navigation.cpp 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737
  1. /*************************************************************************/
  2. /* navigation.cpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #include "navigation.h"
  31. #define USE_ENTRY_POINT
  32. void Navigation::_navmesh_link(int p_id) {
  33. ERR_FAIL_COND(!navmesh_map.has(p_id));
  34. NavMesh &nm = navmesh_map[p_id];
  35. ERR_FAIL_COND(nm.linked);
  36. ERR_FAIL_COND(nm.navmesh.is_null());
  37. PoolVector<Vector3> vertices = nm.navmesh->get_vertices();
  38. int len = vertices.size();
  39. if (len == 0)
  40. return;
  41. PoolVector<Vector3>::Read r = vertices.read();
  42. for (int i = 0; i < nm.navmesh->get_polygon_count(); i++) {
  43. //build
  44. List<Polygon>::Element *P = nm.polygons.push_back(Polygon());
  45. Polygon &p = P->get();
  46. p.owner = &nm;
  47. Vector<int> poly = nm.navmesh->get_polygon(i);
  48. int plen = poly.size();
  49. const int *indices = poly.ptr();
  50. bool valid = true;
  51. p.edges.resize(plen);
  52. Vector3 center;
  53. float sum = 0;
  54. for (int j = 0; j < plen; j++) {
  55. int idx = indices[j];
  56. if (idx < 0 || idx >= len) {
  57. valid = false;
  58. break;
  59. }
  60. Polygon::Edge e;
  61. Vector3 ep = nm.xform.xform(r[idx]);
  62. center += ep;
  63. e.point = _get_point(ep);
  64. p.edges.write[j] = e;
  65. if (j >= 2) {
  66. Vector3 epa = nm.xform.xform(r[indices[j - 2]]);
  67. Vector3 epb = nm.xform.xform(r[indices[j - 1]]);
  68. sum += up.dot((epb - epa).cross(ep - epa));
  69. }
  70. }
  71. p.clockwise = sum > 0;
  72. if (!valid) {
  73. nm.polygons.pop_back();
  74. ERR_CONTINUE(!valid);
  75. continue;
  76. }
  77. p.center = center;
  78. if (plen != 0) {
  79. p.center /= plen;
  80. }
  81. //connect
  82. for (int j = 0; j < plen; j++) {
  83. int next = (j + 1) % plen;
  84. EdgeKey ek(p.edges[j].point, p.edges[next].point);
  85. Map<EdgeKey, Connection>::Element *C = connections.find(ek);
  86. if (!C) {
  87. Connection c;
  88. c.A = &p;
  89. c.A_edge = j;
  90. c.B = NULL;
  91. c.B_edge = -1;
  92. connections[ek] = c;
  93. } else {
  94. if (C->get().B != NULL) {
  95. ConnectionPending pending;
  96. pending.polygon = &p;
  97. pending.edge = j;
  98. p.edges.write[j].P = C->get().pending.push_back(pending);
  99. continue;
  100. }
  101. C->get().B = &p;
  102. C->get().B_edge = j;
  103. C->get().A->edges.write[C->get().A_edge].C = &p;
  104. C->get().A->edges.write[C->get().A_edge].C_edge = j;
  105. p.edges.write[j].C = C->get().A;
  106. p.edges.write[j].C_edge = C->get().A_edge;
  107. //connection successful.
