra::} types with other libraries
  942. When you have to pass arrays back and forth between your program and an external library, perhaps even another language, it is necessary for both sides to agree on memory layout. @code{ra::} gives you access to its own memory layout and allows you to obtain an @code{ra::} view on any type of memory.
  943. @subsubsection The good array citizen
  944. @c FIXME Put these in examples/ and reference them here.
  945. @cindex BLIS
  946. The good array citizen describes its arrays with the same parameters as @code{ra::}: a pointer, plus a length and a step per dimension. You don't have to worry about special cases. Say @url{https://github.com/flame/blis, BLIS}:
  947. @quotation
  948. @verbatim
  949. #include <blis.h>
  950. ra::Big<double, 2> A({M, K}, ...);
  951. ra::Big<double, 2> B({K, N}, ...);
  952. ra::Big<double, 2> C({M, N}, ...);
  953. double alpha = ...;
  954. double beta = ...;
  955. // C := βC + αAB
  956. bli_dgemm(BLIS_NO_TRANSPOSE, BLIS_NO_TRANSPOSE, M, N, K, &alpha,
  957. A.data(), A.step(0), A.step(1),
  958. B.data(), B.step(0), B.step(1),
  959. &beta, C.data(), C.step(0), C.step(1));
  960. @end verbatim
  961. @end quotation
  962. @cindex FFTW
  963. Another good array citizen, @url{http://fftw.org, FFTW} handles arbitrary rank:
  964. @quotation
  965. @verbatim
  966. #include <fftw3.h>
  967. ...
  968. using complex = std::complex<double>;
  969. static_assert(sizeof(complex)==sizeof(fftw_complex));
  970. // forward DFT over the last r axes of a -> b
  971. void fftw(int r, ra::View<complex> const a, ra::View<complex> b)
  972. {
  973. int const rank = a.rank();
  974. assert(r>0 && r<=rank);
  975. assert(every(shape(a)==shape(b)));
  976. fftw_iodim dims[r];
  977. fftw_iodim howmany_dims[rank-r];
  978. for (int i=0; i!=rank; ++i) {
  979. if (i>=rank-r) {
  980. dims[i-rank+r].n = a.len(i);
  981. dims[i-rank+r].is = a.step(i);
  982. dims[i-rank+r].os = b.step(i);
  983. } else {
  984. howmany_dims[i].n = a.len(i);
  985. howmany_dims[i].is = a.step(i);
  986. howmany_dims[i].os = b.step(i);
  987. }
  988. }
  989. fftw_plan p;
  990. p = fftw_plan_guru_dft(r, dims, rank-r, howmany_dims,
  991. (fftw_complex *)(a.data()), (fftw_complex *)(b.data()),
  992. FFTW_FORWARD, FFTW_ESTIMATE);
  993. fftw_execute(p);
  994. fftw_destroy_plan(p);
  995. }
  996. @end verbatim
  997. @end quotation
  998. @cindex Guile
  999. Translating array descriptors from a foreign language should be fairly simple. For example, this is how to convert a @url{https://www.gnu.org/software/guile/manual/html_node/Accessing-Arrays-from-C.html#Accessing-Arrays-from-C,Guile} array view into an @code{ra::} view:
  1000. @quotation
  1001. @verbatim
  1002. SCM a; // say a is #nf64(...)
  1003. ...
  1004. scm_t_array_handle h;
  1005. scm_array_get_handle(a, &h);
  1006. scm_t_array_dim const * dims = scm_array_handle_dims(&h);
  1007. View<double> v(map([](int i) { return ra::Dim { dims[i].ubnd-dims[i].lbnd+1, dims[i].inc }; },
  1008. ra::iota(scm_array_handle_rank(&h))),
  1009. scm_array_handle_f64_writable_elements(&h));
  1010. ...
  1011. scm_array_handle_release(&h);
  1012. @end verbatim
  1013. @end quotation
  1014. @cindex Numpy
  1015. @cindex Python
  1016. Numpy's C API has the type @url{https://docs.scipy.org/doc/numpy/reference/c-api.array.html,@code{PyArrayObject}} which can be used in the same way as Guile's @code{scm_t_array_handle} in the example above.
  1017. It is usually simpler to let the foreign language handle the memory, even though there should be ways to transfer ownership (e.g. Guile has @url{https://www.gnu.org/software/guile/manual/html_node/SRFI_002d4-API.html#index-scm_005ftake_005ff64vector,@code{scm_take_xxx}}).
  1018. @subsubsection The bad array citizen
  1019. Unfortunately there are many libraries that don't accept arbitrary array parameters, or that do strange things with particular values of lengths and/or steps.
  1020. The most common case is that a library doesn't handle steps at all, and it only accepts unit step for rank 1 arrays, or packed row-major or column-major storage for higher rank arrays. In that case, you might be forced to copy your array before passing it along.
  1021. @c FIXME using is_c_order, etc.
  1022. Other libraries do accept steps, but not arbitrary ones. For example @url{https://www.netlib.org/blas}' @code{cblas_dgemm} has this prototype:
  1023. @quotation
  1024. @verbatim
  1025. cblas_dgemm(order, transA, transB, m, n, k, alpha, A, lda, B, ldb, beta, C, ldc);
  1026. @end verbatim
  1027. @end quotation
  1028. @code{A}, @code{B}, @code{C} are (pointers to) 2-arrays, but the routine accepts only one step argument for each (@code{lda}, etc.). CBLAS also doesn't understand @code{lda} as a arbitrary step, but rather as the dimension of a larger array that you're slicing @code{A} from, and some implementations will mishandle negative or zero @code{lda}.
  1029. Sometimes you can work around this by fiddling with @code{transA} and @code{transB}, but in general you need to check your array parameters and you may need to make copies.
  1030. @cindex OpenGL
  1031. OpenGL is another library that requires @url{https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glVertexAttribPointer.xhtml,contortions:}
  1032. @quotation
  1033. @verbatim
  1034. void glVertexAttribPointer(GLuint index,
  1035. GLint size,
  1036. GLenum type,
  1037. GLboolean normalized,
  1038. GLsizei step,
  1039. const GLvoid * pointer);
  1040. @end verbatim
  1041. [...]
  1042. @emph{step}
  1043. @quotation
  1044. Specifies the byte offset between consecutive generic vertex attributes. If step is 0, the generic vertex attributes are understood to be tightly packed in the array. The initial value is 0.
  1045. @end quotation
  1046. @end quotation
  1047. It isn't clear whether negative steps are legal, either. So just as with CBLAS, passing arbitrary array views may require copies.
  1048. @c ------------------------------------------------
  1049. @node Extension
  1050. @section Extension
  1051. @c ------------------------------------------------
  1052. @subsection New scalar types
  1053. @code{ra::} will let you construct arrays of arbitrary types out of the box. This is the same functionality you get with e.g. @code{std::vector}.
  1054. @example
  1055. @verbatim
  1056. struct W { int x; }
  1057. ra::Big<W, 2> w = {{ {4}, {2} }, { {1}, {3} }};
  1058. cout << W(1, 1).x << endl;
  1059. cout << amin(map([](auto && x) { return w.x; }, w)) << endl;
  1060. @end verbatim
  1061. @print{} 3
  1062. 1
  1063. @end example
  1064. However, if you want to mix arbitrary types in array operations, you'll need to tell @code{ra::} that that is actually what you want. This is to avoid conflicts with other libraries.
  1065. @example
  1066. @verbatim
  1067. namespace ra { template <> constexpr bool is_scalar_def<W> = true; }
  1068. ...
