rasterizer_scene_gles2.cpp 111 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194
  1. /*************************************************************************/
  2. /* rasterizer_scene_gles2.cpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #include "rasterizer_scene_gles2.h"
  31. #include "core/math/math_funcs.h"
  32. #include "core/math/transform.h"
  33. #include "core/os/os.h"
  34. #include "core/project_settings.h"
  35. #include "core/vmap.h"
  36. #include "rasterizer_canvas_gles2.h"
  37. #include "servers/visual/visual_server_raster.h"
  38. #ifndef GLES_OVER_GL
  39. #define glClearDepth glClearDepthf
  40. #endif
  41. #define _DEPTH_COMPONENT24_OES 0x81A6
  42. static const GLenum _cube_side_enum[6] = {
  43. GL_TEXTURE_CUBE_MAP_NEGATIVE_X,
  44. GL_TEXTURE_CUBE_MAP_POSITIVE_X,
  45. GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
  46. GL_TEXTURE_CUBE_MAP_POSITIVE_Y,
  47. GL_TEXTURE_CUBE_MAP_NEGATIVE_Z,
  48. GL_TEXTURE_CUBE_MAP_POSITIVE_Z,
  49. };
  50. /* SHADOW ATLAS API */
  51. RID RasterizerSceneGLES2::shadow_atlas_create() {
  52. ShadowAtlas *shadow_atlas = memnew(ShadowAtlas);
  53. shadow_atlas->fbo = 0;
  54. shadow_atlas->depth = 0;
  55. shadow_atlas->size = 0;
  56. shadow_atlas->smallest_subdiv = 0;
  57. for (int i = 0; i < 4; i++) {
  58. shadow_atlas->size_order[i] = i;
  59. }
  60. return shadow_atlas_owner.make_rid(shadow_atlas);
  61. }
  62. void RasterizerSceneGLES2::shadow_atlas_set_size(RID p_atlas, int p_size) {
  63. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas);
  64. ERR_FAIL_COND(!shadow_atlas);
  65. ERR_FAIL_COND(p_size < 0);
  66. p_size = next_power_of_2(p_size);
  67. if (p_size == shadow_atlas->size)
  68. return;
  69. // erase the old atlast
  70. if (shadow_atlas->fbo) {
  71. glDeleteTextures(1, &shadow_atlas->depth);
  72. glDeleteFramebuffers(1, &shadow_atlas->fbo);
  73. shadow_atlas->fbo = 0;
  74. shadow_atlas->depth = 0;
  75. }
  76. // erase shadow atlast references from lights
  77. for (Map<RID, uint32_t>::Element *E = shadow_atlas->shadow_owners.front(); E; E = E->next()) {
  78. LightInstance *li = light_instance_owner.getornull(E->key());
  79. ERR_CONTINUE(!li);
  80. li->shadow_atlases.erase(p_atlas);
  81. }
  82. shadow_atlas->shadow_owners.clear();
  83. shadow_atlas->size = p_size;
  84. if (shadow_atlas->size) {
  85. glGenFramebuffers(1, &shadow_atlas->fbo);
  86. glBindFramebuffer(GL_FRAMEBUFFER, shadow_atlas->fbo);
  87. // create a depth texture
  88. glActiveTexture(GL_TEXTURE0);
  89. glGenTextures(1, &shadow_atlas->depth);
  90. glBindTexture(GL_TEXTURE_2D, shadow_atlas->depth);
  91. glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, shadow_atlas->size, shadow_atlas->size, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL);
  92. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
  93. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
  94. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
  95. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
  96. glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, shadow_atlas->depth, 0);
  97. glViewport(0, 0, shadow_atlas->size, shadow_atlas->size);
  98. glDepthMask(GL_TRUE);
  99. glClearDepth(0.0f);
  100. glClear(GL_DEPTH_BUFFER_BIT);
  101. glBindFramebuffer(GL_FRAMEBUFFER, 0);
  102. }
  103. }
  104. void RasterizerSceneGLES2::shadow_atlas_set_quadrant_subdivision(RID p_atlas, int p_quadrant, int p_subdivision) {
  105. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas);
  106. ERR_FAIL_COND(!shadow_atlas);
  107. ERR_FAIL_INDEX(p_quadrant, 4);
  108. ERR_FAIL_INDEX(p_subdivision, 16384);
  109. uint32_t subdiv = next_power_of_2(p_subdivision);
  110. if (subdiv & 0xaaaaaaaa) { // sqrt(subdiv) must be integer
  111. subdiv <<= 1;
  112. }
  113. subdiv = int(Math::sqrt((float)subdiv));
  114. if (shadow_atlas->quadrants[p_quadrant].shadows.size() == subdiv)
  115. return;
  116. // erase all data from the quadrant
  117. for (int i = 0; i < shadow_atlas->quadrants[p_quadrant].shadows.size(); i++) {
  118. if (shadow_atlas->quadrants[p_quadrant].shadows[i].owner.is_valid()) {
  119. shadow_atlas->shadow_owners.erase(shadow_atlas->quadrants[p_quadrant].shadows[i].owner);
  120. LightInstance *li = light_instance_owner.getornull(shadow_atlas->quadrants[p_quadrant].shadows[i].owner);
  121. ERR_CONTINUE(!li);
  122. li->shadow_atlases.erase(p_atlas);
  123. }
  124. }
  125. shadow_atlas->quadrants[p_quadrant].shadows.resize(0);
  126. shadow_atlas->quadrants[p_quadrant].shadows.resize(subdiv);
  127. shadow_atlas->quadrants[p_quadrant].subdivision = subdiv;
  128. // cache the smallest subdivision for faster allocations
  129. shadow_atlas->smallest_subdiv = 1 << 30;
  130. for (int i = 0; i < 4; i++) {
  131. if (shadow_atlas->quadrants[i].subdivision) {
  132. shadow_atlas->smallest_subdiv = MIN(shadow_atlas->smallest_subdiv, shadow_atlas->quadrants[i].subdivision);
  133. }
  134. }
  135. if (shadow_atlas->smallest_subdiv == 1 << 30) {
  136. shadow_atlas->smallest_subdiv = 0;
  137. }
  138. // re-sort the quadrants
  139. int swaps = 0;
  140. do {
  141. swaps = 0;
  142. for (int i = 0; i < 3; i++) {
  143. if (shadow_atlas->quadrants[shadow_atlas->size_order[i]].subdivision < shadow_atlas->quadrants[shadow_atlas->size_order[i + 1]].subdivision) {
  144. SWAP(shadow_atlas->size_order[i], shadow_atlas->size_order[i + 1]);
  145. swaps++;
  146. }
  147. }
  148. } while (swaps > 0);
  149. }
  150. bool RasterizerSceneGLES2::_shadow_atlas_find_shadow(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, int &r_quadrant, int &r_shadow) {
  151. for (int i = p_quadrant_count - 1; i >= 0; i--) {
  152. int qidx = p_in_quadrants[i];
  153. if (shadow_atlas->quadrants[qidx].subdivision == (uint32_t)p_current_subdiv) {
  154. return false;
  155. }
  156. // look for an empty space
  157. int sc = shadow_atlas->quadrants[qidx].shadows.size();
  158. ShadowAtlas::Quadrant::Shadow *sarr = shadow_atlas->quadrants[qidx].shadows.ptrw();
  159. int found_free_idx = -1; // found a free one
  160. int found_used_idx = -1; // found an existing one, must steal it
  161. uint64_t min_pass = 0; // pass of the existing one, try to use the least recently
  162. for (int j = 0; j < sc; j++) {
  163. if (!sarr[j].owner.is_valid()) {
  164. found_free_idx = j;
  165. break;
  166. }
  167. LightInstance *sli = light_instance_owner.getornull(sarr[j].owner);
  168. ERR_CONTINUE(!sli);
  169. if (sli->last_scene_pass != scene_pass) {
  170. // was just allocated, don't kill it so soon, wait a bit...
  171. if (p_tick - sarr[j].alloc_tick < shadow_atlas_realloc_tolerance_msec) {
  172. continue;
  173. }
  174. if (found_used_idx == -1 || sli->last_scene_pass < min_pass) {
  175. found_used_idx = j;
  176. min_pass = sli->last_scene_pass;
  177. }
  178. }
  179. }
  180. if (found_free_idx == -1 && found_used_idx == -1) {
  181. continue; // nothing found
  182. }
  183. if (found_free_idx == -1 && found_used_idx != -1) {
  184. found_free_idx = found_used_idx;
  185. }
  186. r_quadrant = qidx;
  187. r_shadow = found_free_idx;
  188. return true;
  189. }
  190. return false;
  191. }
  192. bool RasterizerSceneGLES2::shadow_atlas_update_light(RID p_atlas, RID p_light_intance, float p_coverage, uint64_t p_light_version) {
  193. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas);
  194. ERR_FAIL_COND_V(!shadow_atlas, false);
  195. LightInstance *li = light_instance_owner.getornull(p_light_intance);
  196. ERR_FAIL_COND_V(!li, false);
  197. if (shadow_atlas->size == 0 || shadow_atlas->smallest_subdiv == 0) {
  198. return false;
  199. }
  200. uint32_t quad_size = shadow_atlas->size >> 1;
  201. int desired_fit = MIN(quad_size / shadow_atlas->smallest_subdiv, next_power_of_2(quad_size * p_coverage));
  202. int valid_quadrants[4];
  203. int valid_quadrant_count = 0;
  204. int best_size = -1;
  205. int best_subdiv = -1;
  206. for (int i = 0; i < 4; i++) {
  207. int q = shadow_atlas->size_order[i];
  208. int sd = shadow_atlas->quadrants[q].subdivision;
  209. if (sd == 0) {
  210. continue;
  211. }
  212. int max_fit = quad_size / sd;
  213. if (best_size != -1 && max_fit > best_size) {
  214. break; // what we asked for is bigger than this.
  215. }
  216. valid_quadrants[valid_quadrant_count] = q;
  217. valid_quadrant_count++;
  218. best_subdiv = sd;
  219. if (max_fit >= desired_fit) {
  220. best_size = max_fit;
  221. }
  222. }
  223. ERR_FAIL_COND_V(valid_quadrant_count == 0, false); // no suitable block available
  224. uint64_t tick = OS::get_singleton()->get_ticks_msec();
  225. if (shadow_atlas->shadow_owners.has(p_light_intance)) {
  226. // light was already known!
  227. uint32_t key = shadow_atlas->shadow_owners[p_light_intance];
  228. uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
  229. uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK;
  230. bool should_realloc = shadow_atlas->quadrants[q].subdivision != (uint32_t)best_subdiv && (shadow_atlas->quadrants[q].shadows[s].alloc_tick - tick > shadow_atlas_realloc_tolerance_msec);
  231. bool should_redraw = shadow_atlas->quadrants[q].shadows[s].version != p_light_version;
  232. if (!should_realloc) {
  233. shadow_atlas->quadrants[q].shadows.write[s].version = p_light_version;
  234. return should_redraw;
  235. }
  236. int new_quadrant;
  237. int new_shadow;
  238. // find a better place
  239. if (_shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, shadow_atlas->quadrants[q].subdivision, tick, new_quadrant, new_shadow)) {
  240. // found a better place
  241. ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow];
  242. if (sh->owner.is_valid()) {
  243. // it is take but invalid, so we can take it
  244. shadow_atlas->shadow_owners.erase(sh->owner);
  245. LightInstance *sli = light_instance_owner.get(sh->owner);
  246. sli->shadow_atlases.erase(p_atlas);
  247. }
  248. // erase previous
  249. shadow_atlas->quadrants[q].shadows.write[s].version = 0;
  250. shadow_atlas->quadrants[q].shadows.write[s].owner = RID();
  251. sh->owner = p_light_intance;
  252. sh->alloc_tick = tick;
  253. sh->version = p_light_version;
  254. li->shadow_atlases.insert(p_atlas);
  255. // make a new key
  256. key = new_quadrant << ShadowAtlas::QUADRANT_SHIFT;
  257. key |= new_shadow;
  258. // update it in the map
  259. shadow_atlas->shadow_owners[p_light_intance] = key;
  260. // make it dirty, so we redraw
  261. return true;
  262. }
  263. // no better place found, so we keep the current place
  264. shadow_atlas->quadrants[q].shadows.write[s].version = p_light_version;
  265. return should_redraw;
  266. }
  267. int new_quadrant;
  268. int new_shadow;
  269. if (_shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, -1, tick, new_quadrant, new_shadow)) {
  270. // found a better place
  271. ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow];
  272. if (sh->owner.is_valid()) {
  273. // it is take but invalid, so we can take it
  274. shadow_atlas->shadow_owners.erase(sh->owner);
  275. LightInstance *sli = light_instance_owner.get(sh->owner);
  276. sli->shadow_atlases.erase(p_atlas);
  277. }
  278. sh->owner = p_light_intance;
  279. sh->alloc_tick = tick;
  280. sh->version = p_light_version;
  281. li->shadow_atlases.insert(p_atlas);
  282. // make a new key
  283. uint32_t key = new_quadrant << ShadowAtlas::QUADRANT_SHIFT;
  284. key |= new_shadow;
  285. // update it in the map
  286. shadow_atlas->shadow_owners[p_light_intance] = key;
  287. // make it dirty, so we redraw
  288. return true;
  289. }
  290. return false;
  291. }
  292. void RasterizerSceneGLES2::set_directional_shadow_count(int p_count) {
  293. directional_shadow.light_count = p_count;
  294. directional_shadow.current_light = 0;
  295. }
  296. int RasterizerSceneGLES2::get_directional_light_shadow_size(RID p_light_intance) {
  297. ERR_FAIL_COND_V(directional_shadow.light_count == 0, 0);
  298. int shadow_size;
  299. if (directional_shadow.light_count == 1) {
  300. shadow_size = directional_shadow.size;
  301. } else {
  302. shadow_size = directional_shadow.size / 2; //more than 4 not supported anyway
  303. }
  304. LightInstance *light_instance = light_instance_owner.getornull(p_light_intance);
  305. ERR_FAIL_COND_V(!light_instance, 0);
  306. switch (light_instance->light_ptr->directional_shadow_mode) {
  307. case VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL:
  308. break; //none
  309. case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS:
  310. case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS:
  311. shadow_size /= 2;
  312. break;
  313. }
  314. return shadow_size;
  315. }
  316. //////////////////////////////////////////////////////
  317. RID RasterizerSceneGLES2::reflection_atlas_create() {
  318. return RID();
  319. }
  320. void RasterizerSceneGLES2::reflection_atlas_set_size(RID p_ref_atlas, int p_size) {
  321. }
  322. void RasterizerSceneGLES2::reflection_atlas_set_subdivision(RID p_ref_atlas, int p_subdiv) {
  323. }
  324. ////////////////////////////////////////////////////
  325. RID RasterizerSceneGLES2::reflection_probe_instance_create(RID p_probe) {
  326. RasterizerStorageGLES2::ReflectionProbe *probe = storage->reflection_probe_owner.getornull(p_probe);
  327. ERR_FAIL_COND_V(!probe, RID());
  328. ReflectionProbeInstance *rpi = memnew(ReflectionProbeInstance);
  329. rpi->probe_ptr = probe;
  330. rpi->self = reflection_probe_instance_owner.make_rid(rpi);
  331. rpi->probe = p_probe;
  332. rpi->reflection_atlas_index = -1;
  333. rpi->render_step = -1;
  334. rpi->last_pass = 0;
  335. rpi->current_resolution = 0;
  336. rpi->dirty = true;
  337. rpi->last_pass = 0;
  338. rpi->index = 0;
  339. for (int i = 0; i < 6; i++) {
  340. glGenFramebuffers(1, &rpi->fbo[i]);
  341. }
  342. glGenFramebuffers(1, &rpi->fbo_blur);
  343. glGenRenderbuffers(1, &rpi->depth);
  344. rpi->cubemap = 0;
  345. //glGenTextures(1, &rpi->cubemap);
  346. return rpi->self;
  347. }
  348. void RasterizerSceneGLES2::reflection_probe_instance_set_transform(RID p_instance, const Transform &p_transform) {
  349. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  350. ERR_FAIL_COND(!rpi);
  351. rpi->transform = p_transform;
  352. }
  353. void RasterizerSceneGLES2::reflection_probe_release_atlas_index(RID p_instance) {
  354. }
  355. bool RasterizerSceneGLES2::reflection_probe_instance_needs_redraw(RID p_instance) {
  356. const ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  357. ERR_FAIL_COND_V(!rpi, false);
  358. bool need_redraw = rpi->probe_ptr->resolution != rpi->current_resolution || rpi->dirty || rpi->probe_ptr->update_mode == VS::REFLECTION_PROBE_UPDATE_ALWAYS;
  359. rpi->dirty = false;
  360. return need_redraw;
  361. }
  362. bool RasterizerSceneGLES2::reflection_probe_instance_has_reflection(RID p_instance) {
  363. return true;
  364. }
  365. bool RasterizerSceneGLES2::reflection_probe_instance_begin_render(RID p_instance, RID p_reflection_atlas) {
  366. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  367. ERR_FAIL_COND_V(!rpi, false);
  368. rpi->render_step = 0;
  369. if (rpi->probe_ptr->resolution != rpi->current_resolution) {
  370. //update cubemap if resolution changed
  371. int size = rpi->probe_ptr->resolution;
  372. rpi->current_resolution = size;
  373. GLenum internal_format = GL_RGB;
  374. GLenum format = GL_RGB;
  375. GLenum type = GL_UNSIGNED_BYTE;
  376. glActiveTexture(GL_TEXTURE0);
  377. if (rpi->cubemap != 0) {
  378. glDeleteTextures(1, &rpi->cubemap);
  379. }
  380. glGenTextures(1, &rpi->cubemap);
  381. glBindTexture(GL_TEXTURE_CUBE_MAP, rpi->cubemap);
  382. #if 1
  383. //Mobile hardware (PowerVR specially) prefers this approach, the other one kills the game
  384. for (int i = 0; i < 6; i++) {
  385. glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, internal_format, size, size, 0, format, type, NULL);
  386. }
  387. glGenerateMipmap(GL_TEXTURE_CUBE_MAP);
  388. glBindRenderbuffer(GL_RENDERBUFFER, rpi->depth); //resize depth buffer
  389. glRenderbufferStorage(GL_RENDERBUFFER, _DEPTH_COMPONENT24_OES, size, size);
  390. for (int i = 0; i < 6; i++) {
  391. glBindFramebuffer(GL_FRAMEBUFFER, rpi->fbo[i]);
  392. glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, _cube_side_enum[i], rpi->cubemap, 0);
  393. glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rpi->depth);
  394. }
  395. #else
  396. int lod = 0;
  397. //the approach below is fatal for powervr
  398. // Set the initial (empty) mipmaps, all need to be set for this to work in GLES2, even if later wont be used.