  108. }
  109. }
  110. }
  111. nm.linked = true;
  112. }
  113. void Navigation::_navmesh_unlink(int p_id) {
  114. ERR_FAIL_COND(!navmesh_map.has(p_id));
  115. NavMesh &nm = navmesh_map[p_id];
  116. ERR_FAIL_COND(!nm.linked);
  117. for (List<Polygon>::Element *E = nm.polygons.front(); E; E = E->next()) {
  118. Polygon &p = E->get();
  119. int ec = p.edges.size();
  120. Polygon::Edge *edges = p.edges.ptrw();
  121. for (int i = 0; i < ec; i++) {
  122. int next = (i + 1) % ec;
  123. EdgeKey ek(edges[i].point, edges[next].point);
  124. Map<EdgeKey, Connection>::Element *C = connections.find(ek);
  125. ERR_CONTINUE(!C);
  126. if (edges[i].P) {
  127. C->get().pending.erase(edges[i].P);
  128. edges[i].P = NULL;
  129. } else if (C->get().B) {
  130. //disconnect
  131. C->get().B->edges.write[C->get().B_edge].C = NULL;
  132. C->get().B->edges.write[C->get().B_edge].C_edge = -1;
  133. C->get().A->edges.write[C->get().A_edge].C = NULL;
  134. C->get().A->edges.write[C->get().A_edge].C_edge = -1;
  135. if (C->get().A == &E->get()) {
  136. C->get().A = C->get().B;
  137. C->get().A_edge = C->get().B_edge;
  138. }
  139. C->get().B = NULL;
  140. C->get().B_edge = -1;
  141. if (C->get().pending.size()) {
  142. //reconnect if something is pending
  143. ConnectionPending cp = C->get().pending.front()->get();
  144. C->get().pending.pop_front();
  145. C->get().B = cp.polygon;
  146. C->get().B_edge = cp.edge;
  147. C->get().A->edges.write[C->get().A_edge].C = cp.polygon;
  148. C->get().A->edges.write[C->get().A_edge].C_edge = cp.edge;
  149. cp.polygon->edges.write[cp.edge].C = C->get().A;
  150. cp.polygon->edges.write[cp.edge].C_edge = C->get().A_edge;
  151. cp.polygon->edges.write[cp.edge].P = NULL;
  152. }
  153. } else {
  154. connections.erase(C);
  155. //erase
  156. }
  157. }
  158. }
  159. nm.polygons.clear();
  160. nm.linked = false;
  161. }
  162. int Navigation::navmesh_add(const Ref<NavigationMesh> &p_mesh, const Transform &p_xform, Object *p_owner) {
  163. int id = last_id++;
  164. NavMesh nm;
  165. nm.linked = false;
  166. nm.navmesh = p_mesh;
  167. nm.xform = p_xform;
  168. nm.owner = p_owner;
  169. navmesh_map[id] = nm;
  170. _navmesh_link(id);
  171. return id;
  172. }
  173. void Navigation::navmesh_set_transform(int p_id, const Transform &p_xform) {
  174. ERR_FAIL_COND(!navmesh_map.has(p_id));
  175. NavMesh &nm = navmesh_map[p_id];
  176. if (nm.xform == p_xform)
  177. return; //bleh
  178. _navmesh_unlink(p_id);
  179. nm.xform = p_xform;
  180. _navmesh_link(p_id);
  181. }
  182. void Navigation::navmesh_remove(int p_id) {
  183. ERR_FAIL_COND(!navmesh_map.has(p_id));
  184. _navmesh_unlink(p_id);
  185. navmesh_map.erase(p_id);
  186. }
  187. void Navigation::_clip_path(Vector<Vector3> &path, Polygon *from_poly, const Vector3 &p_to_point, Polygon *p_to_poly) {
  188. Vector3 from = path[path.size() - 1];
  189. if (from.distance_to(p_to_point) < CMP_EPSILON)
  190. return;
  191. Plane cut_plane;
  192. cut_plane.normal = (from - p_to_point).cross(up);
  193. if (cut_plane.normal == Vector3())
  194. return;
  195. cut_plane.normal.normalize();
  196. cut_plane.d = cut_plane.normal.dot(from);
  197. while (from_poly != p_to_poly) {
  198. int pe = from_poly->prev_edge;
  199. Vector3 a = _get_vertex(from_poly->edges[pe].point);
  200. Vector3 b = _get_vertex(from_poly->edges[(pe + 1) % from_poly->edges.size()].point);
  201. from_poly = from_poly->edges[pe].C;
  202. ERR_FAIL_COND(!from_poly);
  203. if (a.distance_to(b) > CMP_EPSILON) {
  204. Vector3 inters;
  205. if (cut_plane.intersects_segment(a, b, &inters)) {
  206. if (inters.distance_to(p_to_point) > CMP_EPSILON && inters.distance_to(path[path.size() - 1]) > CMP_EPSILON) {
  207. path.push_back(inters);
  208. }
  209. }
  210. }
  211. }
  212. }
  213. Vector<Vector3> Navigation::get_simple_path(const Vector3 &p_start, const Vector3 &p_end, bool p_optimize) {