  1069. W ww {11};
  1070. for_each([](auto && x, auto && y) { cout << (x.x + y.y) << " "; }, w, ww); // ok
  1071. @end verbatim
  1072. @print{} 15 13 12 14
  1073. @end example
  1074. but
  1075. @example
  1076. @verbatim
  1077. struct U { int x; }
  1078. U uu {11};
  1079. for_each([](auto && x, auto && y) { cout << (x.x + y.y) << " "; }, w, uu); // error: can't find ra::start(U)
  1080. @end verbatim
  1081. @end example
  1082. @anchor{x-new-array-operations}
  1083. @subsection New array operations
  1084. @code{ra::} provides array extensions for standard operations such as @code{+}, @code{*}, @code{cos} @ref{x-scalar-ops,and so on}. You can add array extensions for your own operations in the obvious way, with @ref{x-map,@code{map}} (but note the namespace qualifiers):
  1085. @example
  1086. @verbatim
  1087. return_type my_fun(...) { };
  1088. ...
  1089. namespace ra {
  1090. template <class ... A> inline auto
  1091. my_fun(A && ... a)
  1092. {
  1093. return map(::my_fun, std::forward<A>(a) ...);
  1094. }
  1095. } // namespace ra
  1096. @end verbatim
  1097. @end example
  1098. @cindex Blitz++
  1099. If you compare this with what Blitz++ had to do, modern C++ sure has made our lives easier.
  1100. @cindex overload set
  1101. If @code{my_fun} is an overload set, you can use@footnote{Simplified; see the references in @url{http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1170r0.html}.}
  1102. @example
  1103. @verbatim
  1104. namespace ra {
  1105. template <class ... A> inline auto
  1106. my_fun(A && ... a)
  1107. {
  1108. return map([](auto && ... a) { return ::my_fun(a ...); }, std::forward<A>(a) ...);
  1109. }
  1110. } // namespace ra
  1111. @end verbatim
  1112. @end example
  1113. @c ------------------------------------------------
  1114. @node Functions
  1115. @section Functions
  1116. @c ------------------------------------------------
  1117. You don't need to use @ref{Array operations,@code{map}} every time you want to do something with arrays in @code{ra::}. A number of array functions are already defined.
  1118. @anchor{x-scalar-ops}
  1119. @subsection Standard scalar operations
  1120. @code{ra::} defines array extensions for @code{+}, @code{-} (both unary and binary), @code{*}, @code{/}, @code{!}, @code{&&}, @code{||}@footnote{@code{&&}, @code{||} are short-circuiting as array operations; the elements of the second operand won't be evaluated if the elements of the first one evaluate to @code{false} or @code{true}, respectively.
  1121. Note that if both operands are of rank 0 and at least one of them is an @code{ra::} object, they is no way to preserve the behavior of @code{&&} and @code{||} with built in types and avoid evaluating both, since the overloaded operators @url{http://en.cppreference.com/w/cpp/language/operators, are normal functions}.}, @code{>}, @code{<}, @code{>=}, @code{<=}, @code{<=>}, @code{==}, @code{!=}, @code{pow}, @code{sqr}, @code{abs}, @code{cos}, @code{sin}, @code{exp}, @code{expm1}, @code{sqrt}, @code{log}, @code{log1p}, @code{log10}, @code{isfinite}, @code{isnan}, @code{isinf}, @code{max}, @code{min}, @code{asin}, @code{acos}, @code{atan}, @code{atan2}, @code{cosh}, @code{sinh}, @code{tanh}, and @code{lerp}.
  1122. Extending other scalar operations is straightforward; see @ref{x-new-array-operations,New array operations}. @code{ra::} also defines (and extends) the non-standard functions @code{odd}, @ref{x-sqr,@code{sqr}}, @ref{x-sqrm,@code{sqrm}}, @ref{x-conj,@code{conj}}, @ref{x-rel-error,@code{rel_error}}, and @ref{x-xI,@code{xI}}.
  1123. For example:
  1124. @example @c [ma110]
  1125. @verbatim
  1126. cout << exp(ra::Small<double, 3> {4, 5, 6}) << endl;
  1127. @end verbatim
  1128. @print{} 54.5982 148.413 403.429
  1129. @end example
  1130. @subsection Conditional operations
  1131. @ref{x-map,@code{map}} evaluates all of its arguments before passing them along to its operator. This isn't always what you want. The simplest example is @code{where(condition, iftrue, iffalse)}, which returns an expression that will evaluate @code{iftrue} when @code{condition} is true and @code{iffalse} otherwise.
  1132. @example
  1133. @verbatim
  1134. ra::Big<double> x ...
  1135. ra::Big<double> y = where(x>0, expensive_expr_1(x), expensive_expr_2(x));
  1136. @end verbatim
  1137. @end example
  1138. Here @code{expensive_expr_1} and @code{expensive_expr_2} are array expressions. So the computation of the other arm would be wasted if one were to do instead
  1139. @example
  1140. @verbatim
  1141. ra::Big<double> y = map([](auto && w, auto && t, auto && f) -> decltype(auto) { return w ? t : f; }
  1142. x>0, expensive_expr_1(x), expensive_function_2(x));
  1143. @end verbatim
  1144. @end example
  1145. If the expressions have side effects, then @code{map} won't even give the right result.
  1146. @c [ma109]
  1147. @example
  1148. @verbatim
  1149. ra::Big<int, 1> o = {};
  1150. ra::Big<int, 1> e = {};
  1151. ra::Big<int, 1> n = {1, 2, 7, 9, 12};
  1152. ply(where(odd(n), map([&o](auto && x) { o.push_back(x); }, n), map([&e](auto && x) { e.push_back(x); }, n)));
  1153. cout << "o: " << ra::noshape << o << ", e: " << ra::noshape << e << endl;
  1154. @end verbatim
  1155. @print{} o: 1 7 9, e: 2 12
  1156. @end example
  1157. FIXME Artificial example.
  1158. FIXME Do we want to expose ply(); this is the only example in the manual that uses it.
  1159. When the choice is between more than two expressions, there's @ref{x-pick,@code{pick}}, which operates similarly, but accepts an integer instead of a boolean selector.
  1160. @subsection Special operations
  1161. Some operations are essentially scalar operations, but require special syntax and would need a lambda wrapper to be used with @code{map}. @code{ra::} comes with a few of these already defined.
  1162. FIXME
  1163. @subsection Elementwise reductions
  1164. @code{ra::} defines the whole-array one-argument reductions @code{any}, @code{every}, @code{amax}, @code{amin}, @code{sum}, @code{prod} and the two-argument reductions @code{dot} and @code{cdot}. Note that @code{max} and @code{min} are two-argument scalar operations with array extensions, while @code{amax} and @code{amin} are reductions. @code{any} and @code{every} are short-circuiting.
  1165. You can define reductions the same way @code{ra::} does:
  1166. @example
  1167. @verbatim
  1168. template <class A>
  1169. inline auto op_reduce(A && a)
  1170. {
  1171. T c = op_default;
  1172. for_each([&c](auto && a) { c = op(c, a); }, a);
  1173. return c;
  1174. }
  1175. @end verbatim
  1176. @end example
  1177. Often enough you need to reduce over particular axes. This is possible by combining assignment operators with the @ref{Rank extension,rank extension} mechanism, or using the @ref{The rank conjunction,rank conjunction}, or iterating over @ref{Cell iteration, cells of higher rank}. For example:
  1178. @example
  1179. @verbatim
  1180. ra::Big<double, 2> a({m, n}, ...);
  1181. ra::Big<double, 1> sum_rows({n}, 0.);
  1182. iter<1>(sum_rows) += iter<1>(a);
  1183. // for_each(ra::wrank<1, 1>([](auto & c, auto && a) { c += a; }), sum_rows, a) // alternative
  1184. // sum_rows += transpose<1, 0>(a); // another
  1185. ra::Big<double, 1> sum_cols({m}, 0.);
  1186. sum_cols += a;
  1187. @end verbatim
  1188. @end example
  1189. FIXME example with assignment op
  1190. A few common operations of this type are already packaged in @code{ra::}.
  1191. @subsection Special reductions
  1192. @code{ra::} defines the following special reductions.
  1193. FIXME
  1194. @subsection Shortcut reductions
  1195. Some reductions do not need to traverse the whole array if a certain condition is encountered early. The most obvious ones are the reductions of @code{&&} and @code{||}, which @code{ra::} defines as @code{every} and @code{any}.