  399. while (size >= 1) {
  400. for (int i = 0; i < 6; i++) {
  401. glTexImage2D(_cube_side_enum[i], lod, internal_format, size, size, 0, format, type, NULL);
  402. if (size == rpi->current_resolution) {
  403. //adjust framebuffer
  404. glBindFramebuffer(GL_FRAMEBUFFER, rpi->fbo[i]);
  405. glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, _cube_side_enum[i], rpi->cubemap, 0);
  406. glBindRenderbuffer(GL_RENDERBUFFER, rpi->depth);
  407. glRenderbufferStorage(GL_RENDERBUFFER, _DEPTH_COMPONENT24_OES, size, size);
  408. glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rpi->depth);
  409. #ifdef DEBUG_ENABLED
  410. GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
  411. ERR_CONTINUE(status != GL_FRAMEBUFFER_COMPLETE);
  412. #endif
  413. }
  414. }
  415. lod++;
  416. size >>= 1;
  417. }
  418. #endif
  419. glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
  420. glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
  421. glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
  422. glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
  423. }
  424. return true;
  425. }
  426. bool RasterizerSceneGLES2::reflection_probe_instance_postprocess_step(RID p_instance) {
  427. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  428. ERR_FAIL_COND_V(!rpi, false);
  429. int size = rpi->probe_ptr->resolution;
  430. {
  431. glBindBuffer(GL_ARRAY_BUFFER, 0);
  432. glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
  433. glDisable(GL_CULL_FACE);
  434. glDisable(GL_DEPTH_TEST);
  435. glDisable(GL_SCISSOR_TEST);
  436. glDisable(GL_BLEND);
  437. glDepthMask(GL_FALSE);
  438. for (int i = 0; i < VS::ARRAY_MAX - 1; i++) {
  439. glDisableVertexAttribArray(i);
  440. }
  441. }
  442. //vdc cache
  443. glActiveTexture(GL_TEXTURE1);
  444. glBindTexture(GL_TEXTURE_2D, storage->resources.radical_inverse_vdc_cache_tex);
  445. glBindFramebuffer(GL_FRAMEBUFFER, rpi->fbo_blur);
  446. // now render to the framebuffer, mipmap level for mipmap level
  447. int lod = 1;
  448. glActiveTexture(GL_TEXTURE0);
  449. glBindTexture(GL_TEXTURE_CUBE_MAP, rpi->cubemap);
  450. glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR); //use linear, no mipmaps so it does not read from what is being written to
  451. size >>= 1;
  452. int mipmaps = 6;
  453. storage->shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES2::USE_SOURCE_PANORAMA, false);
  454. storage->shaders.cubemap_filter.bind();
  455. //blur
  456. while (size >= 1) {
  457. for (int i = 0; i < 6; i++) {
  458. glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, _cube_side_enum[i], rpi->cubemap, lod);
  459. glViewport(0, 0, size, size);
  460. storage->bind_quad_array();
  461. storage->shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES2::FACE_ID, i);
  462. float roughness = CLAMP(lod / (float)(mipmaps - 1), 0, 1);
  463. storage->shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES2::ROUGHNESS, roughness);
  464. storage->shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES2::Z_FLIP, false);
  465. glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
  466. }
  467. size >>= 1;
  468. lod++;
  469. }
  470. // restore ranges
  471. glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
  472. glBindFramebuffer(GL_FRAMEBUFFER, 0);
  473. return true;
  474. }
  475. /* ENVIRONMENT API */
  476. RID RasterizerSceneGLES2::environment_create() {
  477. Environment *env = memnew(Environment);
  478. return environment_owner.make_rid(env);
  479. }
  480. void RasterizerSceneGLES2::environment_set_background(RID p_env, VS::EnvironmentBG p_bg) {
  481. Environment *env = environment_owner.getornull(p_env);
  482. ERR_FAIL_COND(!env);
  483. env->bg_mode = p_bg;
  484. }
  485. void RasterizerSceneGLES2::environment_set_sky(RID p_env, RID p_sky) {
  486. Environment *env = environment_owner.getornull(p_env);
  487. ERR_FAIL_COND(!env);
  488. env->sky = p_sky;
  489. }
  490. void RasterizerSceneGLES2::environment_set_sky_custom_fov(RID p_env, float p_scale) {
  491. Environment *env = environment_owner.getornull(p_env);
  492. ERR_FAIL_COND(!env);
  493. env->sky_custom_fov = p_scale;
  494. }
  495. void RasterizerSceneGLES2::environment_set_sky_orientation(RID p_env, const Basis &p_orientation) {
  496. Environment *env = environment_owner.getornull(p_env);
  497. ERR_FAIL_COND(!env);
  498. env->sky_orientation = p_orientation;
  499. }
  500. void RasterizerSceneGLES2::environment_set_bg_color(RID p_env, const Color &p_color) {
  501. Environment *env = environment_owner.getornull(p_env);
  502. ERR_FAIL_COND(!env);
  503. env->bg_color = p_color;
  504. }
  505. void RasterizerSceneGLES2::environment_set_bg_energy(RID p_env, float p_energy) {
  506. Environment *env = environment_owner.getornull(p_env);
  507. ERR_FAIL_COND(!env);
  508. env->bg_energy = p_energy;
  509. }
  510. void RasterizerSceneGLES2::environment_set_canvas_max_layer(RID p_env, int p_max_layer) {
  511. Environment *env = environment_owner.getornull(p_env);
  512. ERR_FAIL_COND(!env);
  513. env->canvas_max_layer = p_max_layer;
  514. }
  515. void RasterizerSceneGLES2::environment_set_ambient_light(RID p_env, const Color &p_color, float p_energy, float p_sky_contribution) {
  516. Environment *env = environment_owner.getornull(p_env);
  517. ERR_FAIL_COND(!env);
  518. env->ambient_color = p_color;
  519. env->ambient_energy = p_energy;
  520. env->ambient_sky_contribution = p_sky_contribution;
  521. }
  522. void RasterizerSceneGLES2::environment_set_dof_blur_far(RID p_env, bool p_enable, float p_distance, float p_transition, float p_amount, VS::EnvironmentDOFBlurQuality p_quality) {
  523. Environment *env = environment_owner.getornull(p_env);
  524. ERR_FAIL_COND(!env);
  525. }
  526. void RasterizerSceneGLES2::environment_set_dof_blur_near(RID p_env, bool p_enable, float p_distance, float p_transition, float p_amount, VS::EnvironmentDOFBlurQuality p_quality) {
  527. Environment *env = environment_owner.getornull(p_env);
  528. ERR_FAIL_COND(!env);
  529. }
  530. void RasterizerSceneGLES2::environment_set_glow(RID p_env, bool p_enable, int p_level_flags, float p_intensity, float p_strength, float p_bloom_threshold, VS::EnvironmentGlowBlendMode p_blend_mode, float p_hdr_bleed_threshold, float p_hdr_bleed_scale, float p_hdr_luminance_cap, bool p_bicubic_upscale) {
  531. Environment *env = environment_owner.getornull(p_env);
  532. ERR_FAIL_COND(!env);
  533. }
  534. void RasterizerSceneGLES2::environment_set_fog(RID p_env, bool p_enable, float p_begin, float p_end, RID p_gradient_texture) {
  535. Environment *env = environment_owner.getornull(p_env);
  536. ERR_FAIL_COND(!env);
  537. }
  538. void RasterizerSceneGLES2::environment_set_ssr(RID p_env, bool p_enable, int p_max_steps, float p_fade_in, float p_fade_out, float p_depth_tolerance, bool p_roughness) {
  539. Environment *env = environment_owner.getornull(p_env);
  540. ERR_FAIL_COND(!env);
  541. }
  542. void RasterizerSceneGLES2::environment_set_ssao(RID p_env, bool p_enable, float p_radius, float p_intensity, float p_radius2, float p_intensity2, float p_bias, float p_light_affect, float p_ao_channel_affect, const Color &p_color, VS::EnvironmentSSAOQuality p_quality, VisualServer::EnvironmentSSAOBlur p_blur, float p_bilateral_sharpness) {
  543. Environment *env = environment_owner.getornull(p_env);
  544. ERR_FAIL_COND(!env);
  545. }
  546. void RasterizerSceneGLES2::environment_set_tonemap(RID p_env, VS::EnvironmentToneMapper p_tone_mapper, float p_exposure, float p_white, bool p_auto_exposure, float p_min_luminance, float p_max_luminance, float p_auto_exp_speed, float p_auto_exp_scale) {
  547. Environment *env = environment_owner.getornull(p_env);
  548. ERR_FAIL_COND(!env);
  549. }
  550. void RasterizerSceneGLES2::environment_set_adjustment(RID p_env, bool p_enable, float p_brightness, float p_contrast, float p_saturation, RID p_ramp) {
  551. Environment *env = environment_owner.getornull(p_env);
  552. ERR_FAIL_COND(!env);
  553. }
  554. void RasterizerSceneGLES2::environment_set_fog(RID p_env, bool p_enable, const Color &p_color, const Color &p_sun_color, float p_sun_amount) {
  555. Environment *env = environment_owner.getornull(p_env);
  556. ERR_FAIL_COND(!env);
  557. env->fog_enabled = p_enable;
  558. env->fog_color = p_color;
  559. env->fog_sun_color = p_sun_color;
  560. env->fog_sun_amount = p_sun_amount;
  561. }
  562. void RasterizerSceneGLES2::environment_set_fog_depth(RID p_env, bool p_enable, float p_depth_begin, float p_depth_end, float p_depth_curve, bool p_transmit, float p_transmit_curve) {
  563. Environment *env = environment_owner.getornull(p_env);
  564. ERR_FAIL_COND(!env);
  565. env->fog_depth_enabled = p_enable;
  566. env->fog_depth_begin = p_depth_begin;
  567. env->fog_depth_end = p_depth_end;
  568. env->fog_depth_curve = p_depth_curve;
  569. env->fog_transmit_enabled = p_transmit;
  570. env->fog_transmit_curve = p_transmit_curve;
  571. }
  572. void RasterizerSceneGLES2::environment_set_fog_height(RID p_env, bool p_enable, float p_min_height, float p_max_height, float p_height_curve) {
  573. Environment *env = environment_owner.getornull(p_env);
  574. ERR_FAIL_COND(!env);
  575. env->fog_height_enabled = p_enable;
  576. env->fog_height_min = p_min_height;
  577. env->fog_height_max = p_max_height;
  578. env->fog_height_curve = p_height_curve;
  579. }
  580. bool RasterizerSceneGLES2::is_environment(RID p_env) {
  581. return environment_owner.owns(p_env);
  582. }
  583. VS::EnvironmentBG RasterizerSceneGLES2::environment_get_background(RID p_env) {
  584. const Environment *env = environment_owner.getornull(p_env);
  585. ERR_FAIL_COND_V(!env, VS::ENV_BG_MAX);
  586. return env->bg_mode;
  587. }
  588. int RasterizerSceneGLES2::environment_get_canvas_max_layer(RID p_env) {
  589. const Environment *env = environment_owner.getornull(p_env);
  590. ERR_FAIL_COND_V(!env, -1);
  591. return env->canvas_max_layer;
  592. }
  593. RID RasterizerSceneGLES2::light_instance_create(RID p_light) {
  594. LightInstance *light_instance = memnew(LightInstance);
  595. light_instance->last_scene_pass = 0;
  596. light_instance->light = p_light;
  597. light_instance->light_ptr = storage->light_owner.getornull(p_light);
  598. light_instance->light_index = 0xFFFF;
  599. ERR_FAIL_COND_V(!light_instance->light_ptr, RID());
  600. light_instance->self = light_instance_owner.make_rid(light_instance);
  601. return light_instance->self;
  602. }
  603. void RasterizerSceneGLES2::light_instance_set_transform(RID p_light_instance, const Transform &p_transform) {
  604. LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
  605. ERR_FAIL_COND(!light_instance);
  606. light_instance->transform = p_transform;
  607. }
  608. void RasterizerSceneGLES2::light_instance_set_shadow_transform(RID p_light_instance, const CameraMatrix &p_projection, const Transform &p_transform, float p_far, float p_split, int p_pass, float p_bias_scale) {
  609. LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
  610. ERR_FAIL_COND(!light_instance);
  611. if (light_instance->light_ptr->type != VS::LIGHT_DIRECTIONAL) {
  612. p_pass = 0;
  613. }
  614. ERR_FAIL_INDEX(p_pass, 4);
  615. light_instance->shadow_transform[p_pass].camera = p_projection;
  616. light_instance->shadow_transform[p_pass].transform = p_transform;
  617. light_instance->shadow_transform[p_pass].farplane = p_far;
  618. light_instance->shadow_transform[p_pass].split = p_split;
  619. light_instance->shadow_transform[p_pass].bias_scale = p_bias_scale;
  620. }
  621. void RasterizerSceneGLES2::light_instance_mark_visible(RID p_light_instance) {
  622. LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
  623. ERR_FAIL_COND(!light_instance);
  624. light_instance->last_scene_pass = scene_pass;
  625. }
  626. //////////////////////
  627. RID RasterizerSceneGLES2::gi_probe_instance_create() {
  628. return RID();
  629. }
  630. void RasterizerSceneGLES2::gi_probe_instance_set_light_data(RID p_probe, RID p_base, RID p_data) {
  631. }
  632. void RasterizerSceneGLES2::gi_probe_instance_set_transform_to_data(RID p_probe, const Transform &p_xform) {
  633. }
  634. void RasterizerSceneGLES2::gi_probe_instance_set_bounds(RID p_probe, const Vector3 &p_bounds) {
  635. }
  636. ////////////////////////////
  637. ////////////////////////////
  638. ////////////////////////////
  639. void RasterizerSceneGLES2::_add_geometry(RasterizerStorageGLES2::Geometry *p_geometry, InstanceBase *p_instance, RasterizerStorageGLES2::GeometryOwner *p_owner, int p_material, bool p_depth_pass, bool p_shadow_pass) {
  640. RasterizerStorageGLES2::Material *material = NULL;
  641. RID material_src;
  642. if (p_instance->material_override.is_valid()) {
  643. material_src = p_instance->material_override;
  644. } else if (p_material >= 0) {
  645. material_src = p_instance->materials[p_material];
  646. } else {
  647. material_src = p_geometry->material;
  648. }
  649. if (material_src.is_valid()) {
  650. material = storage->material_owner.getornull(material_src);
  651. if (!material->shader || !material->shader->valid) {
  652. material = NULL;
  653. }
  654. }
  655. if (!material) {
  656. material = storage->material_owner.getptr(default_material);
  657. }
  658. ERR_FAIL_COND(!material);
  659. _add_geometry_with_material(p_geometry, p_instance, p_owner, material, p_depth_pass, p_shadow_pass);
  660. while (material->next_pass.is_valid()) {
  661. material = storage->material_owner.getornull(material->next_pass);
  662. if (!material || !material->shader || !material->shader->valid) {