  214. Polygon *begin_poly = NULL;
  215. Polygon *end_poly = NULL;
  216. Vector3 begin_point;
  217. Vector3 end_point;
  218. float begin_d = 1e20;
  219. float end_d = 1e20;
  220. for (Map<int, NavMesh>::Element *E = navmesh_map.front(); E; E = E->next()) {
  221. if (!E->get().linked)
  222. continue;
  223. for (List<Polygon>::Element *F = E->get().polygons.front(); F; F = F->next()) {
  224. Polygon &p = F->get();
  225. for (int i = 2; i < p.edges.size(); i++) {
  226. Face3 f(_get_vertex(p.edges[0].point), _get_vertex(p.edges[i - 1].point), _get_vertex(p.edges[i].point));
  227. Vector3 spoint = f.get_closest_point_to(p_start);
  228. float dpoint = spoint.distance_to(p_start);
  229. if (dpoint < begin_d) {
  230. begin_d = dpoint;
  231. begin_poly = &p;
  232. begin_point = spoint;
  233. }
  234. spoint = f.get_closest_point_to(p_end);
  235. dpoint = spoint.distance_to(p_end);
  236. if (dpoint < end_d) {
  237. end_d = dpoint;
  238. end_poly = &p;
  239. end_point = spoint;
  240. }
  241. }
  242. p.prev_edge = -1;
  243. }
  244. }
  245. if (!begin_poly || !end_poly) {
  246. return Vector<Vector3>(); //no path
  247. }
  248. if (begin_poly == end_poly) {
  249. Vector<Vector3> path;
  250. path.resize(2);
  251. path.write[0] = begin_point;
  252. path.write[1] = end_point;
  253. return path;
  254. }
  255. bool found_route = false;
  256. List<Polygon *> open_list;
  257. for (int i = 0; i < begin_poly->edges.size(); i++) {
  258. if (begin_poly->edges[i].C) {
  259. begin_poly->edges[i].C->prev_edge = begin_poly->edges[i].C_edge;
  260. #ifdef USE_ENTRY_POINT
  261. Vector3 edge[2] = {
  262. _get_vertex(begin_poly->edges[i].point),
  263. _get_vertex(begin_poly->edges[(i + 1) % begin_poly->edges.size()].point)
  264. };
  265. Vector3 entry = Geometry::get_closest_point_to_segment(begin_poly->entry, edge);
  266. begin_poly->edges[i].C->distance = begin_poly->entry.distance_to(entry);
  267. begin_poly->edges[i].C->entry = entry;
  268. #else
  269. begin_poly->edges[i].C->distance = begin_poly->center.distance_to(begin_poly->edges[i].C->center);
  270. #endif
  271. open_list.push_back(begin_poly->edges[i].C);
  272. if (begin_poly->edges[i].C == end_poly) {
  273. found_route = true;
  274. }
  275. }
  276. }
  277. while (!found_route) {
  278. if (open_list.size() == 0) {
  279. break;
  280. }
  281. //check open list
  282. List<Polygon *>::Element *least_cost_poly = NULL;
  283. float least_cost = 1e30;
  284. //this could be faster (cache previous results)
  285. for (List<Polygon *>::Element *E = open_list.front(); E; E = E->next()) {
  286. Polygon *p = E->get();
  287. float cost = p->distance;
  288. #ifdef USE_ENTRY_POINT
  289. int es = p->edges.size();
  290. float shortest_distance = 1e30;
  291. for (int i = 0; i < es; i++) {
  292. Polygon::Edge &e = p->edges.write[i];
  293. if (!e.C)
  294. continue;
  295. Vector3 edge[2] = {
  296. _get_vertex(p->edges[i].point),
  297. _get_vertex(p->edges[(i + 1) % es].point)
  298. };
  299. Vector3 edge_point = Geometry::get_closest_point_to_segment(p->entry, edge);
  300. float dist = p->entry.distance_to(edge_point);
  301. if (dist < shortest_distance)
  302. shortest_distance = dist;
  303. }
  304. cost += shortest_distance;
  305. #else
  306. cost += p->center.distance_to(end_point);
  307. #endif
  308. if (cost < least_cost) {
  309. least_cost_poly = E;
  310. least_cost = cost;
  311. }
  312. }
  313. Polygon *p = least_cost_poly->get();
  314. //open the neighbours for search
  315. for (int i = 0; i < p->edges.size(); i++) {
  316. Polygon::Edge &e = p->edges.write[i];
  317. if (!e.C)
  318. continue;
  319. float distance = p->center.distance_to(e.C->center) + p->distance;
  320. if (e.C->prev_edge != -1) {
  321. //oh this was visited already, can we win the cost?