  1196. FIXME
  1197. These operations are defined on top of another function @code{early}.
  1198. FIXME early
  1199. The following is often useful.
  1200. FIXME lexicographical compare etc.
  1201. @cindex error
  1202. @cindex assert
  1203. @c ------------------------------------------------
  1204. @node Error handling
  1205. @section Error handling
  1206. @c ------------------------------------------------
  1207. Error handling in @code{ra::} is controlled by two macros:
  1208. @itemize
  1209. @item @code{RA_DO_CHECK}
  1210. is a binary flag that controls runtime checks. The default is 1 which means to check for errors. 0 means not to check. The checks themselves are done with @code{RA_ASSERT}.
  1211. @item @code{RA_ASSERT(cond, ...)}
  1212. is a function-like macro. @code{cond} is an expression that evaluates to true (in the @code{ra::} namespace) if the check passes. The other arguments are informative and do not need to be used. The default defintion of @code{RA_ASSERT(cond, ...)} prints those arguments to @code{std::cerr} and aborts.
  1213. @end itemize
  1214. @code{ra::} contains uses of @code{assert} for checking invariants or for sanity checks that are separate from uses of @code{RA_ASSERT}. Those can be disabled in the usual way with @option{-DNDEBUG}.
  1215. You can redefine @code{RA_ASSERT} to something that is more appropriate for your program. @code{examples/throw.cc} in the distribution shows how to throw a user-defined exception instead.
  1216. @c ------------------------------------------------
  1217. @node Extras
  1218. @chapter Extras
  1219. @c ------------------------------------------------
  1220. @c ------------------------------------------------
  1221. @node Hazards
  1222. @chapter Hazards
  1223. @c ------------------------------------------------
  1224. Some of these issues arise because @code{ra::} applies its principles systematically, which can have surprising results. Still others are the result of unfortunate compromises. And a few are just bugs.
  1225. @section Reuse of expression objects
  1226. Expression objects are meant to be used once. This applies to anything produced with @code{ra::map}, @code{ra::iter}, @code{ra::start}, @code{ra::vector}, or @code{ra::ptr}. Reuse errors are @emph{not} checked. For example:
  1227. @example
  1228. @verbatim
  1229. ra::Big<int, 2> B({3, 3}, ra::_1 + ra::_0*3); // {{0 1 2} {3 4 5} {6 7 8}}
  1230. std::array<int, 2> l = { 1, 2 };
  1231. cout << B(ra::vector(l), ra::vector(l)) << endl; // ok => {{4 5} {7 8}}
  1232. auto ll = ra::vector(l);
  1233. cout << B(ll, ll) << endl; // ?? take cover
  1234. @end verbatim
  1235. @end example
  1236. @section Assignment to views
  1237. FIXME
  1238. With rt-shape containers (e.g. @code{Big}), @code{operator=} replaces the left hand side instead of writing over its contents. This behavior is inconsistent with @code{View::operator=} and is there only so that istream @code{>>} container may work; do not rely on it.
  1239. @section View of const vs const view
  1240. @c FIXME
  1241. FIXME
  1242. Passing view arguments by reference
  1243. @section Rank extension in assignments
  1244. Assignment of an expression onto another expression of lower rank may not do what you expect. This example matches @code{a} and 3 [both of shape ()] with a vector of shape (3). This is equivalent to @code{@{a=3+4; a=3+5; a=3+6;@}}. You may get a different result depending on traversal order.
  1245. @example @c [ma107]
  1246. @verbatim
  1247. int a = 0;
  1248. ra::scalar(a) = 3 + ra::Small<int, 3> {4, 5, 6}; // ?
  1249. @end verbatim
  1250. @result{} a = 9
  1251. @end example
  1252. Compare with
  1253. @example
  1254. @verbatim
  1255. int a = 0;
  1256. ra::scalar(a) += 3 + ra::Small<int, 3> {4, 5, 6}; // 0 + 3 + 4 + 5 + 6
  1257. @end verbatim
  1258. @result{} a = 18
  1259. @end example
  1260. @section Performance pitfalls of rank extension
  1261. In the following example where @code{b} has its shape extended from (3) to (3, 4), @code{f} is called 12 times, even though only 3 calls are needed if @code{f} doesn't have side effects. In such cases it might be preferrable to write the outer loop explicitly, or to do some precomputation.
  1262. @example
  1263. @verbatim
  1264. ra::Big<int, 2> a = {{1, 2, 3, 4}, {5, 6, 7, 8} {9, 10, 11, 12}};
  1265. ra::Big<int, 1> b = {1, 2, 3};
  1266. ra::Big<int, 2> c = map(f, b) + a;
  1267. @end verbatim
  1268. @end example
  1269. @section Chained assignment
  1270. FIXME
  1271. When @code{a=b=c} works, it operates as @code{b=c; a=b;} and not as an array expression.
  1272. @section Unregistered scalar types
  1273. FIXME
  1274. @code{View<T, N> x; x = T()} fails if @code{T} isn't registered as @code{is_scalar}.
  1275. @enumerate
  1276. @item
  1277. Item 0
  1278. @item
  1279. Item 1
  1280. @item
  1281. Item 2
  1282. @end enumerate
  1283. @c ------------------------------------------------
  1284. @node Internals
  1285. @chapter Internals
  1286. @c ------------------------------------------------
  1287. @code{ra::} has two main components: a set of container classes, and the expression template mechanism. The container classes provide leaves for the expression template trees, and the container classes also make some use of the expression template mechanism internally (e.g. in the selection operator, or for initialization).
  1288. @menu
  1289. * Type hierarchy:: From @code{Containers} to @code{Flat}.
  1290. * Term agreement:: Abstain or approve.
  1291. * Loop types:: Chosen for performance.
  1292. * Introspection:: Speaking to myself.
  1293. * Compiling and running:: Practical matters.
  1294. @end menu
  1295. @c ------------------------------------------------
  1296. @node Type hierarchy
  1297. @section Type hierarchy
  1298. @c ------------------------------------------------
  1299. Some of the categories below are actually C++20 ‘concepts’, some are still informal.
  1300. @itemize
  1301. @item @b{Container} --- @code{Big}, @code{Shared}, @code{Unique}, @code{Small}
  1302. These are array types that own their data in one way or another. Creating or destroying these objects may allocate or deallocate memory, respectively.
  1303. @item @b{View} --- @code{View}, @code{SmallView}
  1304. These are array views into data in memory, which may be writable. Any of the @b{Container} types can be treated as a @b{View}, but one may also create @b{View}s that aren't associated with any @b{Container}, for example into memory allocated by a different library. Creating and destroying @b{View}s doesn't allocate or deallocate memory for array elements.
  1305. @item @b{Iterator} --- @code{CellBig}, @code{CellSmall}, @code{Iota}, @code{Ptr}, @code{Scalar}, @code{Expr}, @code{Pick}
  1306. This is a traversable object. @b{Iterator}s are accepted by all the array functions such as @code{map}, @code{for_each}, etc. @code{map} produces an @b{Iterator} itself, so most array expressions are @b{Iterator}s. @b{Iterator}s are created from @b{View}s and from certain foreign array-like types primarily through the function @code{start}. This is done automatically when those types are used in array expressions.
  1307. @b{Iterator}s provide a @code{flat()} method to obtain a linearized view of a section of the array. Together with the methods @code{len()}, @code{step()}, @code{keep_step()} and @code{adv()}, a loop involving @b{Iterator}s can have its inner loop unfolded and traversed using @b{Flat} objects. This is faster than a multidimensional loop, especially if the inner dimensions of the loop are small.
  1308. @b{Iterator}s also provide an @code{at(i ...)} method for random access to any element of the expression.