  663. break;
  664. }
  665. _add_geometry_with_material(p_geometry, p_instance, p_owner, material, p_depth_pass, p_shadow_pass);
  666. }
  667. }
  668. void RasterizerSceneGLES2::_add_geometry_with_material(RasterizerStorageGLES2::Geometry *p_geometry, InstanceBase *p_instance, RasterizerStorageGLES2::GeometryOwner *p_owner, RasterizerStorageGLES2::Material *p_material, bool p_depth_pass, bool p_shadow_pass) {
  669. bool has_base_alpha = (p_material->shader->spatial.uses_alpha && !p_material->shader->spatial.uses_alpha_scissor) || p_material->shader->spatial.uses_screen_texture || p_material->shader->spatial.uses_depth_texture;
  670. bool has_blend_alpha = p_material->shader->spatial.blend_mode != RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_MIX;
  671. bool has_alpha = has_base_alpha || has_blend_alpha;
  672. bool mirror = p_instance->mirror;
  673. if (p_material->shader->spatial.cull_mode == RasterizerStorageGLES2::Shader::Spatial::CULL_MODE_DISABLED) {
  674. mirror = false;
  675. } else if (p_material->shader->spatial.cull_mode == RasterizerStorageGLES2::Shader::Spatial::CULL_MODE_FRONT) {
  676. mirror = !mirror;
  677. }
  678. //if (p_material->shader->spatial.uses_sss) {
  679. // state.used_sss = true;
  680. //}
  681. if (p_material->shader->spatial.uses_screen_texture) {
  682. state.used_screen_texture = true;
  683. }
  684. if (p_depth_pass) {
  685. if (has_blend_alpha || p_material->shader->spatial.uses_depth_texture || (has_base_alpha && p_material->shader->spatial.depth_draw_mode != RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS))
  686. return; //bye
  687. if (!p_material->shader->spatial.uses_alpha_scissor && !p_material->shader->spatial.writes_modelview_or_projection && !p_material->shader->spatial.uses_vertex && !p_material->shader->spatial.uses_discard && p_material->shader->spatial.depth_draw_mode != RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS) {
  688. //shader does not use discard and does not write a vertex position, use generic material
  689. if (p_instance->cast_shadows == VS::SHADOW_CASTING_SETTING_DOUBLE_SIDED) {
  690. p_material = storage->material_owner.getptr(!p_shadow_pass && p_material->shader->spatial.uses_world_coordinates ? default_worldcoord_material_twosided : default_material_twosided);
  691. mirror = false;
  692. } else {
  693. p_material = storage->material_owner.getptr(!p_shadow_pass && p_material->shader->spatial.uses_world_coordinates ? default_worldcoord_material : default_material);
  694. }
  695. }
  696. has_alpha = false;
  697. }
  698. RenderList::Element *e = has_alpha ? render_list.add_alpha_element() : render_list.add_element();
  699. if (!e) {
  700. return;
  701. }
  702. e->geometry = p_geometry;
  703. e->material = p_material;
  704. e->instance = p_instance;
  705. e->owner = p_owner;
  706. e->sort_key = 0;
  707. e->depth_key = 0;
  708. e->use_accum = false;
  709. e->light_index = RenderList::MAX_LIGHTS;
  710. e->use_accum_ptr = &e->use_accum;
  711. e->instancing = (e->instance->base_type == VS::INSTANCE_MULTIMESH) ? 1 : 0;
  712. if (e->geometry->last_pass != render_pass) {
  713. e->geometry->last_pass = render_pass;
  714. e->geometry->index = current_geometry_index++;
  715. }
  716. e->geometry_index = e->geometry->index;
  717. if (e->material->last_pass != render_pass) {
  718. e->material->last_pass = render_pass;
  719. e->material->index = current_material_index++;
  720. if (e->material->shader->last_pass != render_pass) {
  721. e->material->shader->index = current_shader_index++;
  722. }
  723. }
  724. e->material_index = e->material->index;
  725. e->refprobe_0_index = RenderList::MAX_REFLECTION_PROBES; //refprobe disabled by default
  726. e->refprobe_1_index = RenderList::MAX_REFLECTION_PROBES; //refprobe disabled by default
  727. if (!p_depth_pass) {
  728. e->depth_layer = e->instance->depth_layer;
  729. e->priority = p_material->render_priority;
  730. int rpsize = e->instance->reflection_probe_instances.size();
  731. if (rpsize > 0) {
  732. bool first = true;
  733. rpsize = MIN(rpsize, 2); //more than 2 per object are not supported, this keeps it stable
  734. for (int i = 0; i < rpsize; i++) {
  735. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(e->instance->reflection_probe_instances[i]);
  736. if (rpi->last_pass != render_pass) {
  737. continue;
  738. }
  739. if (first) {
  740. e->refprobe_0_index = rpi->index;
  741. first = false;
  742. } else {
  743. e->refprobe_1_index = rpi->index;
  744. break;
  745. }
  746. }
  747. /* if (e->refprobe_0_index > e->refprobe_1_index) { //if both are valid, swap them to keep order as best as possible
  748. uint64_t tmp = e->refprobe_0_index;
  749. e->refprobe_0_index = e->refprobe_1_index;
  750. e->refprobe_1_index = tmp;
  751. }*/
  752. }
  753. //add directional lights
  754. if (p_material->shader->spatial.unshaded) {
  755. e->light_mode = LIGHTMODE_UNSHADED;
  756. } else {
  757. bool copy = false;
  758. for (int i = 0; i < render_directional_lights; i++) {
  759. if (copy) {
  760. RenderList::Element *e2 = has_alpha ? render_list.add_alpha_element() : render_list.add_element();
  761. if (!e2) {
  762. break;
  763. }
  764. *e2 = *e; //this includes accum ptr :)
  765. e = e2;
  766. }
  767. //directional sort key
  768. e->light_type1 = 0;
  769. e->light_type2 = 1;
  770. e->light_index = i;
  771. copy = true;
  772. }
  773. //add omni / spots
  774. for (int i = 0; i < e->instance->light_instances.size(); i++) {
  775. LightInstance *li = light_instance_owner.getornull(e->instance->light_instances[i]);
  776. if (li->light_index >= render_light_instance_count) {
  777. continue; // too many
  778. }
  779. if (copy) {
  780. RenderList::Element *e2 = has_alpha ? render_list.add_alpha_element() : render_list.add_element();
  781. if (!e2) {
  782. break;
  783. }
  784. *e2 = *e; //this includes accum ptr :)
  785. e = e2;
  786. }
  787. //directional sort key
  788. e->light_type1 = 1;
  789. e->light_type2 = li->light_ptr->type == VisualServer::LIGHT_OMNI ? 0 : 1;
  790. e->light_index = li->light_index;
  791. copy = true;
  792. }
  793. if (e->instance->lightmap.is_valid()) {
  794. e->light_mode = LIGHTMODE_LIGHTMAP;
  795. } else if (!e->instance->lightmap_capture_data.empty()) {
  796. e->light_mode = LIGHTMODE_LIGHTMAP_CAPTURE;
  797. } else {
  798. e->light_mode = LIGHTMODE_NORMAL;
  799. }
  800. }
  801. }
  802. // do not add anything here, as lights are duplicated elements..
  803. if (p_material->shader->spatial.uses_time) {
  804. VisualServerRaster::redraw_request();
  805. }
  806. }
  807. void RasterizerSceneGLES2::_fill_render_list(InstanceBase **p_cull_result, int p_cull_count, bool p_depth_pass, bool p_shadow_pass) {
  808. render_pass++;
  809. current_material_index = 0;
  810. current_geometry_index = 0;
  811. current_light_index = 0;
  812. current_refprobe_index = 0;
  813. current_shader_index = 0;
  814. for (int i = 0; i < p_cull_count; i++) {
  815. InstanceBase *instance = p_cull_result[i];
  816. switch (instance->base_type) {
  817. case VS::INSTANCE_MESH: {
  818. RasterizerStorageGLES2::Mesh *mesh = storage->mesh_owner.getornull(instance->base);
  819. ERR_CONTINUE(!mesh);
  820. int num_surfaces = mesh->surfaces.size();
  821. for (int i = 0; i < num_surfaces; i++) {
  822. int material_index = instance->materials[i].is_valid() ? i : -1;
  823. RasterizerStorageGLES2::Surface *surface = mesh->surfaces[i];
  824. _add_geometry(surface, instance, NULL, material_index, p_depth_pass, p_shadow_pass);
  825. }
  826. } break;
  827. case VS::INSTANCE_MULTIMESH: {
  828. RasterizerStorageGLES2::MultiMesh *multi_mesh = storage->multimesh_owner.getptr(instance->base);
  829. ERR_CONTINUE(!multi_mesh);
  830. if (multi_mesh->size == 0 || multi_mesh->visible_instances == 0)
  831. continue;
  832. RasterizerStorageGLES2::Mesh *mesh = storage->mesh_owner.getptr(multi_mesh->mesh);
  833. if (!mesh)
  834. continue;
  835. int ssize = mesh->surfaces.size();
  836. for (int i = 0; i < ssize; i++) {
  837. RasterizerStorageGLES2::Surface *s = mesh->surfaces[i];
  838. _add_geometry(s, instance, multi_mesh, -1, p_depth_pass, p_shadow_pass);
  839. }
  840. } break;
  841. case VS::INSTANCE_IMMEDIATE: {
  842. RasterizerStorageGLES2::Immediate *im = storage->immediate_owner.getptr(instance->base);
  843. ERR_CONTINUE(!im);
  844. _add_geometry(im, instance, NULL, -1, p_depth_pass, p_shadow_pass);
  845. } break;
  846. default: {}
  847. }
  848. }
  849. }
  850. static const GLenum gl_primitive[] = {
  851. GL_POINTS,
  852. GL_LINES,
  853. GL_LINE_STRIP,
  854. GL_LINE_LOOP,
  855. GL_TRIANGLES,
  856. GL_TRIANGLE_STRIP,
  857. GL_TRIANGLE_FAN
  858. };
  859. bool RasterizerSceneGLES2::_setup_material(RasterizerStorageGLES2::Material *p_material, bool p_reverse_cull, bool p_alpha_pass, Size2i p_skeleton_tex_size) {
  860. // material parameters
  861. state.scene_shader.set_custom_shader(p_material->shader->custom_code_id);
  862. bool shader_rebind = state.scene_shader.bind();
  863. if (p_material->shader->spatial.no_depth_test) {
  864. glDisable(GL_DEPTH_TEST);
  865. } else {
  866. glEnable(GL_DEPTH_TEST);
  867. }
  868. switch (p_material->shader->spatial.depth_draw_mode) {
  869. case RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS:
  870. case RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_OPAQUE: {
  871. glDepthMask(!p_alpha_pass);
  872. } break;
  873. case RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_ALWAYS: {
  874. glDepthMask(GL_TRUE);
  875. } break;
  876. case RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_NEVER: {
  877. glDepthMask(GL_FALSE);
  878. } break;
  879. }
  880. // TODO whyyyyy????
  881. p_reverse_cull = true;
  882. switch (p_material->shader->spatial.cull_mode) {
  883. case RasterizerStorageGLES2::Shader::Spatial::CULL_MODE_DISABLED: {
  884. glDisable(GL_CULL_FACE);
  885. } break;
  886. case RasterizerStorageGLES2::Shader::Spatial::CULL_MODE_BACK: {
  887. glEnable(GL_CULL_FACE);
  888. glCullFace(p_reverse_cull ? GL_FRONT : GL_BACK);
  889. } break;
  890. case RasterizerStorageGLES2::Shader::Spatial::CULL_MODE_FRONT: {
  891. glEnable(GL_CULL_FACE);
  892. glCullFace(p_reverse_cull ? GL_BACK : GL_FRONT);
  893. } break;
  894. }
  895. int tc = p_material->textures.size();
  896. Pair<StringName, RID> *textures = p_material->textures.ptrw();
  897. ShaderLanguage::ShaderNode::Uniform::Hint *texture_hints = p_material->shader->texture_hints.ptrw();
  898. state.scene_shader.set_uniform(SceneShaderGLES2::SKELETON_TEXTURE_SIZE, p_skeleton_tex_size);
  899. state.current_main_tex = 0;
  900. for (int i = 0; i < tc; i++) {
  901. glActiveTexture(GL_TEXTURE0 + i);
  902. RasterizerStorageGLES2::Texture *t = storage->texture_owner.getornull(textures[i].second);
  903. if (!t) {
  904. switch (texture_hints[i]) {
  905. case ShaderLanguage::ShaderNode::Uniform::HINT_BLACK_ALBEDO:
  906. case ShaderLanguage::ShaderNode::Uniform::HINT_BLACK: {
  907. glBindTexture(GL_TEXTURE_2D, storage->resources.black_tex);
  908. } break;
  909. case ShaderLanguage::ShaderNode::Uniform::HINT_ANISO: {
  910. glBindTexture(GL_TEXTURE_2D, storage->resources.aniso_tex);
  911. } break;
  912. case ShaderLanguage::ShaderNode::Uniform::HINT_NORMAL: {
  913. glBindTexture(GL_TEXTURE_2D, storage->resources.normal_tex);
  914. } break;
  915. default: {
  916. glBindTexture(GL_TEXTURE_2D, storage->resources.white_tex);
  917. } break;
  918. }
  919. continue;
  920. }
  921. t = t->get_ptr();
  922. glBindTexture(t->target, t->tex_id);
  923. if (i == 0) {
  924. state.current_main_tex = t->tex_id;
  925. }
  926. }
  927. state.scene_shader.use_material((void *)p_material);
  928. return shader_rebind;
  929. }
  930. void RasterizerSceneGLES2::_setup_geometry(RenderList::Element *p_element, RasterizerStorageGLES2::Skeleton *p_skeleton) {
  931. switch (p_element->instance->base_type) {
  932. case VS::INSTANCE_MESH: {
  933. RasterizerStorageGLES2::Surface *s = static_cast<RasterizerStorageGLES2::Surface *>(p_element->geometry);
  934. glBindBuffer(GL_ARRAY_BUFFER, s->vertex_id);
  935. if (s->index_array_len > 0) {
  936. glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s->index_id);
  937. }
  938. for (int i = 0; i < VS::ARRAY_MAX - 1; i++) {
  939. if (s->attribs[i].enabled) {
  940. glEnableVertexAttribArray(i);
  941. glVertexAttribPointer(s->attribs[i].index, s->attribs[i].size, s->attribs[i].type, s->attribs[i].normalized, s->attribs[i].stride, (uint8_t *)0 + s->attribs[i].offset);
  942. } else {
  943. glDisableVertexAttribArray(i);
  944. switch (i) {
  945. case VS::ARRAY_NORMAL: {
  946. glVertexAttrib4f(VS::ARRAY_NORMAL, 0.0, 0.0, 1, 1);
  947. } break;
  948. case VS::ARRAY_COLOR: {
  949. glVertexAttrib4f(VS::ARRAY_COLOR, 1, 1, 1, 1);
  950. } break;
  951. default: {}
  952. }
  953. }
  954. }
  955. bool clear_skeleton_buffer = !storage->config.float_texture_supported;
  956. if (p_skeleton) {
  957. if (storage->config.float_texture_supported) {
  958. //use float texture workflow
  959. glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 1);
  960. glBindTexture(GL_TEXTURE_2D, p_skeleton->tex_id);
  961. } else {
  962. //use transform buffer workflow
  963. ERR_FAIL_COND(p_skeleton->use_2d);
  964. PoolVector<float> &transform_buffer = storage->resources.skeleton_transform_cpu_buffer;
  965. if (!s->attribs[VS::ARRAY_BONES].enabled || !s->attribs[VS::ARRAY_WEIGHTS].enabled) {
  966. break; // the whole instance has a skeleton, but this surface is not affected by it.