  322. if (e.C->distance > distance) {
  323. e.C->prev_edge = e.C_edge;
  324. e.C->distance = distance;
  325. }
  326. } else {
  327. //add to open neighbours
  328. e.C->prev_edge = e.C_edge;
  329. e.C->distance = distance;
  330. open_list.push_back(e.C);
  331. if (e.C == end_poly) {
  332. //oh my reached end! stop algorithm
  333. found_route = true;
  334. break;
  335. }
  336. }
  337. }
  338. if (found_route)
  339. break;
  340. open_list.erase(least_cost_poly);
  341. }
  342. if (found_route) {
  343. Vector<Vector3> path;
  344. if (p_optimize) {
  345. //string pulling
  346. Polygon *apex_poly = end_poly;
  347. Vector3 apex_point = end_point;
  348. Vector3 portal_left = apex_point;
  349. Vector3 portal_right = apex_point;
  350. Polygon *left_poly = end_poly;
  351. Polygon *right_poly = end_poly;
  352. Polygon *p = end_poly;
  353. path.push_back(end_point);
  354. while (p) {
  355. Vector3 left;
  356. Vector3 right;
  357. #define CLOCK_TANGENT(m_a, m_b, m_c) (((m_a) - (m_c)).cross((m_a) - (m_b)))
  358. if (p == begin_poly) {
  359. left = begin_point;
  360. right = begin_point;
  361. } else {
  362. int prev = p->prev_edge;
  363. int prev_n = (p->prev_edge + 1) % p->edges.size();
  364. left = _get_vertex(p->edges[prev].point);
  365. right = _get_vertex(p->edges[prev_n].point);
  366. //if (CLOCK_TANGENT(apex_point,left,(left+right)*0.5).dot(up) < 0){
  367. if (p->clockwise) {
  368. SWAP(left, right);
  369. }
  370. }
  371. bool skip = false;
  372. if (CLOCK_TANGENT(apex_point, portal_left, left).dot(up) >= 0) {
  373. //process
  374. if (portal_left == apex_point || CLOCK_TANGENT(apex_point, left, portal_right).dot(up) > 0) {
  375. left_poly = p;
  376. portal_left = left;
  377. } else {
  378. _clip_path(path, apex_poly, portal_right, right_poly);
  379. apex_point = portal_right;
  380. p = right_poly;
  381. left_poly = p;
  382. apex_poly = p;
  383. portal_left = apex_point;
  384. portal_right = apex_point;
  385. path.push_back(apex_point);
  386. skip = true;
  387. }
  388. }
  389. if (!skip && CLOCK_TANGENT(apex_point, portal_right, right).dot(up) <= 0) {
  390. //process
  391. if (portal_right == apex_point || CLOCK_TANGENT(apex_point, right, portal_left).dot(up) < 0) {
  392. right_poly = p;
  393. portal_right = right;
  394. } else {
  395. _clip_path(path, apex_poly, portal_left, left_poly);
  396. apex_point = portal_left;
  397. p = left_poly;
  398. right_poly = p;
  399. apex_poly = p;
  400. portal_right = apex_point;
  401. portal_left = apex_point;
  402. path.push_back(apex_point);
  403. }
  404. }
  405. if (p != begin_poly)
  406. p = p->edges[p->prev_edge].C;
  407. else
  408. p = NULL;
  409. }
  410. if (path[path.size() - 1] != begin_point)
  411. path.push_back(begin_point);
  412. path.invert();
  413. } else {
  414. //midpoints
  415. Polygon *p = end_poly;
  416. path.push_back(end_point);
  417. while (true) {
  418. int prev = p->prev_edge;
  419. int prev_n = (p->prev_edge + 1) % p->edges.size();