  1309. @item @b{Flat} @code{Iota::Flat}, @code{Scalar}, @code{Expr::Flat}, @code{Pick::Flat}, @code{CellFlat}
  1310. These are types that support ‘forward iterator’ traversal. They have methods @code{operator+=} (to advance) and @code{operator*} (to derreference). @b{Flat} objects are obtained from @b{Iterator} objects through a method @code{flat()}. @code{Scalar} is its own @b{Flat}.
  1311. @end itemize
  1312. @c ------------------------------------------------
  1313. @node Term agreement
  1314. @section Term agreement
  1315. @c ------------------------------------------------
  1316. The execution of an expression template begins with the determination of its shape — the length of each of its dimensions. This is done recursively by traversing the terms of the expression. For a given dimension @code{k}≥0, terms that have rank less or equal than @code{k} are ignored, following the prefix matching principle. Likewise terms where dimension @code{k} has undefined length (such as @code{iota()} or view axes created with @code{insert}) are ignored. All the other terms must match.
  1317. Then we select a traversal method depending on the types of the arguments. @code{ra::} has two traversal methods, both based on pointer-like iterators. @code{ply_ravel} is used for rt-size expressions and @code{plyf} for ct-size expressions.
  1318. Finally we select an order of traversal. @code{ra::} supports ‘array’ orders, meaning that the dimensions are sorted in a certain way from outermost to innermost and a full dimension is traversed before one advances on the dimension outside. However, currently (v@value{VERSION}) there is no heuristic to choose a dimension order, so traversal always happens in row-major order (which shouldn't be relied upon). @code{ply_ravel} will unroll as many innermost dimensions as it can, and in some cases traversal will be executed as a flat loop.
  1319. @c ------------------------------------------------
  1320. @node Loop types
  1321. @section Loop types
  1322. @c ------------------------------------------------
  1323. TODO
  1324. @c ------------------------------------------------
  1325. @node Introspection
  1326. @section Introspection
  1327. @c ------------------------------------------------
  1328. @c ------------------------------------------------
  1329. @node Compiling and running
  1330. @section Compiling and running
  1331. @c ------------------------------------------------
  1332. The following @code{#define}s affect the behavior of @code{ra::}.
  1333. @itemize
  1334. @c FIXME The flag should only apply to dynamic checks.
  1335. @item @code{RA_DO_CHECK} (default 1): Check shape agreement (e.g. @code{Big<int, 1> @{2, 3@} + Big<int, 1> @{1, 2, 3@}}) and random array accesses (e.g. @code{Small<int, 2> a = 0; int i = 10; a[i] = 0;}). See @ref{Error handling}.
  1336. @item @code{RA_DO_OPT} (default 1): Sets the default for all @code{RA_DO_OPT_XXX} flags.
  1337. @item @code{RA_DO_OPT_IOTA} (default 1): Perform immediately (beat) certain operations on @code{ra::Iota} objects. For example, @code{ra::iota(3, 0) + 1} becomes @code{ra::iota(3, 1)} instead of a two-operand expression template.
  1338. @item @code{RA_DO_OPT_SMALLVECTOR} (default 0): Perform immediately certain operations on @code{ra::Small} objects, using small vector intrinsics. Currently this only works on @b{gcc} and doesn't necessarily result in improved performance.
  1339. @end itemize
  1340. @code{ra::} comes with three kinds of tests: examples, proper tests, and benchmarks. @code{ra::} uses its own test and benchmark suites. Run @code{CXXFLAGS=-O3 scons} from the top directory of the distribution to build and run them all. Alternatively, you can use @code{CXXFLAGS=-O3 cmake . && make && make test}. Like most expression template libraries, @code{ra::} is highly dependent on optimization by the compiler and will be orders of magnitude slower with @option{-O0} compared to @option{-O2}.
  1341. The following environment variables affect the test suite under SCons:
  1342. @itemize
  1343. @item @code{RA_USE_BLAS} (default 0): Use BLAS for @code{gemm} and @code{gemv} benchmarks.
  1344. @end itemize
  1345. @c TODO Flags and notes about different compilers
  1346. @c ------------------------------------------------
  1347. @node The future
  1348. @chapter The future
  1349. @c ------------------------------------------------
  1350. @section Error messages
  1351. FIXME
  1352. @section Reductions
  1353. FIXME
  1354. @section Etc
  1355. FIXME
  1356. @c ------------------------------------------------
  1357. @node Reference
  1358. @chapter Reference
  1359. @c ------------------------------------------------
  1360. @cindex @code{agree}
  1361. @anchor{x-agree} @defun agree arg ...
  1362. Return true if the shapes of arguments @var{arg...} match (see @ref{Rank extension}), else return false.
  1363. This is useful when @ref{Error handling,error checking} is enabled and one wants to avoid the failure response.
  1364. @example
  1365. @verbatim
  1366. ra::Small<int, 2, 3> A;
  1367. ra::Small<int, 2> B;
  1368. ra::Small<int, 3> C;
  1369. agree(A, B); // -> true
  1370. static_assert(agree(A, B)); // ok for ct shapes
  1371. cout << (A+B) << endl; // ok
  1372. agree(A, C); // -> false
  1373. cout << (A+C) << endl; // error. Maybe abort, maybe throw - cf Error Handling
  1374. @end verbatim
  1375. @end example
  1376. @end defun
  1377. @cindex @code{agree_op}
  1378. @anchor{x-agree_op} @defun agree_op op arg ...
  1379. Return true if the shapes of arguments @var{arg...} match (see @ref{Rank extension}) relative to operator @var{op}, else return false.
  1380. This differs from @ref{x-agree,@code{agree}} when @var{op} has non-zero argument ranks. For example:
  1381. @example
  1382. @verbatim
  1383. ra::Big<real, 1> a({3}, 0.);
  1384. ra::Big<real, 2> b({2, 3}, 0.n);
  1385. agree(a, b); // -> false
  1386. cout << (a+b) << endl; // error
  1387. agree_op(ra::wrank<1, 1>(std::plus()), a, b); // -> true
  1388. cout << map(ra::wrank<1, 1>(std::plus()), a, b) << endl; // ok
  1389. @end verbatim
  1390. @end example
  1391. @end defun
  1392. @cindex @code{at}
  1393. @anchor{x-at} @defun at expr indices
  1394. Look up @var{expr} at each element of @var{indices}, which shall be a multi-index into @var{expr}.
  1395. This can be used for sparse subscripting. For example:
  1396. @example @c [ra30]
  1397. @verbatim
  1398. ra::Big<int, 2> A = {{100, 101}, {110, 111}, {120, 121}};
  1399. ra::Big<ra::Small<int, 2>, 2> i = {{{0, 1}, {2, 0}}, {{1, 0}, {2, 1}}};
  1400. ra::Big<int, 2> B = at(A, i);
  1401. @end verbatim
  1402. @result{} B = @{@{101, 120@}, @{110, 121@}@}
  1403. @end example
  1404. @end defun
  1405. @cindex @code{cast}
  1406. @anchor{x-cast} @defun cast <type> expr
  1407. Create an array expression that casts @var{expr} into @var{type}.
  1408. @end defun
  1409. @cindex @code{collapse}
  1410. @anchor{x-collapse} @defun collapse
  1411. TODO
  1412. See also @ref{x-explode,@code{explode}}.
  1413. @end defun
  1414. @cindex @code{concrete}
  1415. @anchor{x-concrete} @defun concrete a
  1416. Convert the argument to a container of the same shape as @var{a}.
  1417. If the argument has rt or ct shape, it is the same for the result. The main use of this function is to obtain modifiable copy of an array expression without having to prepare a container beforehand, or compute the appropiate type.
  1418. @c FIXME example
  1419. @end defun
  1420. @cindex @code{diag}
  1421. @anchor{x-diag} @defun diag view
  1422. Equivalent to @code{transpose<0, 0>(view)}.
  1423. @end defun
  1424. @cindex @code{explode}
  1425. @anchor{x-explode} @defun explode
  1426. TODO
  1427. See also @ref{x-collapse,@code{collapse}}.
  1428. @end defun
  1429. @cindex @code{for_each}
  1430. @anchor{x-for_each} @defun for_each op expr ...