  967. }
  968. // 3 * vec4 per vertex
  969. if (transform_buffer.size() < s->array_len * 12) {
  970. transform_buffer.resize(s->array_len * 12);
  971. }
  972. const size_t bones_offset = s->attribs[VS::ARRAY_BONES].offset;
  973. const size_t bones_stride = s->attribs[VS::ARRAY_BONES].stride;
  974. const size_t bone_weight_offset = s->attribs[VS::ARRAY_WEIGHTS].offset;
  975. const size_t bone_weight_stride = s->attribs[VS::ARRAY_WEIGHTS].stride;
  976. {
  977. PoolVector<float>::Write write = transform_buffer.write();
  978. float *buffer = write.ptr();
  979. PoolVector<uint8_t>::Read vertex_array_read = s->data.read();
  980. const uint8_t *vertex_data = vertex_array_read.ptr();
  981. for (int i = 0; i < s->array_len; i++) {
  982. // do magic
  983. size_t bones[4];
  984. float bone_weight[4];
  985. if (s->attribs[VS::ARRAY_BONES].type == GL_UNSIGNED_BYTE) {
  986. // read as byte
  987. const uint8_t *bones_ptr = vertex_data + bones_offset + (i * bones_stride);
  988. bones[0] = bones_ptr[0];
  989. bones[1] = bones_ptr[1];
  990. bones[2] = bones_ptr[2];
  991. bones[3] = bones_ptr[3];
  992. } else {
  993. // read as short
  994. const uint16_t *bones_ptr = (const uint16_t *)(vertex_data + bones_offset + (i * bones_stride));
  995. bones[0] = bones_ptr[0];
  996. bones[1] = bones_ptr[1];
  997. bones[2] = bones_ptr[2];
  998. bones[3] = bones_ptr[3];
  999. }
  1000. if (s->attribs[VS::ARRAY_WEIGHTS].type == GL_FLOAT) {
  1001. // read as float
  1002. const float *weight_ptr = (const float *)(vertex_data + bone_weight_offset + (i * bone_weight_stride));
  1003. bone_weight[0] = weight_ptr[0];
  1004. bone_weight[1] = weight_ptr[1];
  1005. bone_weight[2] = weight_ptr[2];
  1006. bone_weight[3] = weight_ptr[3];
  1007. } else {
  1008. // read as half
  1009. const uint16_t *weight_ptr = (const uint16_t *)(vertex_data + bone_weight_offset + (i * bone_weight_stride));
  1010. bone_weight[0] = (weight_ptr[0] / (float)0xFFFF);
  1011. bone_weight[1] = (weight_ptr[1] / (float)0xFFFF);
  1012. bone_weight[2] = (weight_ptr[2] / (float)0xFFFF);
  1013. bone_weight[3] = (weight_ptr[3] / (float)0xFFFF);
  1014. }
  1015. Transform transform;
  1016. Transform bone_transforms[4] = {
  1017. storage->skeleton_bone_get_transform(p_element->instance->skeleton, bones[0]),
  1018. storage->skeleton_bone_get_transform(p_element->instance->skeleton, bones[1]),
  1019. storage->skeleton_bone_get_transform(p_element->instance->skeleton, bones[2]),
  1020. storage->skeleton_bone_get_transform(p_element->instance->skeleton, bones[3]),
  1021. };
  1022. transform.origin =
  1023. bone_weight[0] * bone_transforms[0].origin +
  1024. bone_weight[1] * bone_transforms[1].origin +
  1025. bone_weight[2] * bone_transforms[2].origin +
  1026. bone_weight[3] * bone_transforms[3].origin;
  1027. transform.basis =
  1028. bone_transforms[0].basis * bone_weight[0] +
  1029. bone_transforms[1].basis * bone_weight[1] +
  1030. bone_transforms[2].basis * bone_weight[2] +
  1031. bone_transforms[3].basis * bone_weight[3];
  1032. float row[3][4] = {
  1033. { transform.basis[0][0], transform.basis[0][1], transform.basis[0][2], transform.origin[0] },
  1034. { transform.basis[1][0], transform.basis[1][1], transform.basis[1][2], transform.origin[1] },
  1035. { transform.basis[2][0], transform.basis[2][1], transform.basis[2][2], transform.origin[2] },
  1036. };
  1037. size_t transform_buffer_offset = i * 12;
  1038. copymem(&buffer[transform_buffer_offset], row, sizeof(row));
  1039. }
  1040. }
  1041. storage->_update_skeleton_transform_buffer(transform_buffer, s->array_len * 12);
  1042. //enable transform buffer and bind it
  1043. glBindBuffer(GL_ARRAY_BUFFER, storage->resources.skeleton_transform_buffer);
  1044. glEnableVertexAttribArray(INSTANCE_BONE_BASE + 0);
  1045. glEnableVertexAttribArray(INSTANCE_BONE_BASE + 1);
  1046. glEnableVertexAttribArray(INSTANCE_BONE_BASE + 2);
  1047. glVertexAttribPointer(INSTANCE_BONE_BASE + 0, 4, GL_FLOAT, GL_FALSE, sizeof(float) * 12, (const void *)(sizeof(float) * 4 * 0));
  1048. glVertexAttribPointer(INSTANCE_BONE_BASE + 1, 4, GL_FLOAT, GL_FALSE, sizeof(float) * 12, (const void *)(sizeof(float) * 4 * 1));
  1049. glVertexAttribPointer(INSTANCE_BONE_BASE + 2, 4, GL_FLOAT, GL_FALSE, sizeof(float) * 12, (const void *)(sizeof(float) * 4 * 2));
  1050. clear_skeleton_buffer = false;
  1051. }
  1052. }
  1053. if (clear_skeleton_buffer) {
  1054. glDisableVertexAttribArray(INSTANCE_BONE_BASE + 0);
  1055. glDisableVertexAttribArray(INSTANCE_BONE_BASE + 1);
  1056. glDisableVertexAttribArray(INSTANCE_BONE_BASE + 2);
  1057. }
  1058. } break;
  1059. case VS::INSTANCE_MULTIMESH: {
  1060. RasterizerStorageGLES2::Surface *s = static_cast<RasterizerStorageGLES2::Surface *>(p_element->geometry);
  1061. glBindBuffer(GL_ARRAY_BUFFER, s->vertex_id);
  1062. if (s->index_array_len > 0) {
  1063. glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s->index_id);
  1064. }
  1065. for (int i = 0; i < VS::ARRAY_MAX - 1; i++) {
  1066. if (s->attribs[i].enabled) {
  1067. glEnableVertexAttribArray(i);
  1068. glVertexAttribPointer(s->attribs[i].index, s->attribs[i].size, s->attribs[i].type, s->attribs[i].normalized, s->attribs[i].stride, (uint8_t *)0 + s->attribs[i].offset);
  1069. } else {
  1070. glDisableVertexAttribArray(i);
  1071. switch (i) {
  1072. case VS::ARRAY_NORMAL: {
  1073. glVertexAttrib4f(VS::ARRAY_NORMAL, 0.0, 0.0, 1, 1);
  1074. } break;
  1075. case VS::ARRAY_COLOR: {
  1076. glVertexAttrib4f(VS::ARRAY_COLOR, 1, 1, 1, 1);
  1077. } break;
  1078. default: {}
  1079. }
  1080. }
  1081. }
  1082. // prepare multimesh (disable)
  1083. glDisableVertexAttribArray(INSTANCE_ATTRIB_BASE + 0);
  1084. glDisableVertexAttribArray(INSTANCE_ATTRIB_BASE + 1);
  1085. glDisableVertexAttribArray(INSTANCE_ATTRIB_BASE + 2);
  1086. glDisableVertexAttribArray(INSTANCE_ATTRIB_BASE + 3);
  1087. glDisableVertexAttribArray(INSTANCE_ATTRIB_BASE + 4);
  1088. glDisableVertexAttribArray(INSTANCE_BONE_BASE + 0);
  1089. glDisableVertexAttribArray(INSTANCE_BONE_BASE + 1);
  1090. glDisableVertexAttribArray(INSTANCE_BONE_BASE + 2);
  1091. } break;
  1092. case VS::INSTANCE_IMMEDIATE: {
  1093. } break;
  1094. default: {}
  1095. }
  1096. }
  1097. void RasterizerSceneGLES2::_render_geometry(RenderList::Element *p_element) {
  1098. switch (p_element->instance->base_type) {
  1099. case VS::INSTANCE_MESH: {
  1100. RasterizerStorageGLES2::Surface *s = static_cast<RasterizerStorageGLES2::Surface *>(p_element->geometry);
  1101. // drawing
  1102. if (s->index_array_len > 0) {
  1103. glDrawElements(gl_primitive[s->primitive], s->index_array_len, (s->array_len >= (1 << 16)) ? GL_UNSIGNED_INT : GL_UNSIGNED_SHORT, 0);
  1104. } else {
  1105. glDrawArrays(gl_primitive[s->primitive], 0, s->array_len);
  1106. }
  1107. /*
  1108. if (p_element->instance->skeleton.is_valid() && s->attribs[VS::ARRAY_BONES].enabled && s->attribs[VS::ARRAY_WEIGHTS].enabled) {
  1109. //clean up after skeleton
  1110. glBindBuffer(GL_ARRAY_BUFFER, storage->resources.skeleton_transform_buffer);
  1111. glDisableVertexAttribArray(VS::ARRAY_MAX + 0);
  1112. glDisableVertexAttribArray(VS::ARRAY_MAX + 1);
  1113. glDisableVertexAttribArray(VS::ARRAY_MAX + 2);
  1114. glVertexAttrib4f(VS::ARRAY_MAX + 0, 1, 0, 0, 0);
  1115. glVertexAttrib4f(VS::ARRAY_MAX + 1, 0, 1, 0, 0);
  1116. glVertexAttrib4f(VS::ARRAY_MAX + 2, 0, 0, 1, 0);
  1117. }
  1118. */
  1119. } break;
  1120. case VS::INSTANCE_MULTIMESH: {
  1121. RasterizerStorageGLES2::MultiMesh *multi_mesh = static_cast<RasterizerStorageGLES2::MultiMesh *>(p_element->owner);
  1122. RasterizerStorageGLES2::Surface *s = static_cast<RasterizerStorageGLES2::Surface *>(p_element->geometry);
  1123. int amount = MIN(multi_mesh->size, multi_mesh->visible_instances);
  1124. if (amount == -1) {
  1125. amount = multi_mesh->size;
  1126. }
  1127. int stride = multi_mesh->color_floats + multi_mesh->custom_data_floats + multi_mesh->xform_floats;
  1128. int color_ofs = multi_mesh->xform_floats;
  1129. int custom_data_ofs = color_ofs + multi_mesh->color_floats;
  1130. // drawing
  1131. const float *base_buffer = multi_mesh->data.ptr();
  1132. for (int i = 0; i < amount; i++) {
  1133. const float *buffer = base_buffer + i * stride;
  1134. {
  1135. glVertexAttrib4fv(INSTANCE_ATTRIB_BASE + 0, &buffer[0]);
  1136. glVertexAttrib4fv(INSTANCE_ATTRIB_BASE + 1, &buffer[4]);
  1137. glVertexAttrib4fv(INSTANCE_ATTRIB_BASE + 2, &buffer[8]);
  1138. }
  1139. if (multi_mesh->color_floats) {
  1140. if (multi_mesh->color_format == VS::MULTIMESH_COLOR_8BIT) {
  1141. uint8_t *color_data = (uint8_t *)(buffer + color_ofs);
  1142. glVertexAttrib4f(INSTANCE_ATTRIB_BASE + 3, color_data[0] / 255.0, color_data[1] / 255.0, color_data[2] / 255.0, color_data[3] / 255.0);
  1143. } else {
  1144. glVertexAttrib4fv(INSTANCE_ATTRIB_BASE + 3, buffer + color_ofs);
  1145. }
  1146. }
  1147. if (multi_mesh->custom_data_floats) {
  1148. if (multi_mesh->custom_data_format == VS::MULTIMESH_CUSTOM_DATA_8BIT) {
  1149. uint8_t *custom_data = (uint8_t *)(buffer + custom_data_ofs);
  1150. glVertexAttrib4f(INSTANCE_ATTRIB_BASE + 4, custom_data[0] / 255.0, custom_data[1] / 255.0, custom_data[2] / 255.0, custom_data[3] / 255.0);
  1151. } else {
  1152. glVertexAttrib4fv(INSTANCE_ATTRIB_BASE + 4, buffer + custom_data_ofs);
  1153. }
  1154. }
  1155. if (s->index_array_len > 0) {
  1156. glDrawElements(gl_primitive[s->primitive], s->index_array_len, (s->array_len >= (1 << 16)) ? GL_UNSIGNED_INT : GL_UNSIGNED_SHORT, 0);
  1157. } else {
  1158. glDrawArrays(gl_primitive[s->primitive], 0, s->array_len);
  1159. }
  1160. }
  1161. } break;
  1162. case VS::INSTANCE_IMMEDIATE: {
  1163. const RasterizerStorageGLES2::Immediate *im = static_cast<const RasterizerStorageGLES2::Immediate *>(p_element->geometry);
  1164. if (im->building) {
  1165. return;
  1166. }
  1167. bool restore_tex = false;
  1168. glBindBuffer(GL_ARRAY_BUFFER, state.immediate_buffer);
  1169. for (const List<RasterizerStorageGLES2::Immediate::Chunk>::Element *E = im->chunks.front(); E; E = E->next()) {
  1170. const RasterizerStorageGLES2::Immediate::Chunk &c = E->get();
  1171. if (c.vertices.empty()) {
  1172. continue;
  1173. }
  1174. int vertices = c.vertices.size();
  1175. uint32_t buf_ofs = 0;
  1176. storage->info.render.vertices_count += vertices;
  1177. if (c.texture.is_valid() && storage->texture_owner.owns(c.texture)) {
  1178. RasterizerStorageGLES2::Texture *t = storage->texture_owner.get(c.texture);
  1179. t = t->get_ptr();
  1180. if (t->redraw_if_visible) {
  1181. VisualServerRaster::redraw_request();
  1182. }
  1183. #ifdef TOOLS_ENABLED
  1184. if (t->detect_3d) {
  1185. t->detect_3d(t->detect_3d_ud);
  1186. }
  1187. #endif
  1188. if (t->render_target) {
  1189. t->render_target->used_in_frame = true;
  1190. }
  1191. glActiveTexture(GL_TEXTURE0);
  1192. glBindTexture(t->target, t->tex_id);
  1193. restore_tex = true;
  1194. } else if (restore_tex) {
  1195. glActiveTexture(GL_TEXTURE0);
  1196. glBindTexture(GL_TEXTURE_2D, state.current_main_tex);
  1197. restore_tex = false;
  1198. }
  1199. if (!c.normals.empty()) {
  1200. glEnableVertexAttribArray(VS::ARRAY_NORMAL);
  1201. glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Vector3) * vertices, c.normals.ptr());
  1202. glVertexAttribPointer(VS::ARRAY_NORMAL, 3, GL_FLOAT, GL_FALSE, sizeof(Vector3), ((uint8_t *)NULL) + buf_ofs);
  1203. buf_ofs += sizeof(Vector3) * vertices;
  1204. } else {
  1205. glDisableVertexAttribArray(VS::ARRAY_NORMAL);
  1206. }
  1207. if (!c.tangents.empty()) {
  1208. glEnableVertexAttribArray(VS::ARRAY_TANGENT);
  1209. glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Plane) * vertices, c.tangents.ptr());
  1210. glVertexAttribPointer(VS::ARRAY_TANGENT, 4, GL_FLOAT, GL_FALSE, sizeof(Plane), ((uint8_t *)NULL) + buf_ofs);
  1211. buf_ofs += sizeof(Plane) * vertices;
  1212. } else {
  1213. glDisableVertexAttribArray(VS::ARRAY_TANGENT);
  1214. }
  1215. if (!c.colors.empty()) {
  1216. glEnableVertexAttribArray(VS::ARRAY_COLOR);
  1217. glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Color) * vertices, c.colors.ptr());
  1218. glVertexAttribPointer(VS::ARRAY_COLOR, 4, GL_FLOAT, GL_FALSE, sizeof(Color), ((uint8_t *)NULL) + buf_ofs);
  1219. buf_ofs += sizeof(Color) * vertices;
  1220. } else {
  1221. glDisableVertexAttribArray(VS::ARRAY_COLOR);
  1222. }
  1223. if (!c.uvs.empty()) {
  1224. glEnableVertexAttribArray(VS::ARRAY_TEX_UV);
  1225. glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Vector2) * vertices, c.uvs.ptr());
  1226. glVertexAttribPointer(VS::ARRAY_TEX_UV, 2, GL_FLOAT, GL_FALSE, sizeof(Vector2), ((uint8_t *)NULL) + buf_ofs);
  1227. buf_ofs += sizeof(Vector2) * vertices;
  1228. } else {
  1229. glDisableVertexAttribArray(VS::ARRAY_TEX_UV);
  1230. }
  1231. if (!c.uv2s.empty()) {
  1232. glEnableVertexAttribArray(VS::ARRAY_TEX_UV2);
  1233. glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Vector2) * vertices, c.uv2s.ptr());
  1234. glVertexAttribPointer(VS::ARRAY_TEX_UV2, 2, GL_FLOAT, GL_FALSE, sizeof(Vector2), ((uint8_t *)NULL) + buf_ofs);
  1235. buf_ofs += sizeof(Vector2) * vertices;
  1236. } else {
  1237. glDisableVertexAttribArray(VS::ARRAY_TEX_UV2);
  1238. }
  1239. glEnableVertexAttribArray(VS::ARRAY_VERTEX);
  1240. glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Vector3) * vertices, c.vertices.ptr());
  1241. glVertexAttribPointer(VS::ARRAY_VERTEX, 3, GL_FLOAT, GL_FALSE, sizeof(Vector3), ((uint8_t *)NULL) + buf_ofs);
  1242. glDrawArrays(gl_primitive[c.primitive], 0, c.vertices.size());