  420. Vector3 point = (_get_vertex(p->edges[prev].point) + _get_vertex(p->edges[prev_n].point)) * 0.5;
  421. path.push_back(point);
  422. p = p->edges[prev].C;
  423. if (p == begin_poly)
  424. break;
  425. }
  426. path.push_back(begin_point);
  427. path.invert();
  428. }
  429. return path;
  430. }
  431. return Vector<Vector3>();
  432. }
  433. Vector3 Navigation::get_closest_point_to_segment(const Vector3 &p_from, const Vector3 &p_to, const bool &p_use_collision) {
  434. bool use_collision = p_use_collision;
  435. Vector3 closest_point;
  436. float closest_point_d = 1e20;
  437. for (Map<int, NavMesh>::Element *E = navmesh_map.front(); E; E = E->next()) {
  438. if (!E->get().linked)
  439. continue;
  440. for (List<Polygon>::Element *F = E->get().polygons.front(); F; F = F->next()) {
  441. Polygon &p = F->get();
  442. for (int i = 2; i < p.edges.size(); i++) {
  443. Face3 f(_get_vertex(p.edges[0].point), _get_vertex(p.edges[i - 1].point), _get_vertex(p.edges[i].point));
  444. Vector3 inters;
  445. if (f.intersects_segment(p_from, p_to, &inters)) {
  446. if (!use_collision) {
  447. closest_point = inters;
  448. use_collision = true;
  449. closest_point_d = p_from.distance_to(inters);
  450. } else if (closest_point_d > inters.distance_to(p_from)) {
  451. closest_point = inters;
  452. closest_point_d = p_from.distance_to(inters);
  453. }
  454. }
  455. }
  456. if (!use_collision) {
  457. for (int i = 0; i < p.edges.size(); i++) {
  458. Vector3 a, b;
  459. Geometry::get_closest_points_between_segments(p_from, p_to, _get_vertex(p.edges[i].point), _get_vertex(p.edges[(i + 1) % p.edges.size()].point), a, b);
  460. float d = a.distance_to(b);
  461. if (d < closest_point_d) {
  462. closest_point_d = d;
  463. closest_point = b;
  464. }
  465. }
  466. }
  467. }
  468. }
  469. return closest_point;
  470. }
  471. Vector3 Navigation::get_closest_point(const Vector3 &p_point) {
  472. Vector3 closest_point;
  473. float closest_point_d = 1e20;
  474. for (Map<int, NavMesh>::Element *E = navmesh_map.front(); E; E = E->next()) {
  475. if (!E->get().linked)
  476. continue;
  477. for (List<Polygon>::Element *F = E->get().polygons.front(); F; F = F->next()) {
  478. Polygon &p = F->get();
  479. for (int i = 2; i < p.edges.size(); i++) {
  480. Face3 f(_get_vertex(p.edges[0].point), _get_vertex(p.edges[i - 1].point), _get_vertex(p.edges[i].point));
  481. Vector3 inters = f.get_closest_point_to(p_point);
  482. float d = inters.distance_to(p_point);
  483. if (d < closest_point_d) {
  484. closest_point = inters;
  485. closest_point_d = d;
  486. }
  487. }
  488. }
  489. }
  490. return closest_point;
  491. }
  492. Vector3 Navigation::get_closest_point_normal(const Vector3 &p_point) {
  493. Vector3 closest_point;
  494. Vector3 closest_normal;
  495. float closest_point_d = 1e20;
  496. for (Map<int, NavMesh>::Element *E = navmesh_map.front(); E; E = E->next()) {
  497. if (!E->get().linked)
  498. continue;
  499. for (List<Polygon>::Element *F = E->get().polygons.front(); F; F = F->next()) {