  1431. Create an array expression that applies @var{op} to @var{expr} ..., and traverse it.
  1432. @var{op} is run for effect; whatever it returns is discarded. For example:
  1433. @example
  1434. @verbatim
  1435. double s = 0.;
  1436. for_each([&s](auto && a) { s+=a; }, ra::Small<double, 1> {1., 2., 3})
  1437. @end verbatim
  1438. @result{} s = 6.
  1439. @end example
  1440. See also @ref{x-map,@code{map}}.
  1441. @end defun
  1442. @cindex @code{format_array}
  1443. @anchor{x-format_array} @defun format_array expr [last_axis_separator [second_last_axis_separator ...]]
  1444. Formats an array for character output.
  1445. For example:
  1446. @example
  1447. @verbatim
  1448. ra::Small<int, 2, 2> A = {{1, 2}, {3, 4}};
  1449. cout << "case a:\n" << A << endl;
  1450. cout << "case b:\n" << format_array(A) << endl;
  1451. cout << "case c:\n" << format_array(A, "|", "-") << endl;
  1452. @end verbatim
  1453. @print{} case a:
  1454. 1 2
  1455. 3 4
  1456. case b:
  1457. 1 2
  1458. 3 4
  1459. case c:
  1460. 1|2-3|4
  1461. @end example
  1462. The shape that might be printed before the expression itself (depending on its type) is not subject to these separators.
  1463. See also @ref{x-noshape,@code{noshape}}, @ref{x-withshape,@code{withshape}}.
  1464. @end defun
  1465. @cindex @code{from}
  1466. @anchor{x-from} @defun from op expr ...
  1467. Create outer product expression. This is defined as
  1468. @display
  1469. E = from(op, e₀, e₁ ...) ⇒ E(i₀₀, i₀₁ ..., i₁₀, i₁₁, ..., ...) = op[expr₀(i₀₀, i₀₁, ...), expr₁(i₁₀, i₁₁, ...), ...].
  1470. @end display
  1471. For example:
  1472. @example
  1473. @verbatim
  1474. ra::Big<double, 1> a {1, 2, 3};
  1475. ra::Big<double, 1> b {10, 20, 30};
  1476. ra::Big<double, 2> axb = from([](auto && a, auto && b) { return a*b; }, a, b)
  1477. @end verbatim
  1478. @result{} axb = @{@{10, 20, 30@}, @{20, 40, 60@}, @{30, 60, 90@}@}
  1479. @end example
  1480. @example
  1481. @verbatim
  1482. ra::Big<int, 1> i {2, 1};
  1483. ra::Big<int, 1> j {0, 1};
  1484. ra::Big<double, 2> A = {{1, 2}, {3, 4}, {5, 6}};
  1485. ra::Big<double, 2> Aij = from(A, i, j)
  1486. @end verbatim
  1487. @result{} Aij = @{@{6, 5@}, @{4, 3@}@}
  1488. @end example
  1489. The last example is more or less how @code{A(i, j)} is implemented for arbitrary subscripts (@pxref{The rank conjunction}).
  1490. @end defun
  1491. @cindex @code{imag_part}
  1492. @anchor{x-imag_part} @defun imag_part
  1493. Take imaginary part of a complex number. This can be used as reference.
  1494. For example: @c [ma115]
  1495. @example
  1496. @verbatim
  1497. ra::Small<std::complex<double>, 2, 2> A = {{1., 2.}, {3., 4.}};
  1498. imag_part(A) = -2*real_part(A);
  1499. cout << A << endl;
  1500. @end verbatim
  1501. @print{}
  1502. (1, -2) (2, -4)
  1503. (3, -6) (4, -8)
  1504. @end example
  1505. See also @ref{x-real_part,@code{real_part}}.
  1506. @end defun
  1507. @cindex @code{map}
  1508. @anchor{x-map} @defun map op expr ...
  1509. Create an array expression that applies callable @var{op} to @var{expr} ...
  1510. For example:
  1511. @example
  1512. @verbatim
  1513. ra::Big<double, 1> x = map(cos, std::array {0.});
  1514. @end verbatim
  1515. @result{} x = @{ 1. @}
  1516. @end example
  1517. @var{op} can return a reference. For example:
  1518. @example
  1519. @verbatim
  1520. ra::Big<int, 2> x = {{3, 3}, 0.};
  1521. ra::Big<int, 2> i = {0, 1, 1, 2};
  1522. ra::Big<int, 2> j = {1, 0, 2, 1};
  1523. map(x, i, j) = 1;
  1524. @end verbatim
  1525. @result{} x = @{@{0, 1, 0@}, @{1, 0, 1@}, @{0, 1, 0@}@}
  1526. @end example
  1527. Note that @code{map(x, i, j)} is @ref{x-subscript-outer-product,not the same} as @code{x(i, j)}.
  1528. @var{op} can be any callable. For example:
  1529. @example
  1530. @verbatim
  1531. struct A { int a, b; };
  1532. std::vector<A> v = {{1, 2}, {3, 4}};
  1533. ra::map(&A::a, v) = -ra::map(&A::b, v); // pointer to member
  1534. @end verbatim
  1535. @result{} v = @{@{-2, 2@}, @{-4, 4@}@}
  1536. @end example
  1537. See also @ref{x-for_each,@code{for_each}}.
  1538. @end defun
  1539. @cindex @code{pack}
  1540. @anchor{x-pack} @defun pack <type> expr ...
  1541. Create an array expression that brace-constructs @var{type} from @var{expr} ...
  1542. @end defun
  1543. @cindex @code{pick}
  1544. @anchor{x-pick} @defun pick select_expr expr ...
  1545. Create an array expression that selects the first of @var{expr} ... if @var{select_expr} is 0, the second if @var{select_expr} is 1, and so on. The expressions that are not selected are not looked up.
  1546. This function cannot be defined using @ref{x-map,@code{map}}, because @code{map} looks up each one of its argument expressions before calling @var{op}.
  1547. For example:
  1548. @example @c cf examples/readme.cc [ma100].
  1549. @verbatim
  1550. ra::Small<int, 3> s {2, 1, 0};
  1551. ra::Small<double, 3> z = pick(s, s*s, s+s, sqrt(s));
  1552. @end verbatim
  1553. @result{} z = @{1.41421, 2, 0@}
  1554. @end example
  1555. @end defun
  1556. @cindex @code{ply}
  1557. @anchor{x-ply} @defun ply expr
  1558. Traverse @var{expr}. @code{ply} returns @code{void} so @var{expr} should be run for effect.
  1559. It is rarely necessary to use @code{ply}. Expressions are traversed automatically when they are assigned to views, for example, or printed out. @ref{x-for_each,@code{for_each}}@code{(...)}, which is equivalent to @code{ply(map(...))}, should cover most other uses.
  1560. @example
  1561. @verbatim
  1562. double s = 0.;
  1563. ply(map([&s](auto && a) { s+=a; }, ra::Small<double, 1> {1., 2., 3})) // same as for_each
  1564. @end verbatim
  1565. @result{} s = 6.
  1566. @end example
  1567. @end defun
  1568. @cindex @code{real_part}
  1569. @anchor{x-real_part} @defun real_part
  1570. Take real part of a complex number. This can be used as reference.
  1571. See also @ref{x-imag_part,@code{imag_part}}.
  1572. @end defun
  1573. @cindex @code{reverse}
  1574. @anchor{x-reverse} @defun reverse view axis
  1575. Create a new view by reversing axis @var{k} of @var{view}.
  1576. This is equivalent to @code{view(ra::dots<k>, ra::iota(ra::len, ra::len-1, -1))}.
  1577. This operation does not work on arbitrary array expressions yet. TODO FILL
  1578. @end defun
  1579. @cindex @code{shape}
  1580. @anchor{x-shape} @defun shape a
  1581. Get the shape of an @code{ra::} object.
  1582. The shape of a rt rank array is a rank-1 object with rt size, and the shape of a ct rank array is a rank-1 object with ct size.