  1243. }
  1244. if (restore_tex) {
  1245. glActiveTexture(GL_TEXTURE0);
  1246. glBindTexture(GL_TEXTURE_2D, state.current_main_tex);
  1247. restore_tex = false;
  1248. }
  1249. } break;
  1250. default: {}
  1251. }
  1252. }
  1253. void RasterizerSceneGLES2::_setup_light_type(LightInstance *p_light, ShadowAtlas *shadow_atlas) {
  1254. //turn off all by default
  1255. state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTING, false);
  1256. state.scene_shader.set_conditional(SceneShaderGLES2::USE_SHADOW, false);
  1257. state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_5, false);
  1258. state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_13, false);
  1259. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_MODE_DIRECTIONAL, false);
  1260. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_MODE_OMNI, false);
  1261. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_MODE_SPOT, false);
  1262. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM2, false);
  1263. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM4, false);
  1264. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM_BLEND, false);
  1265. state.scene_shader.set_conditional(SceneShaderGLES2::USE_SHADOW, false);
  1266. if (!p_light) { //no light, return off
  1267. return;
  1268. }
  1269. //turn on lighting
  1270. state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTING, true);
  1271. switch (p_light->light_ptr->type) {
  1272. case VS::LIGHT_DIRECTIONAL: {
  1273. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_MODE_DIRECTIONAL, true);
  1274. switch (p_light->light_ptr->directional_shadow_mode) {
  1275. case VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL: {
  1276. //no need
  1277. } break;
  1278. case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS: {
  1279. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM2, true);
  1280. } break;
  1281. case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS: {
  1282. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM4, true);
  1283. } break;
  1284. }
  1285. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM_BLEND, p_light->light_ptr->directional_blend_splits);
  1286. if (!state.render_no_shadows && p_light->light_ptr->shadow) {
  1287. state.scene_shader.set_conditional(SceneShaderGLES2::USE_SHADOW, true);
  1288. glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 3);
  1289. glBindTexture(GL_TEXTURE_2D, directional_shadow.depth);
  1290. state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_5, shadow_filter_mode == SHADOW_FILTER_PCF5);
  1291. state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_13, shadow_filter_mode == SHADOW_FILTER_PCF13);
  1292. }
  1293. } break;
  1294. case VS::LIGHT_OMNI: {
  1295. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_MODE_OMNI, true);
  1296. if (!state.render_no_shadows && shadow_atlas && p_light->light_ptr->shadow) {
  1297. state.scene_shader.set_conditional(SceneShaderGLES2::USE_SHADOW, true);
  1298. glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 3);
  1299. glBindTexture(GL_TEXTURE_2D, shadow_atlas->depth);
  1300. state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_5, shadow_filter_mode == SHADOW_FILTER_PCF5);
  1301. state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_13, shadow_filter_mode == SHADOW_FILTER_PCF13);
  1302. }
  1303. } break;
  1304. case VS::LIGHT_SPOT: {
  1305. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_MODE_SPOT, true);
  1306. if (!state.render_no_shadows && shadow_atlas && p_light->light_ptr->shadow) {
  1307. state.scene_shader.set_conditional(SceneShaderGLES2::USE_SHADOW, true);
  1308. glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 3);
  1309. glBindTexture(GL_TEXTURE_2D, shadow_atlas->depth);
  1310. state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_5, shadow_filter_mode == SHADOW_FILTER_PCF5);
  1311. state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_13, shadow_filter_mode == SHADOW_FILTER_PCF13);
  1312. }
  1313. } break;
  1314. }
  1315. }
  1316. void RasterizerSceneGLES2::_setup_light(LightInstance *light, ShadowAtlas *shadow_atlas, const Transform &p_view_transform) {
  1317. RasterizerStorageGLES2::Light *light_ptr = light->light_ptr;
  1318. //common parameters
  1319. float energy = light_ptr->param[VS::LIGHT_PARAM_ENERGY];
  1320. float specular = light_ptr->param[VS::LIGHT_PARAM_SPECULAR];
  1321. float sign = light_ptr->negative ? -1 : 1;
  1322. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SPECULAR, specular);
  1323. Color color = light_ptr->color * sign * energy * Math_PI;
  1324. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_COLOR, color);
  1325. //specific parameters
  1326. switch (light_ptr->type) {
  1327. case VS::LIGHT_DIRECTIONAL: {
  1328. //not using inverse for performance, view should be normalized anyway
  1329. Vector3 direction = p_view_transform.basis.xform_inv(light->transform.basis.xform(Vector3(0, 0, -1))).normalized();
  1330. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_DIRECTION, direction);
  1331. CameraMatrix matrices[4];
  1332. if (!state.render_no_shadows && light_ptr->shadow && directional_shadow.depth) {
  1333. int shadow_count = 0;
  1334. Color split_offsets;
  1335. switch (light_ptr->directional_shadow_mode) {
  1336. case VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL: {
  1337. shadow_count = 1;
  1338. } break;
  1339. case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS: {
  1340. shadow_count = 2;
  1341. } break;
  1342. case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS: {
  1343. shadow_count = 4;
  1344. } break;
  1345. }
  1346. for (int k = 0; k < shadow_count; k++) {
  1347. uint32_t x = light->directional_rect.position.x;
  1348. uint32_t y = light->directional_rect.position.y;
  1349. uint32_t width = light->directional_rect.size.x;
  1350. uint32_t height = light->directional_rect.size.y;
  1351. if (light_ptr->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) {
  1352. width /= 2;
  1353. height /= 2;
  1354. if (k == 0) {
  1355. } else if (k == 1) {
  1356. x += width;
  1357. } else if (k == 2) {
  1358. y += height;
  1359. } else if (k == 3) {
  1360. x += width;
  1361. y += height;
  1362. }
  1363. } else if (light_ptr->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) {
  1364. height /= 2;
  1365. if (k == 0) {
  1366. } else {
  1367. y += height;
  1368. }
  1369. }
  1370. split_offsets[k] = light->shadow_transform[k].split;
  1371. Transform modelview = (p_view_transform.inverse() * light->shadow_transform[k].transform).affine_inverse();
  1372. CameraMatrix bias;
  1373. bias.set_light_bias();
  1374. CameraMatrix rectm;
  1375. Rect2 atlas_rect = Rect2(float(x) / directional_shadow.size, float(y) / directional_shadow.size, float(width) / directional_shadow.size, float(height) / directional_shadow.size);
  1376. rectm.set_light_atlas_rect(atlas_rect);
  1377. CameraMatrix shadow_mtx = rectm * bias * light->shadow_transform[k].camera * modelview;
  1378. matrices[k] = shadow_mtx;
  1379. /*Color light_clamp;
  1380. light_clamp[0] = atlas_rect.position.x;
  1381. light_clamp[1] = atlas_rect.position.y;
  1382. light_clamp[2] = atlas_rect.size.x;
  1383. light_clamp[3] = atlas_rect.size.y;*/
  1384. }
  1385. // state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_CLAMP, light_clamp);
  1386. state.scene_shader.set_uniform(SceneShaderGLES2::SHADOW_PIXEL_SIZE, Size2(1.0 / directional_shadow.size, 1.0 / directional_shadow.size));
  1387. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SPLIT_OFFSETS, split_offsets);
  1388. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX, matrices[0]);
  1389. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX2, matrices[1]);
  1390. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX3, matrices[2]);
  1391. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX4, matrices[3]);
  1392. }
  1393. } break;
  1394. case VS::LIGHT_OMNI: {
  1395. Vector3 position = p_view_transform.xform_inv(light->transform.origin);
  1396. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_POSITION, position);
  1397. float range = light_ptr->param[VS::LIGHT_PARAM_RANGE];
  1398. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_RANGE, range);
  1399. float attenuation = light_ptr->param[VS::LIGHT_PARAM_ATTENUATION];
  1400. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_ATTENUATION, attenuation);
  1401. if (!state.render_no_shadows && light_ptr->shadow && shadow_atlas && shadow_atlas->shadow_owners.has(light->self)) {
  1402. uint32_t key = shadow_atlas->shadow_owners[light->self];
  1403. uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x03;
  1404. uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK;
  1405. ERR_BREAK(shadow >= (uint32_t)shadow_atlas->quadrants[quadrant].shadows.size());
  1406. uint32_t atlas_size = shadow_atlas->size;
  1407. uint32_t quadrant_size = atlas_size >> 1;
  1408. uint32_t x = (quadrant & 1) * quadrant_size;
  1409. uint32_t y = (quadrant >> 1) * quadrant_size;
  1410. uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision);
  1411. x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  1412. y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  1413. uint32_t width = shadow_size;
  1414. uint32_t height = shadow_size;
  1415. if (light->light_ptr->omni_shadow_detail == VS::LIGHT_OMNI_SHADOW_DETAIL_HORIZONTAL) {
  1416. height /= 2;
  1417. } else {
  1418. width /= 2;
  1419. }
  1420. Transform proj = (p_view_transform.inverse() * light->transform).inverse();
  1421. Color light_clamp;
  1422. light_clamp[0] = float(x) / atlas_size;
  1423. light_clamp[1] = float(y) / atlas_size;
  1424. light_clamp[2] = float(width) / atlas_size;
  1425. light_clamp[3] = float(height) / atlas_size;
  1426. state.scene_shader.set_uniform(SceneShaderGLES2::SHADOW_PIXEL_SIZE, Size2(1.0 / shadow_atlas->size, 1.0 / shadow_atlas->size));
  1427. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX, proj);
  1428. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_CLAMP, light_clamp);
  1429. }
  1430. } break;
  1431. case VS::LIGHT_SPOT: {
  1432. Vector3 position = p_view_transform.xform_inv(light->transform.origin);
  1433. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_POSITION, position);
  1434. Vector3 direction = p_view_transform.inverse().basis.xform(light->transform.basis.xform(Vector3(0, 0, -1))).normalized();
  1435. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_DIRECTION, direction);
  1436. float attenuation = light_ptr->param[VS::LIGHT_PARAM_ATTENUATION];
  1437. float range = light_ptr->param[VS::LIGHT_PARAM_RANGE];
  1438. float spot_attenuation = light_ptr->param[VS::LIGHT_PARAM_SPOT_ATTENUATION];
  1439. float angle = light_ptr->param[VS::LIGHT_PARAM_SPOT_ANGLE];
  1440. angle = Math::cos(Math::deg2rad(angle));
  1441. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_ATTENUATION, attenuation);
  1442. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SPOT_ATTENUATION, spot_attenuation);
  1443. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SPOT_RANGE, spot_attenuation);
  1444. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SPOT_ANGLE, angle);
  1445. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_RANGE, range);
  1446. if (!state.render_no_shadows && light->light_ptr->shadow && shadow_atlas && shadow_atlas->shadow_owners.has(light->self)) {
  1447. uint32_t key = shadow_atlas->shadow_owners[light->self];
  1448. uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x03;
  1449. uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK;
  1450. ERR_BREAK(shadow >= (uint32_t)shadow_atlas->quadrants[quadrant].shadows.size());
  1451. uint32_t atlas_size = shadow_atlas->size;
  1452. uint32_t quadrant_size = atlas_size >> 1;
  1453. uint32_t x = (quadrant & 1) * quadrant_size;
  1454. uint32_t y = (quadrant >> 1) * quadrant_size;
  1455. uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision);
  1456. x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  1457. y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  1458. uint32_t width = shadow_size;
  1459. uint32_t height = shadow_size;
  1460. Rect2 rect(float(x) / atlas_size, float(y) / atlas_size, float(width) / atlas_size, float(height) / atlas_size);
  1461. Color light_clamp;
  1462. light_clamp[0] = rect.position.x;
  1463. light_clamp[1] = rect.position.y;
  1464. light_clamp[2] = rect.size.x;
  1465. light_clamp[3] = rect.size.y;
  1466. Transform modelview = (p_view_transform.inverse() * light->transform).inverse();
  1467. CameraMatrix bias;
  1468. bias.set_light_bias();
  1469. CameraMatrix rectm;
  1470. rectm.set_light_atlas_rect(rect);
  1471. CameraMatrix shadow_matrix = rectm * bias * light->shadow_transform[0].camera * modelview;
  1472. state.scene_shader.set_uniform(SceneShaderGLES2::SHADOW_PIXEL_SIZE, Size2(1.0 / shadow_atlas->size, 1.0 / shadow_atlas->size));
  1473. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX, shadow_matrix);
  1474. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_CLAMP, light_clamp);
  1475. }
  1476. } break;
  1477. default: {}
  1478. }
  1479. }
  1480. void RasterizerSceneGLES2::_setup_refprobes(ReflectionProbeInstance *p_refprobe1, ReflectionProbeInstance *p_refprobe2, const Transform &p_view_transform, Environment *p_env) {
  1481. if (p_refprobe1) {
  1482. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_USE_BOX_PROJECT, p_refprobe1->probe_ptr->box_projection);
  1483. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_BOX_EXTENTS, p_refprobe1->probe_ptr->extents);