  500. Polygon &p = F->get();
  501. for (int i = 2; i < p.edges.size(); i++) {
  502. Face3 f(_get_vertex(p.edges[0].point), _get_vertex(p.edges[i - 1].point), _get_vertex(p.edges[i].point));
  503. Vector3 inters = f.get_closest_point_to(p_point);
  504. float d = inters.distance_to(p_point);
  505. if (d < closest_point_d) {
  506. closest_point = inters;
  507. closest_point_d = d;
  508. closest_normal = f.get_plane().normal;
  509. }
  510. }
  511. }
  512. }
  513. return closest_normal;
  514. }
  515. Object *Navigation::get_closest_point_owner(const Vector3 &p_point) {
  516. Vector3 closest_point;
  517. Object *owner = NULL;
  518. float closest_point_d = 1e20;
  519. for (Map<int, NavMesh>::Element *E = navmesh_map.front(); E; E = E->next()) {
  520. if (!E->get().linked)
  521. continue;
  522. for (List<Polygon>::Element *F = E->get().polygons.front(); F; F = F->next()) {
  523. Polygon &p = F->get();
  524. for (int i = 2; i < p.edges.size(); i++) {
  525. Face3 f(_get_vertex(p.edges[0].point), _get_vertex(p.edges[i - 1].point), _get_vertex(p.edges[i].point));
  526. Vector3 inters = f.get_closest_point_to(p_point);
  527. float d = inters.distance_to(p_point);
  528. if (d < closest_point_d) {
  529. closest_point = inters;
  530. closest_point_d = d;
  531. owner = E->get().owner;
  532. }
  533. }
  534. }
  535. }
  536. return owner;
  537. }
  538. void Navigation::set_up_vector(const Vector3 &p_up) {
  539. up = p_up;
  540. }
  541. Vector3 Navigation::get_up_vector() const {
  542. return up;
  543. }
  544. void Navigation::_bind_methods() {
  545. ClassDB::bind_method(D_METHOD("navmesh_add", "mesh", "xform", "owner"), &Navigation::navmesh_add, DEFVAL(Variant()));
  546. ClassDB::bind_method(D_METHOD("navmesh_set_transform", "id", "xform"), &Navigation::navmesh_set_transform);
  547. ClassDB::bind_method(D_METHOD("navmesh_remove", "id"), &Navigation::navmesh_remove);
  548. ClassDB::bind_method(D_METHOD("get_simple_path", "start", "end", "optimize"), &Navigation::get_simple_path, DEFVAL(true));
  549. ClassDB::bind_method(D_METHOD("get_closest_point_to_segment", "start", "end", "use_collision"), &Navigation::get_closest_point_to_segment, DEFVAL(false));
  550. ClassDB::bind_method(D_METHOD("get_closest_point", "to_point"), &Navigation::get_closest_point);
  551. ClassDB::bind_method(D_METHOD("get_closest_point_normal", "to_point"), &Navigation::get_closest_point_normal);
  552. ClassDB::bind_method(D_METHOD("get_closest_point_owner", "to_point"), &Navigation::get_closest_point_owner);
  553. ClassDB::bind_method(D_METHOD("set_up_vector", "up"), &Navigation::set_up_vector);
  554. ClassDB::bind_method(D_METHOD("get_up_vector"), &Navigation::get_up_vector);
  555. ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "up_vector"), "set_up_vector", "get_up_vector");
  556. }
  557. Navigation::Navigation() {
  558. ERR_FAIL_COND(sizeof(Point) != 8);
  559. cell_size = 0.01; //one centimeter
  560. last_id = 1;
  561. up = Vector3(0, 1, 0);
  562. }