  1583. This function may return an expression object or an array object. If you need to operate on the result, it might be necessary to use @code{concrete}.
  1584. @end defun
  1585. @c FIXME example
  1586. @cindex @code{size}
  1587. @anchor{x-size} @defun size a
  1588. Get the total size of an @code{ra::} object: the product of all its lengths.
  1589. @end defun
  1590. @c FIXME example
  1591. @cindex @code{stencil}
  1592. @anchor{x-stencil} @defun stencil view lo hi
  1593. Create a stencil on @var{view} with lower bounds @var{lo} and higher bounds @var{hi}.
  1594. @var{lo} and @var{hi} are expressions of rank 1 indicating the extent of the stencil on each dimension. Scalars are rank extended, that is, @var{lo}=0 is equivalent to @var{lo}=(0, 0, ..., 0) with length equal to the rank @code{r} of @var{view}. The stencil view has twice as many axes as @var{view}. The first @code{r} dimensions are the same as those of @var{view} except that they have their lengths reduced by @var{lo}+@var{hi}. The last @code{r} dimensions correspond to the stencil around each element of @var{view}; the center element is at @code{s(i0, i1, ..., lo(0), lo(1), ...)}.
  1595. This operation does not work on arbitrary array expressions yet. TODO FILL
  1596. @end defun
  1597. @cindex @code{swap}
  1598. @anchor{x-swap} @defun swap a b
  1599. Swap the contents of containers @var{a} and @var{b}.
  1600. Both containers must be of the same storage type. The containers may have different shapes, but if at least one of them is of ct rank, then both of them must have the same rank.
  1601. This function reuses @code{std::swap} for same-rank overloads, so it must not be qualified (i.e. use @code{swap(a, b)}, not @code{ra::swap(a, b)}).
  1602. @end defun
  1603. @example @c [ra30]
  1604. @verbatim
  1605. ra::Big<int> a ({2, 3}, 1 + ra::_0 - ra::_1); // (1)
  1606. ra::Big<int> b ({2, 3, 4}, 1 - ra::_0 + ra::_1 + ra::_2); // (2)
  1607. swap(a, b);
  1608. // as if (1) had b and (2) had a
  1609. @end verbatim
  1610. @end example
  1611. @cindex @code{transpose}
  1612. @anchor{x-transpose}
  1613. @defun transpose <axes ...> (view) | (axes, view)
  1614. Create a new view by transposing the axes of @var{view}. The number of @var{axes} must match the rank of @var{view}.
  1615. For example:
  1616. @example
  1617. @verbatim
  1618. ra::Unique<double, 2> a = {{1, 2, 3}, {4, 5, 6}};
  1619. cout << transpose<1, 0>(a) << endl;
  1620. @end verbatim
  1621. @print{}
  1622. 3 2
  1623. 1 4
  1624. 2 5
  1625. 3 6
  1626. @end example
  1627. The rank of the result is @code{maxᵢ(axesᵢ)+1} and it may be smaller or larger than that of @var{view}. If an axis is repeated, the smallest of the dimensions of @var{view} is used. For example:
  1628. @example
  1629. @verbatim
  1630. ra::Unique<double, 2> a = {{1, 2, 3}, {4, 5, 6}};
  1631. cout << transpose<0, 0>(a) << endl; // { a(0, 0), a(1, 1) }
  1632. @end verbatim
  1633. @print{}
  1634. 2
  1635. 1 5
  1636. @end example
  1637. If one of the destination axes isn't mentioned in @var{axes}, then it becomes a ‘dead’ axis similar to those produced by @ref{x-insert,@code{insert}}. For example:
  1638. @example
  1639. @verbatim
  1640. ra::Unique<double, 1> a = {1, 2, 3};
  1641. cout << ((a*10) + transpose<1>(a)) << endl;
  1642. @end verbatim
  1643. @print{}
  1644. 3 3
  1645. 11 21 31
  1646. 12 22 32
  1647. 13 23 33
  1648. @end example
  1649. The two argument form lets you specify the axis list at runtime. In that case the result will have rt rank as well. For example: @c [ma117]
  1650. @example
  1651. @verbatim
  1652. ra::Small<int, 2> axes = {0, 1};
  1653. ra::Unique<double, 2> a = {{1, 2, 3}, {4, 5, 6}};
  1654. cout << "A: " << transpose(axes, a) << endl;
  1655. axes = {1, 0};
  1656. cout << "B: " << transpose(axes, a) << endl;
  1657. @end verbatim
  1658. @print{}
  1659. A: 2
  1660. 2 3
  1661. 1 2 3
  1662. 4 5 6
  1663. B: 2
  1664. 3 2
  1665. 1 4
  1666. 2 5
  1667. 3 6
  1668. @end example
  1669. This operation does not work on arbitrary array expressions yet. TODO FILL
  1670. @end defun
  1671. @cindex @code{where}
  1672. @anchor{x-where} @defun where pred_expr true_expr false_expr
  1673. Create an array expression that selects @var{true_expr} if @var{pred_expr} is @code{true}, and @var{false_expr} if @var{pred_expr} is @code{false}. The expression that is not selected is not looked up.
  1674. For example:
  1675. @example
  1676. @verbatim
  1677. ra::Big<double, 1> s {1, -1, 3, 2};
  1678. s = where(s>=2, 2, s); // saturate s
  1679. @end verbatim
  1680. @result{} s = @{1, -1, 2, 2@}
  1681. @end example
  1682. @end defun
  1683. @cindex @code{wrank}
  1684. @anchor{x-wrank} @defun wrank <input_rank ...> op
  1685. Wrap @var{op} using a rank conjunction (@pxref{The rank conjunction}).
  1686. For example: TODO
  1687. @example
  1688. @verbatim
  1689. @end verbatim
  1690. @result{} x = 0
  1691. @end example
  1692. @end defun
  1693. @c @anchor{x-reshape}
  1694. @c @defun reshape view shape
  1695. @c Create a new view with shape @var{shape} from the row-major ravel of @var{view}.
  1696. @c FIXME fill when the implementation is more mature...
  1697. @c @end defun
  1698. @c @anchor{x-ravel}
  1699. @c @defun ravel view
  1700. @c Return the ravel of @var{view} as a view on @var{view}.
  1701. @c FIXME fill when the implementation is more mature...
  1702. @c @end defun
  1703. @cindex @code{noshape}
  1704. @cindex @code{withshape}
  1705. @anchor{x-noshape}
  1706. @anchor{x-withshape}
  1707. @deffn @w{Special object} {withshape noshape}
  1708. If either of these objects is sent to @code{std::ostream} before an expression object, the shape of that object will or will not be printed.
  1709. If the object has ct shape, the default is not to print the shape, so @code{noshape} isn't necessary, and conversely for @code{withshape} if the object has rt shape. Note that the array readers [@code{operator>>(std::istream &, ...)}] expect the shape to be present or not according to the default.
  1710. For example:
  1711. @example
  1712. @verbatim
  1713. ra::Small<int, 2, 2> A = {77, 99};
  1714. cout << "case a:\n" << A << endl;
  1715. cout << "case b:\n" << ra::noshape << A << endl;
  1716. cout << "case c:\n" << ra::withshape << A << endl;
  1717. @end verbatim
  1718. @print{} case a:
  1719. 77 99
  1720. case b:
  1721. 77 99
  1722. case c:
  1723. 2
  1724. 77 99
  1725. @end example
  1726. but:
  1727. @example
  1728. @verbatim
  1729. ra::Big<int> A = {77, 99};
  1730. cout << "case a:\n" << A << endl;
  1731. cout << "case b:\n" << ra::noshape << A << endl;
  1732. cout << "case c:\n" << ra::withshape << A << endl;
  1733. @end verbatim
  1734. @print{} case a:
  1735. 1
  1736. 2
  1737. 77 99
  1738. case b:
  1739. 77 99
  1740. case c:
  1741. 1
  1742. 2
  1743. 77 99
  1744. @end example
  1745. Note that in the last example the very shape of @code{ra::Big<int>} has rt length, so that length (the rank of @code{A}, that is 1) is printed as part of the shape of @code{A}.