  1484. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_BOX_OFFSET, p_refprobe1->probe_ptr->origin_offset);
  1485. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_EXTERIOR, !p_refprobe1->probe_ptr->interior);
  1486. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_INTENSITY, p_refprobe1->probe_ptr->intensity);
  1487. Color ambient;
  1488. if (p_refprobe1->probe_ptr->interior) {
  1489. ambient = p_refprobe1->probe_ptr->interior_ambient * p_refprobe1->probe_ptr->interior_ambient_energy;
  1490. ambient.a = p_refprobe1->probe_ptr->interior_ambient_probe_contrib;
  1491. } else if (p_env) {
  1492. ambient = p_env->ambient_color * p_env->ambient_energy;
  1493. ambient.a = p_env->ambient_sky_contribution;
  1494. }
  1495. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_AMBIENT, ambient);
  1496. Transform proj = (p_view_transform.inverse() * p_refprobe1->transform).affine_inverse();
  1497. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_LOCAL_MATRIX, proj);
  1498. }
  1499. if (p_refprobe2) {
  1500. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_USE_BOX_PROJECT, p_refprobe2->probe_ptr->box_projection);
  1501. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_BOX_EXTENTS, p_refprobe2->probe_ptr->extents);
  1502. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_BOX_OFFSET, p_refprobe2->probe_ptr->origin_offset);
  1503. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_EXTERIOR, !p_refprobe2->probe_ptr->interior);
  1504. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_INTENSITY, p_refprobe2->probe_ptr->intensity);
  1505. Color ambient;
  1506. if (p_refprobe2->probe_ptr->interior) {
  1507. ambient = p_refprobe2->probe_ptr->interior_ambient * p_refprobe2->probe_ptr->interior_ambient_energy;
  1508. ambient.a = p_refprobe2->probe_ptr->interior_ambient_probe_contrib;
  1509. } else if (p_env) {
  1510. ambient = p_env->ambient_color * p_env->ambient_energy;
  1511. ambient.a = p_env->ambient_sky_contribution;
  1512. }
  1513. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_AMBIENT, ambient);
  1514. Transform proj = (p_view_transform.inverse() * p_refprobe2->transform).affine_inverse();
  1515. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_LOCAL_MATRIX, proj);
  1516. }
  1517. }
  1518. void RasterizerSceneGLES2::_render_render_list(RenderList::Element **p_elements, int p_element_count, const Transform &p_view_transform, const CameraMatrix &p_projection, RID p_shadow_atlas, Environment *p_env, GLuint p_base_env, float p_shadow_bias, float p_shadow_normal_bias, bool p_reverse_cull, bool p_alpha_pass, bool p_shadow) {
  1519. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
  1520. Vector2 viewport_size = state.viewport_size;
  1521. Vector2 screen_pixel_size = state.screen_pixel_size;
  1522. bool use_radiance_map = false;
  1523. if (!p_shadow && p_base_env) {
  1524. glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 2);
  1525. glBindTexture(GL_TEXTURE_CUBE_MAP, p_base_env);
  1526. use_radiance_map = true;
  1527. state.scene_shader.set_conditional(SceneShaderGLES2::USE_RADIANCE_MAP, true); //since prev unshaded is false, this needs to be true if exists
  1528. }
  1529. bool prev_unshaded = false;
  1530. bool prev_instancing = false;
  1531. state.scene_shader.set_conditional(SceneShaderGLES2::SHADELESS, false);
  1532. RasterizerStorageGLES2::Material *prev_material = NULL;
  1533. RasterizerStorageGLES2::Geometry *prev_geometry = NULL;
  1534. RasterizerStorageGLES2::Skeleton *prev_skeleton = NULL;
  1535. RasterizerStorageGLES2::GeometryOwner *prev_owner = NULL;
  1536. Transform view_transform_inverse = p_view_transform.inverse();
  1537. CameraMatrix projection_inverse = p_projection.inverse();
  1538. bool prev_base_pass = false;
  1539. LightInstance *prev_light = NULL;
  1540. bool prev_vertex_lit = false;
  1541. ReflectionProbeInstance *prev_refprobe_1 = NULL;
  1542. ReflectionProbeInstance *prev_refprobe_2 = NULL;
  1543. int prev_blend_mode = -2; //will always catch the first go
  1544. if (p_alpha_pass) {
  1545. glEnable(GL_BLEND);
  1546. } else {
  1547. glDisable(GL_BLEND);
  1548. }
  1549. float fog_max_distance = 0;
  1550. bool using_fog = false;
  1551. if (p_env && !p_shadow && p_env->fog_enabled && (p_env->fog_depth_enabled || p_env->fog_height_enabled)) {
  1552. state.scene_shader.set_conditional(SceneShaderGLES2::FOG_DEPTH_ENABLED, p_env->fog_depth_enabled);
  1553. state.scene_shader.set_conditional(SceneShaderGLES2::FOG_HEIGHT_ENABLED, p_env->fog_height_enabled);
  1554. if (p_env->fog_depth_end > 0) {
  1555. fog_max_distance = p_env->fog_depth_end;
  1556. } else {
  1557. fog_max_distance = p_projection.get_z_far();
  1558. }
  1559. using_fog = true;
  1560. }
  1561. RasterizerStorageGLES2::Texture *prev_lightmap = NULL;
  1562. float lightmap_energy = 1.0;
  1563. bool prev_use_lightmap_capture = false;
  1564. for (int i = 0; i < p_element_count; i++) {
  1565. RenderList::Element *e = p_elements[i];
  1566. RasterizerStorageGLES2::Material *material = e->material;
  1567. bool rebind = false;
  1568. bool accum_pass = *e->use_accum_ptr;
  1569. *e->use_accum_ptr = true; //set to accum for next time this is found
  1570. LightInstance *light = NULL;
  1571. ReflectionProbeInstance *refprobe_1 = NULL;
  1572. ReflectionProbeInstance *refprobe_2 = NULL;
  1573. RasterizerStorageGLES2::Texture *lightmap = NULL;
  1574. bool use_lightmap_capture = false;
  1575. bool rebind_light = false;
  1576. bool rebind_reflection = false;
  1577. bool rebind_lightmap = false;
  1578. if (!p_shadow) {
  1579. bool unshaded = material->shader->spatial.unshaded;
  1580. if (unshaded != prev_unshaded) {
  1581. rebind = true;
  1582. if (unshaded) {
  1583. state.scene_shader.set_conditional(SceneShaderGLES2::SHADELESS, true);
  1584. state.scene_shader.set_conditional(SceneShaderGLES2::USE_RADIANCE_MAP, false);
  1585. state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTING, false);
  1586. } else {
  1587. state.scene_shader.set_conditional(SceneShaderGLES2::SHADELESS, false);
  1588. state.scene_shader.set_conditional(SceneShaderGLES2::USE_RADIANCE_MAP, use_radiance_map);
  1589. }
  1590. prev_unshaded = unshaded;
  1591. }
  1592. bool base_pass = !accum_pass && !unshaded; //conditions for a base pass
  1593. if (base_pass != prev_base_pass) {
  1594. state.scene_shader.set_conditional(SceneShaderGLES2::BASE_PASS, base_pass);
  1595. rebind = true;
  1596. prev_base_pass = base_pass;
  1597. }
  1598. if (!unshaded && e->light_index < RenderList::MAX_LIGHTS) {
  1599. light = render_light_instances[e->light_index];
  1600. }
  1601. if (light != prev_light) {
  1602. _setup_light_type(light, shadow_atlas);
  1603. rebind = true;
  1604. rebind_light = true;
  1605. }
  1606. int blend_mode = p_alpha_pass ? material->shader->spatial.blend_mode : -1; // -1 no blend, no mix
  1607. if (accum_pass) { //accum pass force pass
  1608. blend_mode = RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_ADD;
  1609. }
  1610. if (prev_blend_mode != blend_mode) {
  1611. if (prev_blend_mode == -1 && blend_mode != -1) {
  1612. //does blend
  1613. glEnable(GL_BLEND);
  1614. } else if (blend_mode == -1 && prev_blend_mode != -1) {
  1615. //do not blend
  1616. glDisable(GL_BLEND);
  1617. }
  1618. switch (blend_mode) {
  1619. //-1 not handled because not blend is enabled anyway
  1620. case RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_MIX: {
  1621. glBlendEquation(GL_FUNC_ADD);
  1622. if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) {
  1623. glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
  1624. } else {
  1625. glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
  1626. }
  1627. } break;
  1628. case RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_ADD: {
  1629. glBlendEquation(GL_FUNC_ADD);
  1630. glBlendFunc(p_alpha_pass ? GL_SRC_ALPHA : GL_ONE, GL_ONE);
  1631. } break;
  1632. case RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_SUB: {
  1633. glBlendEquation(GL_FUNC_REVERSE_SUBTRACT);
  1634. glBlendFunc(GL_SRC_ALPHA, GL_ONE);
  1635. } break;
  1636. case RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_MUL: {
  1637. glBlendEquation(GL_FUNC_ADD);
  1638. if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) {
  1639. glBlendFuncSeparate(GL_DST_COLOR, GL_ZERO, GL_DST_ALPHA, GL_ZERO);
  1640. } else {
  1641. glBlendFuncSeparate(GL_DST_COLOR, GL_ZERO, GL_ZERO, GL_ONE);
  1642. }
  1643. } break;
  1644. }
  1645. prev_blend_mode = blend_mode;
  1646. }
  1647. //condition to enable vertex lighting on this object
  1648. bool vertex_lit = (material->shader->spatial.uses_vertex_lighting || storage->config.force_vertex_shading) && ((!unshaded && light) || using_fog); //fog forces vertex lighting because it still applies even if unshaded or no fog
  1649. if (vertex_lit != prev_vertex_lit) {
  1650. state.scene_shader.set_conditional(SceneShaderGLES2::USE_VERTEX_LIGHTING, vertex_lit);
  1651. prev_vertex_lit = vertex_lit;
  1652. }
  1653. if (!unshaded && !accum_pass && e->refprobe_0_index != RenderList::MAX_REFLECTION_PROBES) {
  1654. ERR_FAIL_INDEX(e->refprobe_0_index, reflection_probe_count);
  1655. refprobe_1 = reflection_probe_instances[e->refprobe_0_index];
  1656. }
  1657. if (!unshaded && !accum_pass && e->refprobe_1_index != RenderList::MAX_REFLECTION_PROBES) {
  1658. ERR_FAIL_INDEX(e->refprobe_1_index, reflection_probe_count);
  1659. refprobe_2 = reflection_probe_instances[e->refprobe_1_index];
  1660. }
  1661. if (refprobe_1 != prev_refprobe_1 || refprobe_2 != prev_refprobe_2) {
  1662. state.scene_shader.set_conditional(SceneShaderGLES2::USE_REFLECTION_PROBE1, refprobe_1 != NULL);
  1663. state.scene_shader.set_conditional(SceneShaderGLES2::USE_REFLECTION_PROBE2, refprobe_2 != NULL);
  1664. if (refprobe_1 != NULL && refprobe_1 != prev_refprobe_1) {
  1665. glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 5);
  1666. glBindTexture(GL_TEXTURE_CUBE_MAP, refprobe_1->cubemap);
  1667. }
  1668. if (refprobe_2 != NULL && refprobe_2 != prev_refprobe_2) {
  1669. glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 6);
  1670. glBindTexture(GL_TEXTURE_CUBE_MAP, refprobe_2->cubemap);
  1671. }
  1672. rebind = true;
  1673. rebind_reflection = true;
  1674. }
  1675. use_lightmap_capture = !unshaded && !accum_pass && !e->instance->lightmap_capture_data.empty();
  1676. if (use_lightmap_capture != prev_use_lightmap_capture) {
  1677. state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTMAP_CAPTURE, use_lightmap_capture);
  1678. rebind = true;
  1679. }
  1680. if (!unshaded && !accum_pass && e->instance->lightmap.is_valid()) {
  1681. lightmap = storage->texture_owner.getornull(e->instance->lightmap);
  1682. lightmap_energy = 1.0;
  1683. if (lightmap) {
  1684. RasterizerStorageGLES2::LightmapCapture *capture = storage->lightmap_capture_data_owner.getornull(e->instance->lightmap_capture->base);
  1685. if (capture) {
  1686. lightmap_energy = capture->energy;
  1687. }
  1688. }
  1689. }
  1690. if (lightmap != prev_lightmap) {
  1691. state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTMAP, lightmap != NULL);
  1692. if (lightmap != NULL) {
  1693. glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 4);
  1694. glBindTexture(GL_TEXTURE_2D, lightmap->tex_id);
  1695. }
  1696. rebind = true;
  1697. rebind_lightmap = true;
  1698. }
  1699. }
  1700. bool instancing = e->instance->base_type == VS::INSTANCE_MULTIMESH;
  1701. if (instancing != prev_instancing) {
  1702. state.scene_shader.set_conditional(SceneShaderGLES2::USE_INSTANCING, instancing);
  1703. rebind = true;
  1704. }
  1705. RasterizerStorageGLES2::Skeleton *skeleton = storage->skeleton_owner.getornull(e->instance->skeleton);
  1706. if (skeleton != prev_skeleton) {
  1707. if (skeleton) {
  1708. state.scene_shader.set_conditional(SceneShaderGLES2::USE_SKELETON, true);
  1709. state.scene_shader.set_conditional(SceneShaderGLES2::USE_SKELETON_SOFTWARE, !storage->config.float_texture_supported);
  1710. } else {
  1711. state.scene_shader.set_conditional(SceneShaderGLES2::USE_SKELETON, false);
  1712. state.scene_shader.set_conditional(SceneShaderGLES2::USE_SKELETON_SOFTWARE, false);
  1713. }
  1714. rebind = true;
  1715. }
  1716. if (e->owner != prev_owner || e->geometry != prev_geometry || skeleton != prev_skeleton) {
  1717. _setup_geometry(e, skeleton);
  1718. }
  1719. bool shader_rebind = false;
  1720. if (rebind || material != prev_material) {
  1721. shader_rebind = _setup_material(material, p_reverse_cull, p_alpha_pass, Size2i(skeleton ? skeleton->size * 3 : 0, 0));
  1722. }
  1723. if (i == 0 || shader_rebind) { //first time must rebind
  1724. if (p_shadow) {
  1725. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_BIAS, p_shadow_bias);
  1726. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_NORMAL_BIAS, p_shadow_normal_bias);
  1727. if (state.shadow_is_dual_parabolloid) {
  1728. state.scene_shader.set_uniform(SceneShaderGLES2::SHADOW_DUAL_PARABOLOID_RENDER_SIDE, state.dual_parbolloid_direction);
  1729. state.scene_shader.set_uniform(SceneShaderGLES2::SHADOW_DUAL_PARABOLOID_RENDER_ZFAR, state.dual_parbolloid_zfar);
  1730. }
  1731. } else {
  1732. if (use_radiance_map) {
  1733. if (p_env) {
  1734. Transform sky_orientation(p_env->sky_orientation, Vector3(0.0, 0.0, 0.0));
  1735. state.scene_shader.set_uniform(SceneShaderGLES2::RADIANCE_INVERSE_XFORM, sky_orientation.affine_inverse() * p_view_transform);
  1736. } else {
  1737. // would be a bit weird if we dont have this...
  1738. state.scene_shader.set_uniform(SceneShaderGLES2::RADIANCE_INVERSE_XFORM, p_view_transform);
  1739. }
  1740. }
  1741. if (p_env) {
  1742. state.scene_shader.set_uniform(SceneShaderGLES2::BG_ENERGY, p_env->bg_energy);
  1743. state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_SKY_CONTRIBUTION, p_env->ambient_sky_contribution);
  1744. state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_COLOR, p_env->ambient_color);
  1745. state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_ENERGY, p_env->ambient_energy);
  1746. } else {
  1747. state.scene_shader.set_uniform(SceneShaderGLES2::BG_ENERGY, 1.0);
  1748. state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_SKY_CONTRIBUTION, 1.0);
  1749. state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_COLOR, Color(1.0, 1.0, 1.0, 1.0));
  1750. state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_ENERGY, 1.0);
  1751. }
  1752. //rebind all these
  1753. rebind_light = true;
  1754. rebind_reflection = true;
  1755. rebind_lightmap = true;
  1756. if (using_fog) {
  1757. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_COLOR_BASE, p_env->fog_color);
  1758. Color sun_color_amount = p_env->fog_sun_color;
  1759. sun_color_amount.a = p_env->fog_sun_amount;
  1760. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_SUN_COLOR_AMOUNT, sun_color_amount);
  1761. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_TRANSMIT_ENABLED, p_env->fog_transmit_enabled);
  1762. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_TRANSMIT_CURVE, p_env->fog_transmit_curve);
  1763. if (p_env->fog_depth_enabled) {
  1764. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_DEPTH_BEGIN, p_env->fog_depth_begin);
  1765. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_DEPTH_CURVE, p_env->fog_depth_curve);
  1766. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_MAX_DISTANCE, fog_max_distance);
  1767. }
  1768. if (p_env->fog_height_enabled) {
  1769. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_HEIGHT_MIN, p_env->fog_height_min);
  1770. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_HEIGHT_MAX, p_env->fog_height_max);
  1771. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_HEIGHT_MAX, p_env->fog_height_max);
  1772. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_HEIGHT_CURVE, p_env->fog_height_curve);
  1773. }
  1774. }
  1775. }
  1776. state.scene_shader.set_uniform(SceneShaderGLES2::CAMERA_MATRIX, p_view_transform);
  1777. state.scene_shader.set_uniform(SceneShaderGLES2::CAMERA_INVERSE_MATRIX, view_transform_inverse);
  1778. state.scene_shader.set_uniform(SceneShaderGLES2::PROJECTION_MATRIX, p_projection);
  1779. state.scene_shader.set_uniform(SceneShaderGLES2::PROJECTION_INVERSE_MATRIX, projection_inverse);
  1780. state.scene_shader.set_uniform(SceneShaderGLES2::TIME, storage->frame.time[0]);
  1781. state.scene_shader.set_uniform(SceneShaderGLES2::VIEWPORT_SIZE, viewport_size);
  1782. state.scene_shader.set_uniform(SceneShaderGLES2::SCREEN_PIXEL_SIZE, screen_pixel_size);
  1783. }
  1784. if (rebind_light && light) {
  1785. _setup_light(light, shadow_atlas, p_view_transform);
  1786. }
  1787. if (rebind_reflection && (refprobe_1 || refprobe_2)) {
  1788. _setup_refprobes(refprobe_1, refprobe_2, p_view_transform, p_env);
  1789. }
  1790. if (rebind_lightmap && lightmap) {
  1791. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHTMAP_ENERGY, lightmap_energy);
  1792. }
  1793. state.scene_shader.set_uniform(SceneShaderGLES2::WORLD_TRANSFORM, e->instance->transform);
  1794. if (use_lightmap_capture) { //this is per instance, must be set always if present
  1795. glUniform4fv(state.scene_shader.get_uniform_location(SceneShaderGLES2::LIGHTMAP_CAPTURES), 12, (const GLfloat *)e->instance->lightmap_capture_data.ptr());
  1796. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHTMAP_CAPTURE_SKY, false);
  1797. }
  1798. _render_geometry(e);
  1799. prev_geometry = e->geometry;
  1800. prev_owner = e->owner;
  1801. prev_material = material;
  1802. prev_skeleton = skeleton;
  1803. prev_instancing = instancing;
  1804. prev_light = light;
  1805. prev_refprobe_1 = refprobe_1;
  1806. prev_refprobe_2 = refprobe_2;
  1807. prev_lightmap = lightmap;
  1808. prev_use_lightmap_capture = use_lightmap_capture;
  1809. }
  1810. _setup_light_type(NULL, NULL); //clear light stuff
  1811. state.scene_shader.set_conditional(SceneShaderGLES2::USE_SKELETON, false);
  1812. state.scene_shader.set_conditional(SceneShaderGLES2::SHADELESS, false);
  1813. state.scene_shader.set_conditional(SceneShaderGLES2::BASE_PASS, false);
  1814. state.scene_shader.set_conditional(SceneShaderGLES2::USE_INSTANCING, false);
  1815. state.scene_shader.set_conditional(SceneShaderGLES2::USE_RADIANCE_MAP, false);
  1816. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM4, false);
  1817. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM2, false);
  1818. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM_BLEND, false);
  1819. state.scene_shader.set_conditional(SceneShaderGLES2::USE_VERTEX_LIGHTING, false);
  1820. state.scene_shader.set_conditional(SceneShaderGLES2::USE_REFLECTION_PROBE1, false);
  1821. state.scene_shader.set_conditional(SceneShaderGLES2::USE_REFLECTION_PROBE2, false);
  1822. state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTMAP, false);
  1823. state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTMAP_CAPTURE, false);
  1824. state.scene_shader.set_conditional(SceneShaderGLES2::FOG_DEPTH_ENABLED, false);
  1825. state.scene_shader.set_conditional(SceneShaderGLES2::FOG_HEIGHT_ENABLED, false);
  1826. }
  1827. void RasterizerSceneGLES2::_draw_sky(RasterizerStorageGLES2::Sky *p_sky, const CameraMatrix &p_projection, const Transform &p_transform, bool p_vflip, float p_custom_fov, float p_energy, const Basis &p_sky_orientation) {
  1828. ERR_FAIL_COND(!p_sky);
  1829. RasterizerStorageGLES2::Texture *tex = storage->texture_owner.getornull(p_sky->panorama);
  1830. ERR_FAIL_COND(!tex);
  1831. glActiveTexture(GL_TEXTURE0);
  1832. glBindTexture(tex->target, tex->tex_id);
  1833. glDepthMask(GL_TRUE);
  1834. glEnable(GL_DEPTH_TEST);
  1835. glDisable(GL_CULL_FACE);
  1836. glDisable(GL_BLEND);
  1837. glDepthFunc(GL_LEQUAL);
  1838. glColorMask(1, 1, 1, 1);
  1839. // Camera
  1840. CameraMatrix camera;
  1841. if (p_custom_fov) {
  1842. float near_plane = p_projection.get_z_near();
  1843. float far_plane = p_projection.get_z_far();
  1844. float aspect = p_projection.get_aspect();
  1845. camera.set_perspective(p_custom_fov, aspect, near_plane, far_plane);
  1846. } else {
  1847. camera = p_projection;
  1848. }
  1849. float flip_sign = p_vflip ? -1 : 1;
  1850. // If matrix[2][0] or matrix[2][1] we're dealing with an asymmetrical projection matrix. This is the case for stereoscopic rendering (i.e. VR).
  1851. // To ensure the image rendered is perspective correct we need to move some logic into the shader. For this the USE_ASYM_PANO option is introduced.
  1852. // It also means the uv coordinates are ignored in this mode and we don't need our loop.
  1853. bool asymmetrical = ((camera.matrix[2][0] != 0.0) || (camera.matrix[2][1] != 0.0));
  1854. Vector3 vertices[8] = {
  1855. Vector3(-1, -1 * flip_sign, 1),
  1856. Vector3(0, 1, 0),
  1857. Vector3(1, -1 * flip_sign, 1),
  1858. Vector3(1, 1, 0),
  1859. Vector3(1, 1 * flip_sign, 1),
  1860. Vector3(1, 0, 0),
  1861. Vector3(-1, 1 * flip_sign, 1),
  1862. Vector3(0, 0, 0),
  1863. };
  1864. if (!asymmetrical) {
  1865. float vw, vh, zn;
  1866. camera.get_viewport_size(vw, vh);
  1867. zn = p_projection.get_z_near();
  1868. for (int i = 0; i < 4; i++) {
  1869. Vector3 uv = vertices[i * 2 + 1];
  1870. uv.x = (uv.x * 2.0 - 1.0) * vw;
  1871. uv.y = -(uv.y * 2.0 - 1.0) * vh;
  1872. uv.z = -zn;
  1873. vertices[i * 2 + 1] = p_transform.basis.xform(uv).normalized();
  1874. vertices[i * 2 + 1].z = -vertices[i * 2 + 1].z;
  1875. }
  1876. }
  1877. glBindBuffer(GL_ARRAY_BUFFER, state.sky_verts);
  1878. glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(Vector3) * 8, vertices);
  1879. // bind sky vertex array....
  1880. glVertexAttribPointer(VS::ARRAY_VERTEX, 3, GL_FLOAT, GL_FALSE, sizeof(Vector3) * 2, 0);
  1881. glVertexAttribPointer(VS::ARRAY_TEX_UV, 3, GL_FLOAT, GL_FALSE, sizeof(Vector3) * 2, ((uint8_t *)NULL) + sizeof(Vector3));
  1882. glEnableVertexAttribArray(VS::ARRAY_VERTEX);
  1883. glEnableVertexAttribArray(VS::ARRAY_TEX_UV);
  1884. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_ASYM_PANO, asymmetrical);
  1885. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_PANORAMA, !asymmetrical);
  1886. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_MULTIPLIER, true);
  1887. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUBEMAP, false);
  1888. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_COPY_SECTION, false);
  1889. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUSTOM_ALPHA, false);
  1890. storage->shaders.copy.bind();
  1891. storage->shaders.copy.set_uniform(CopyShaderGLES2::MULTIPLIER, p_energy);
  1892. // don't know why but I always have problems setting a uniform mat3, so we're using a transform
  1893. storage->shaders.copy.set_uniform(CopyShaderGLES2::SKY_TRANSFORM, Transform(p_sky_orientation, Vector3(0.0, 0.0, 0.0)).affine_inverse());
  1894. if (asymmetrical) {
  1895. // pack the bits we need from our projection matrix
  1896. storage->shaders.copy.set_uniform(CopyShaderGLES2::ASYM_PROJ, camera.matrix[2][0], camera.matrix[0][0], camera.matrix[2][1], camera.matrix[1][1]);
  1897. ///@TODO I couldn't get mat3 + p_transform.basis to work, that would be better here.