  1746. See also @ref{x-format_array,@code{format_array}}.
  1747. @end deffn
  1748. @cindex @code{ptr}
  1749. @anchor{x-ptr} @defun ptr random_access_iterator [len]
  1750. Create rank-1 expression from @var{random_access_iterator}, which can be a raw pointer.
  1751. If @code{len} is not given, the expression has undefined length, and it will need to be matched with other expressions whose length is defined. @code{ra::} doesn't know what is actually accessible through the iterator, so be careful. For instance:
  1752. @example
  1753. @verbatim
  1754. int p[] = {1, 2, 3};
  1755. ra::Big<int, 1> v3 {1, 2, 3};
  1756. ra::Big<int, 1> v4 {1, 2, 3, 4};
  1757. v3 += ra::ptr(p); // ok, shape (3): v3 = {2, 4, 6}
  1758. v4 += ra::ptr(p); // undefined, shape (4): bad access to p[3]
  1759. // cout << (ra::ptr(p)+ra::TensorIndex<0>{}) << endl; // ct error, expression has undefined shape
  1760. cout << (ra::ptr(p, 3)+ra::TensorIndex<0>{}) << endl; // ok, prints { 1, 3, 5 }
  1761. cout << (ra::ptr(p, 4)+ra::TensorIndex<0>{}) << endl; // undefined, bad access at p[4]
  1762. @end verbatim
  1763. @end example
  1764. Of course in this example one could simply have used @code{p} instead of @code{ra::ptr(p)}, since the array type retains shape information.
  1765. @example
  1766. @verbatim
  1767. v3 += p; // ok
  1768. v4 += p; // error checked by ra::, shape clash (4) += (3)
  1769. cout << (p + ra::TensorIndex<0>{}) << endl; // ok
  1770. @end verbatim
  1771. @end example
  1772. @code{ptr} isn't meant to be used with STL containers, which are converted to rank-1 expressions automatically of the right size automatically. See also @ref{x-start,@code{start}}.
  1773. @end defun
  1774. @cindex @code{start}
  1775. @anchor{x-start} @defun start foreign_object
  1776. Create array expression from @var{foreign_object}.
  1777. @var{foreign_object} can be a built-in array (e.g. @code{int[3][2]}), a @code{std::random_access_range} type (including @code{std::vector} or @code{std::array}, @pxref{Compatibility}), an initializer list, or any object that @code{ra::} accepts as scalar (see @ref{x-is-scalar,@code{here}}). The resulting expresion has shape according to the original object. Compare this with @ref{x-scalar,@code{scalar}}, which will always produce an expression of rank 0.
  1778. Generally one can mix these types with @code{ra::} expressions without needing @code{ra::start}, but sometimes this isn't possible, for example for operators that must be class members.
  1779. @example
  1780. @verbatim
  1781. std::vector<int> x = {1, 2, 3};
  1782. ra::Big<int, 1> y = {10, 20, 30};
  1783. cout << (x+y) << endl; // same as ra::start(x)+y
  1784. // x += y; // error: no match for operator+=
  1785. ra::start(x) += y; // ok
  1786. @end verbatim
  1787. @print{} 3
  1788. 11 22 33
  1789. @result{} x = @{ 11, 22, 33 @}
  1790. @end example
  1791. @end defun
  1792. @cindex @code{scalar}
  1793. @anchor{x-scalar} @defun scalar expr
  1794. Create scalar expression from @var{expr}.
  1795. The primary use of this function is to bring a scalar object into the @code{ra::} namespace. A somewhat artificial example:
  1796. @example
  1797. @verbatim
  1798. struct W { int x; }
  1799. ra::Big<W, 1> w { {1}, {2}, {3} };
  1800. // error: no matching function for call to start(W)
  1801. // for_each([](auto && a, auto && b) { cout << (a.x + b.x) << endl; }, w, W {7});
  1802. // bring W into ra:: with ra::scalar
  1803. for_each([](auto && a, auto && b) { cout << (a.x + b.x) << endl; }, w, ra::scalar(W {7}));
  1804. @end verbatim
  1805. @print{} 8
  1806. 9
  1807. 10
  1808. @end example
  1809. See also @ref{x-scalar-char-star,@code{this example}}.
  1810. Since @code{scalar} produces an object with rank 0, it's also useful when dealing with nested arrays, even for objects that are already in @code{ra::}. Consider:
  1811. @example
  1812. @verbatim
  1813. using Vec2 = ra::Small<double, 2>;
  1814. Vec2 x {-1, 1};
  1815. ra::Big<Vec2, 1> c { {1, 2}, {2, 3}, {3, 4} };
  1816. // c += x // error: x has shape (2) and c has shape (3)
  1817. c += ra::scalar(x); // ok: scalar(x) has shape () and matches c.
  1818. @end verbatim
  1819. @result{} c = @{ @{0, 3@}, @{1, 4@}, @{2, 5@} @}
  1820. @end example
  1821. The result is @{c(0)+x, c(1)+x, c(2)+x@}. Compare this with
  1822. @example
  1823. @verbatim
  1824. c(ra::iota(2)) += x; // c(ra::iota(2)) with shape (2) matches x with shape (2)
  1825. @end verbatim
  1826. @result{} c = @{ @{-1, 2@}, @{2, 5@}, @{2, 5@} @}
  1827. @end example
  1828. where the result is @{c(0)+x(0), c(1)+x(1), c(2)@}.
  1829. @end defun
  1830. @cindex @code{iter}
  1831. @anchor{x-iter} @defun iter <k> (view)
  1832. Create iterator over the @var{k}-cells of @var{view}. If @var{k} is negative, it is interpreted as the negative of the frame rank. In the current version of @code{ra::}, @var{view} may have rt or ct shape.
  1833. @example
  1834. @verbatim
  1835. ra::Big<int, 2> c {{1, 3, 2}, {7, 1, 3}};
  1836. cout << "max of each row: " << map([](auto && a) { return amax(a); }, iter<1>(c)) << endl;
  1837. ra::Big<int, 1> m({3}, 0);
  1838. scalar(m) = max(scalar(m), iter<1>(c));
  1839. cout << "max of each column: " << m << endl;
  1840. m = 0;
  1841. for_each([&m](auto && a) { m = max(m, a); }, iter<1>(c));
  1842. cout << "max of each column again: " << m << endl;
  1843. @end verbatim
  1844. @print{} max of each row: 2
  1845. 3 7
  1846. max of each column: 3
  1847. 7 3 3
  1848. max of each column again: 3
  1849. 7 3 3
  1850. @end example
  1851. @c [ma113]
  1852. In the following example, @code{iter} emulates @code{scalar}. Note that the shape () of @code{iter<1>(m)} matches the shape (3) of @code{iter<1>(c)}. Thus, each of the 1-cells of @code{c} matches against the single 1-cell of @code{m}.
  1853. @example
  1854. @verbatim
  1855. m = 0;
  1856. iter<1>(m) = max(iter<1>(m), iter<1>(c));
  1857. cout << "max of each column yet again: " << m << endl;
  1858. @end verbatim
  1859. @print{} max of each column again: 3
  1860. 7 3 3
  1861. @end example
  1862. The following example computes the trace of each of the items [(-1)-cells] of @code{c}. @c [ma104]
  1863. @example
  1864. @verbatim
  1865. ra::Small<int, 3, 2, 2> c = ra::_0 - ra::_1 - 2*ra::_2;
  1866. cout << "c: " << c << endl;
  1867. cout << "s: " << map([](auto && a) { return sum(diag(a)); }, iter<-1>(c)) << endl;
  1868. @end verbatim
  1869. @print{} c: 0 -2
  1870. -1 -3
  1871. 1 -1
  1872. 0 -2
  1873. 2 0
  1874. 1 -1
  1875. s: -3 -1 -1
  1876. @end example
  1877. @end defun
  1878. @cindex @code{sum}
  1879. @anchor{x-sum} @defun sum expr
  1880. Return the sum (+) of the elements of @var{expr}, or 0 if expr is empty. This sum is performed in unspecified order.
  1881. @end defun
  1882. @cindex @code{prod}
  1883. @anchor{x-prod} @defun prod expr
  1884. Return the product (*) of the elements of @var{expr}, or 1 if expr is empty. This product is performed in unspecified order.
  1885. @end defun
  1886. @cindex @code{amax}
  1887. @anchor{x-amax} @defun amax expr
  1888. Return the maximum of the elements of @var{expr}. If @var{expr} is empty, return @code{-std::numeric_limits<T>::infinity()} if the type supports it, otherwise @code{std::numeric_limits<T>::lowest()}, where @code{T} is the value type of the elements of @var{expr}.
  1889. @end defun
  1890. @cindex @code{amin}
  1891. @anchor{x-amin} @defun amin expr
  1892. Return the minimum of the elements of @var{expr}. If @var{expr} is empty, return @code{+std::numeric_limits<T>::infinity()} if the type supports it, otherwise @code{std::numeric_limits<T>::max()}, where @code{T} is the value type of the elements of @var{expr}.
  1893. @end defun
  1894. @cindex @code{early}
  1895. @anchor{x-early} @defun early expr default
  1896. @var{expr} shall be an array expression that returns @code{std::tuple<bool, T>}. @var{expr} is traversed as by @code{for_each}; if the expression ever returns @code{true} in the first element of the tuple, traversal stops and the second element is returned. If this never happens, @var{default} is returned instead.
  1897. The following definition of elementwise @code{lexicographical_compare} relies on @code{early}.
  1898. @example @c [ma108]
  1899. @verbatim
  1900. template <class A, class B>
  1901. inline bool lexicographical_compare(A && a, B && b)
  1902. {
  1903. return early(map([](auto && a, auto && b)
  1904. { return a==b ? std::make_tuple(false, true) : std::make_tuple(true, a<b); },
  1905. a, b),
  1906. false);
  1907. }
  1908. @end verbatim
  1909. @end example
  1910. @end defun
  1911. @cindex @code{any}
  1912. @anchor{x-any} @defun any expr
  1913. Return @code{true} if any element of @var{expr} is true, @code{false} otherwise. The traversal of the array expression will stop as soon as possible, but the traversal order is not specified.
  1914. @end defun
  1915. @cindex @code{every}
  1916. @anchor{x-every} @defun every expr
  1917. Return @code{true} if every element of @var{expr} is true, @code{false} otherwise. The traversal of the array expression will stop as soon as possible, but the traversal order is not specified.
  1918. @end defun
  1919. @cindex @code{sqr}
  1920. @anchor{x-sqr} @defun sqr expr
  1921. Compute the square of @var{expr}.
  1922. @end defun
  1923. @cindex @code{sqrm}
  1924. @anchor{x-sqrm} @defun sqrm expr
  1925. Compute the square of the norm-2 of @var{expr}, that is, @code{conj(expr)*expr}.
  1926. @end defun
  1927. @cindex @code{conj}
  1928. @anchor{x-conj} @defun conj expr
  1929. Compute the complex conjugate of @var{expr}.
  1930. @end defun
  1931. @cindex @code{xI}
  1932. @anchor{x-xI} @defun xI expr
  1933. Compute @code{(0+1j)} times @var{expr}.
  1934. @end defun
  1935. @cindex @code{rel_error}
  1936. @anchor{x-rel-error} @defun rel_error a b
  1937. @var{a} and @var{b} are arbitrary array expressions. Compute the error of @var{a} relative to @var{b} as
  1938. @code{(a==0. && b==0.) ? 0. : 2.*abs(a, b)/(abs(a)+abs(b))}
  1939. @end defun
  1940. @cindex @code{none}
  1941. @anchor{x-none}
  1942. @deffn @w{Special object} {none}
  1943. Pass @code{none} to container constructors to indicate that the contents shouldn't be initialized. This is appropriate when the initialization you have in mind wouldn't fit in a constructor argument. For example:
  1944. @example
  1945. @verbatim
  1946. void old_style_initializer(int m, int n, double *);
  1947. ra::Big<double> b({2, 3}, ra::none);
  1948. old_style_initializer(2, 3, b.data());
  1949. @end verbatim
  1950. @end example
  1951. @end deffn
  1952. @c ------------------------------------------------
  1953. @node @mybibnode{}
  1954. @chapter Sources
  1955. @c ------------------------------------------------
  1956. @multitable @columnfractions .1 .9
  1957. @item @mybibitem{Abr70} @tab Philip S. Abrams. An APL machine. Technical report SLAC-114 UC-32 (MISC), Stanford Linear Accelerator Center, Stanford University, Stanford, CA, USA, February 1970.
  1958. @item @mybibitem{Ber87} @tab Robert Bernecky. An introduction to function rank. ACM SIGAPL APL Quote Quad, 18(2):39–43, December 1987.
  1959. @item @mybibitem{bli17} @tab The Blitz++ meta-template library. @url{http://blitz.sourceforge.net}, November 2017.
  1960. @item @mybibitem{Cha86} @tab Gregory J. Chaitin. Physics in APL2, June 1986.
  1961. @item @mybibitem{FI68} @tab Adin D. Falkoff and Kenneth Eugene Iverson. APL\360 User’s manual. IBM Thomas J. Watson Research Center, August 1968.
  1962. @item @mybibitem{FI73} @tab Adin D. Falkoff and Kenneth Eugene Iverson. The design of APL. IBM Journal of Research and Development, 17(4):5–14, July 1973.
  1963. @item @mybibitem{FI78} @tab Adin D. Falkoff and Kenneth Eugene Iverson. The evolution of APL. ACM SIGAPL APL, 9(1):30– 44, 1978.
  1964. @item @mybibitem{J S} @tab J Primer. J Software, @url{https://www.jsoftware.com/help/primer/contents.htm}, November 2017.
  1965. @item @mybibitem{Mat} @tab MathWorks. MATLAB documentation, @url{https://www.mathworks.com/help/matlab/}, November 2017.
  1966. @item @mybibitem{num17} @tab NumPy. @url{http://www.numpy.org}, November 2017.
  1967. @item @mybibitem{Ric08} @tab Henry Rich. J for C programmers, February 2008.
  1968. @item @mybibitem{SSM14} @tab Justin Slepak, Olin Shivers, and Panagiotis Manolios. An array-oriented language with static rank polymorphism. In Z. Shao, editor, ESOP 2014, LNCS 8410, pages 27–46, 2014.
  1969. @item @mybibitem{Vel01} @tab Todd Veldhuizen. Blitz++ user’s guide, February 2001.
  1970. @item @mybibitem{Wad90} @tab Philip Wadler. Deforestation: transforming programs to eliminate trees. Theoretical Computer Science, 73(2): 231--248, June 1990. @url{https://doi.org/10.1016/0304-3975%2890%2990147-A}
  1971. @end multitable
  1972. @c ------------------------------------------------
  1973. @node Indices
  1974. @unnumbered Indices
  1975. @c ------------------------------------------------
  1976. @c @node Concept Index
  1977. @c @unnumbered Concept Index
  1978. @printindex cp
  1979. @c @node Function Index
  1980. @c @unnumbered Function Index
  1981. @c @printindex fn
  1982. @c \nocite{JLangReference,FalkoffIverson1968,Abrams1970,FalkoffIverson1973,FalkoffIverson1978,APLexamples1,ArraysCowan,KonaTheLanguage,blitz++2001}
  1983. @c ------------------------------------------------
  1984. @node Notes
  1985. @unnumbered Notes
  1986. @c ------------------------------------------------
  1987. @enumerate
  1988. @item
  1989. @code{ra::} uses the non standard @code{#pragma once} (supported on all major compilers).
  1990. @end enumerate
  1991. @bye