  1898. storage->shaders.copy.set_uniform(CopyShaderGLES2::PANO_TRANSFORM, p_transform);
  1899. }
  1900. glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
  1901. glDisableVertexAttribArray(VS::ARRAY_VERTEX);
  1902. glDisableVertexAttribArray(VS::ARRAY_TEX_UV);
  1903. glBindBuffer(GL_ARRAY_BUFFER, 0);
  1904. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_ASYM_PANO, false);
  1905. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_PANORAMA, false);
  1906. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_MULTIPLIER, false);
  1907. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUBEMAP, false);
  1908. }
  1909. void RasterizerSceneGLES2::render_scene(const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID p_environment, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass) {
  1910. GLuint current_fb = 0;
  1911. Environment *env = NULL;
  1912. int viewport_width, viewport_height;
  1913. bool probe_interior = false;
  1914. if (p_reflection_probe.is_valid()) {
  1915. ReflectionProbeInstance *probe = reflection_probe_instance_owner.getornull(p_reflection_probe);
  1916. ERR_FAIL_COND(!probe);
  1917. state.render_no_shadows = !probe->probe_ptr->enable_shadows;
  1918. if (!probe->probe_ptr->interior) { //use env only if not interior
  1919. env = environment_owner.getornull(p_environment);
  1920. }
  1921. current_fb = probe->fbo[p_reflection_probe_pass];
  1922. viewport_width = probe->probe_ptr->resolution;
  1923. viewport_height = probe->probe_ptr->resolution;
  1924. probe_interior = probe->probe_ptr->interior;
  1925. } else {
  1926. state.render_no_shadows = false;
  1927. current_fb = storage->frame.current_rt->fbo;
  1928. env = environment_owner.getornull(p_environment);
  1929. viewport_width = storage->frame.current_rt->width;
  1930. viewport_height = storage->frame.current_rt->height;
  1931. }
  1932. state.viewport_size.x = viewport_width;
  1933. state.viewport_size.y = viewport_height;
  1934. state.screen_pixel_size.x = 1.0 / viewport_width;
  1935. state.screen_pixel_size.y = 1.0 / viewport_height;
  1936. //push back the directional lights
  1937. if (p_light_cull_count) {
  1938. //harcoded limit of 256 lights
  1939. render_light_instance_count = MIN(RenderList::MAX_LIGHTS, p_light_cull_count);
  1940. render_light_instances = (LightInstance **)alloca(sizeof(LightInstance *) * render_light_instance_count);
  1941. render_directional_lights = 0;
  1942. //doing this because directional lights are at the end, put them at the beginning
  1943. int index = 0;
  1944. for (int i = render_light_instance_count - 1; i >= 0; i--) {
  1945. RID light_rid = p_light_cull_result[i];
  1946. LightInstance *light = light_instance_owner.getornull(light_rid);
  1947. if (light->light_ptr->type == VS::LIGHT_DIRECTIONAL) {
  1948. render_directional_lights++;
  1949. //as goin in reverse, directional lights are always first anyway
  1950. }
  1951. light->light_index = index;
  1952. render_light_instances[index] = light;
  1953. index++;
  1954. }
  1955. } else {
  1956. render_light_instances = NULL;
  1957. render_directional_lights = 0;
  1958. render_light_instance_count = 0;
  1959. }
  1960. if (p_reflection_probe_cull_count) {
  1961. reflection_probe_instances = (ReflectionProbeInstance **)alloca(sizeof(ReflectionProbeInstance *) * p_reflection_probe_cull_count);
  1962. reflection_probe_count = p_reflection_probe_cull_count;
  1963. for (int i = 0; i < p_reflection_probe_cull_count; i++) {
  1964. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_reflection_probe_cull_result[i]);
  1965. ERR_CONTINUE(!rpi);
  1966. rpi->last_pass = render_pass + 1; //will be incremented later
  1967. rpi->index = i;
  1968. reflection_probe_instances[i] = rpi;
  1969. }
  1970. } else {
  1971. reflection_probe_instances = NULL;
  1972. reflection_probe_count = 0;
  1973. }
  1974. // render list stuff
  1975. render_list.clear();
  1976. _fill_render_list(p_cull_result, p_cull_count, false, false);
  1977. // other stuff
  1978. glBindFramebuffer(GL_FRAMEBUFFER, current_fb);
  1979. glViewport(0, 0, viewport_width, viewport_height);
  1980. glDepthFunc(GL_LEQUAL);
  1981. glDepthMask(GL_TRUE);
  1982. glClearDepth(1.0f);
  1983. glEnable(GL_DEPTH_TEST);
  1984. // clear color
  1985. Color clear_color(0, 0, 0, 0);
  1986. if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) {
  1987. clear_color = Color(0, 0, 0, 0);
  1988. storage->frame.clear_request = false;
  1989. } else if (!env || env->bg_mode == VS::ENV_BG_CLEAR_COLOR || env->bg_mode == VS::ENV_BG_SKY) {
  1990. if (storage->frame.clear_request) {
  1991. clear_color = storage->frame.clear_request_color.to_linear();
  1992. storage->frame.clear_request = false;
  1993. }
  1994. } else if (env->bg_mode == VS::ENV_BG_CANVAS || env->bg_mode == VS::ENV_BG_COLOR || env->bg_mode == VS::ENV_BG_COLOR_SKY) {
  1995. clear_color = env->bg_color.to_linear();
  1996. storage->frame.clear_request = false;
  1997. } else {
  1998. storage->frame.clear_request = false;
  1999. }
  2000. if (!env || env->bg_mode != VS::ENV_BG_KEEP) {
  2001. glClearColor(clear_color.r, clear_color.g, clear_color.b, clear_color.a);
  2002. }
  2003. glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
  2004. glVertexAttrib4f(VS::ARRAY_COLOR, 1, 1, 1, 1);
  2005. glBlendEquation(GL_FUNC_ADD);
  2006. glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
  2007. // render sky
  2008. RasterizerStorageGLES2::Sky *sky = NULL;
  2009. GLuint env_radiance_tex = 0;
  2010. if (env) {
  2011. switch (env->bg_mode) {
  2012. case VS::ENV_BG_COLOR_SKY:
  2013. case VS::ENV_BG_SKY: {
  2014. sky = storage->sky_owner.getornull(env->sky);
  2015. if (sky) {
  2016. env_radiance_tex = sky->radiance;
  2017. }
  2018. } break;
  2019. default: {
  2020. // FIXME: implement other background modes
  2021. } break;
  2022. }
  2023. }
  2024. if (env && env->bg_mode == VS::ENV_BG_SKY && (!storage->frame.current_rt || !storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT])) {
  2025. if (sky && sky->panorama.is_valid()) {
  2026. _draw_sky(sky, p_cam_projection, p_cam_transform, false, env->sky_custom_fov, env->bg_energy, env->sky_orientation);
  2027. }
  2028. }
  2029. if (probe_interior) {
  2030. env_radiance_tex = 0; //do not use radiance texture on interiors
  2031. }
  2032. // render opaque things first
  2033. render_list.sort_by_key(false);
  2034. _render_render_list(render_list.elements, render_list.element_count, p_cam_transform, p_cam_projection, p_shadow_atlas, env, env_radiance_tex, 0.0, 0.0, false, false, false);
  2035. // alpha pass
  2036. glBlendEquation(GL_FUNC_ADD);
  2037. glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
  2038. render_list.sort_by_depth(true);
  2039. _render_render_list(&render_list.elements[render_list.max_elements - render_list.alpha_element_count], render_list.alpha_element_count, p_cam_transform, p_cam_projection, p_shadow_atlas, env, env_radiance_tex, 0.0, 0.0, false, true, false);
  2040. glDisable(GL_DEPTH_TEST);
  2041. //#define GLES2_SHADOW_ATLAS_DEBUG_VIEW
  2042. #ifdef GLES2_SHADOW_ATLAS_DEBUG_VIEW
  2043. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
  2044. if (shadow_atlas) {
  2045. glActiveTexture(GL_TEXTURE0);
  2046. glBindTexture(GL_TEXTURE_2D, shadow_atlas->depth);
  2047. glViewport(0, 0, storage->frame.current_rt->width / 4, storage->frame.current_rt->height / 4);
  2048. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUBEMAP, false);
  2049. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_COPY_SECTION, false);
  2050. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUSTOM_ALPHA, false);
  2051. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_MULTIPLIER, false);
  2052. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_PANORAMA, false);
  2053. storage->shaders.copy.bind();
  2054. storage->_copy_screen();
  2055. }
  2056. #endif
  2057. //#define GLES2_SHADOW_DIRECTIONAL_DEBUG_VIEW
  2058. #ifdef GLES2_SHADOW_DIRECTIONAL_DEBUG_VIEW
  2059. if (true) {
  2060. glActiveTexture(GL_TEXTURE0);
  2061. glBindTexture(GL_TEXTURE_2D, directional_shadow.depth);
  2062. glViewport(0, 0, storage->frame.current_rt->width / 4, storage->frame.current_rt->height / 4);
  2063. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUBEMAP, false);
  2064. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_COPY_SECTION, false);
  2065. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUSTOM_ALPHA, false);
  2066. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_MULTIPLIER, false);
  2067. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_PANORAMA, false);
  2068. storage->shaders.copy.bind();
  2069. storage->_copy_screen();
  2070. }
  2071. #endif
  2072. }
  2073. void RasterizerSceneGLES2::render_shadow(RID p_light, RID p_shadow_atlas, int p_pass, InstanceBase **p_cull_result, int p_cull_count) {
  2074. state.render_no_shadows = false;
  2075. LightInstance *light_instance = light_instance_owner.getornull(p_light);
  2076. ERR_FAIL_COND(!light_instance);
  2077. RasterizerStorageGLES2::Light *light = light_instance->light_ptr;
  2078. ERR_FAIL_COND(!light);
  2079. uint32_t x;
  2080. uint32_t y;
  2081. uint32_t width;
  2082. uint32_t height;
  2083. float zfar = 0;
  2084. bool flip_facing = false;
  2085. int custom_vp_size = 0;
  2086. GLuint fbo = 0;
  2087. state.shadow_is_dual_parabolloid = false;
  2088. state.dual_parbolloid_direction = 0.0;
  2089. int current_cubemap = -1;
  2090. float bias = 0;
  2091. float normal_bias = 0;
  2092. CameraMatrix light_projection;
  2093. Transform light_transform;
  2094. // TODO directional light
  2095. if (light->type == VS::LIGHT_DIRECTIONAL) {
  2096. // set pssm stuff
  2097. // TODO set this only when changed
  2098. light_instance->light_directional_index = directional_shadow.current_light;
  2099. light_instance->last_scene_shadow_pass = scene_pass;
  2100. directional_shadow.current_light++;
  2101. if (directional_shadow.light_count == 1) {
  2102. light_instance->directional_rect = Rect2(0, 0, directional_shadow.size, directional_shadow.size);
  2103. } else if (directional_shadow.light_count == 2) {
  2104. light_instance->directional_rect = Rect2(0, 0, directional_shadow.size, directional_shadow.size / 2);
  2105. if (light_instance->light_directional_index == 1) {
  2106. light_instance->directional_rect.position.x += light_instance->directional_rect.size.x;
  2107. }
  2108. } else { //3 and 4
  2109. light_instance->directional_rect = Rect2(0, 0, directional_shadow.size / 2, directional_shadow.size / 2);
  2110. if (light_instance->light_directional_index & 1) {
  2111. light_instance->directional_rect.position.x += light_instance->directional_rect.size.x;
  2112. }
  2113. if (light_instance->light_directional_index / 2) {
  2114. light_instance->directional_rect.position.y += light_instance->directional_rect.size.y;
  2115. }
  2116. }
  2117. light_projection = light_instance->shadow_transform[p_pass].camera;
  2118. light_transform = light_instance->shadow_transform[p_pass].transform;
  2119. x = light_instance->directional_rect.position.x;
  2120. y = light_instance->directional_rect.position.y;
  2121. width = light_instance->directional_rect.size.width;
  2122. height = light_instance->directional_rect.size.height;
  2123. if (light->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) {
  2124. width /= 2;
  2125. height /= 2;
  2126. if (p_pass == 0) {
  2127. } else if (p_pass == 1) {
  2128. x += width;
  2129. } else if (p_pass == 2) {
  2130. y += height;
  2131. } else if (p_pass == 3) {
  2132. x += width;
  2133. y += height;
  2134. }
  2135. } else if (light->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) {
  2136. height /= 2;
  2137. if (p_pass == 0) {
  2138. } else {
  2139. y += height;
  2140. }
  2141. }
  2142. float bias_mult = Math::lerp(1.0f, light_instance->shadow_transform[p_pass].bias_scale, light->param[VS::LIGHT_PARAM_SHADOW_BIAS_SPLIT_SCALE]);
  2143. zfar = light->param[VS::LIGHT_PARAM_RANGE];
  2144. bias = light->param[VS::LIGHT_PARAM_SHADOW_BIAS] * bias_mult;
  2145. normal_bias = light->param[VS::LIGHT_PARAM_SHADOW_NORMAL_BIAS] * bias_mult;
  2146. fbo = directional_shadow.fbo;
  2147. } else {
  2148. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
  2149. ERR_FAIL_COND(!shadow_atlas);
  2150. ERR_FAIL_COND(!shadow_atlas->shadow_owners.has(p_light));
  2151. fbo = shadow_atlas->fbo;
  2152. uint32_t key = shadow_atlas->shadow_owners[p_light];
  2153. uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x03;
  2154. uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK;
  2155. ERR_FAIL_INDEX((int)shadow, shadow_atlas->quadrants[quadrant].shadows.size());
  2156. uint32_t quadrant_size = shadow_atlas->size >> 1;
  2157. x = (quadrant & 1) * quadrant_size;
  2158. y = (quadrant >> 1) * quadrant_size;
  2159. uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision);
  2160. x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  2161. y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  2162. width = shadow_size;
  2163. height = shadow_size;
  2164. if (light->type == VS::LIGHT_OMNI) {
  2165. // cubemap only
  2166. if (light->omni_shadow_mode == VS::LIGHT_OMNI_SHADOW_CUBE) {
  2167. int cubemap_index = shadow_cubemaps.size() - 1;
  2168. // find an appropriate cubemap to render to
  2169. for (int i = shadow_cubemaps.size() - 1; i >= 0; i--) {
  2170. if (shadow_cubemaps[i].size > shadow_size * 2) {
  2171. break;
  2172. }
  2173. cubemap_index = i;
  2174. }
  2175. fbo = shadow_cubemaps[cubemap_index].fbo[p_pass];
  2176. light_projection = light_instance->shadow_transform[0].camera;
  2177. light_transform = light_instance->shadow_transform[0].transform;
  2178. custom_vp_size = shadow_cubemaps[cubemap_index].size;
  2179. zfar = light->param[VS::LIGHT_PARAM_RANGE];
  2180. current_cubemap = cubemap_index;
  2181. } else {
  2182. //dual parabolloid
  2183. state.shadow_is_dual_parabolloid = true;
  2184. light_projection = light_instance->shadow_transform[0].camera;
  2185. light_transform = light_instance->shadow_transform[0].transform;
  2186. if (light->omni_shadow_detail == VS::LIGHT_OMNI_SHADOW_DETAIL_HORIZONTAL) {
  2187. height /= 2;
  2188. y += p_pass * height;
  2189. } else {
  2190. width /= 2;
  2191. x += p_pass * width;
  2192. }
  2193. state.dual_parbolloid_direction = p_pass == 0 ? 1.0 : -1.0;
  2194. flip_facing = (p_pass == 1);
  2195. zfar = light->param[VS::LIGHT_PARAM_RANGE];
  2196. bias = light->param[VS::LIGHT_PARAM_SHADOW_BIAS];
  2197. state.dual_parbolloid_zfar = zfar;
  2198. state.scene_shader.set_conditional(SceneShaderGLES2::RENDER_DEPTH_DUAL_PARABOLOID, true);
  2199. }
  2200. } else if (light->type == VS::LIGHT_SPOT) {
  2201. light_projection = light_instance->shadow_transform[0].camera;
  2202. light_transform = light_instance->shadow_transform[0].transform;
  2203. flip_facing = false;
  2204. zfar = light->param[VS::LIGHT_PARAM_RANGE];
  2205. bias = light->param[VS::LIGHT_PARAM_SHADOW_BIAS];
  2206. normal_bias = light->param[VS::LIGHT_PARAM_SHADOW_NORMAL_BIAS];
  2207. }
  2208. }
  2209. render_list.clear();
  2210. _fill_render_list(p_cull_result, p_cull_count, true, true);
  2211. render_list.sort_by_depth(false);
  2212. glDisable(GL_BLEND);
  2213. glDisable(GL_DITHER);
  2214. glEnable(GL_DEPTH_TEST);
  2215. glBindFramebuffer(GL_FRAMEBUFFER, fbo);
  2216. glDepthMask(GL_TRUE);
  2217. glColorMask(0, 0, 0, 0);
  2218. if (custom_vp_size) {
  2219. glViewport(0, 0, custom_vp_size, custom_vp_size);
  2220. glScissor(0, 0, custom_vp_size, custom_vp_size);
  2221. } else {
  2222. glViewport(x, y, width, height);
  2223. glScissor(x, y, width, height);
  2224. }
  2225. glEnable(GL_SCISSOR_TEST);
  2226. glClearDepth(1.0f);
  2227. glClear(GL_DEPTH_BUFFER_BIT);
  2228. glDisable(GL_SCISSOR_TEST);
  2229. if (light->reverse_cull) {
  2230. flip_facing = !flip_facing;
  2231. }
  2232. state.scene_shader.set_conditional(SceneShaderGLES2::RENDER_DEPTH, true);
  2233. _render_render_list(render_list.elements, render_list.element_count, light_transform, light_projection, RID(), NULL, 0, bias, normal_bias, flip_facing, false, true);
  2234. state.scene_shader.set_conditional(SceneShaderGLES2::RENDER_DEPTH, false);
  2235. state.scene_shader.set_conditional(SceneShaderGLES2::RENDER_DEPTH_DUAL_PARABOLOID, false);
  2236. // convert cubemap to dual paraboloid if needed
  2237. if (light->type == VS::LIGHT_OMNI && light->omni_shadow_mode == VS::LIGHT_OMNI_SHADOW_CUBE && p_pass == 5) {
  2238. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
  2239. glBindFramebuffer(GL_FRAMEBUFFER, shadow_atlas->fbo);
  2240. state.cube_to_dp_shader.bind();
  2241. glActiveTexture(GL_TEXTURE0);
  2242. glBindTexture(GL_TEXTURE_CUBE_MAP, shadow_cubemaps[current_cubemap].cubemap);
  2243. glDisable(GL_CULL_FACE);
  2244. for (int i = 0; i < 2; i++) {
  2245. state.cube_to_dp_shader.set_uniform(CubeToDpShaderGLES2::Z_FLIP, i == 1);
  2246. state.cube_to_dp_shader.set_uniform(CubeToDpShaderGLES2::Z_NEAR, light_projection.get_z_near());
  2247. state.cube_to_dp_shader.set_uniform(CubeToDpShaderGLES2::Z_FAR, light_projection.get_z_far());
  2248. state.cube_to_dp_shader.set_uniform(CubeToDpShaderGLES2::BIAS, light->param[VS::LIGHT_PARAM_SHADOW_BIAS]);
  2249. uint32_t local_width = width;
  2250. uint32_t local_height = height;
  2251. uint32_t local_x = x;
  2252. uint32_t local_y = y;
  2253. if (light->omni_shadow_detail == VS::LIGHT_OMNI_SHADOW_DETAIL_HORIZONTAL) {
  2254. local_height /= 2;
  2255. local_y += i * local_height;
  2256. } else {
  2257. local_width /= 2;
  2258. local_x += i * local_width;
  2259. }
  2260. glViewport(local_x, local_y, local_width, local_height);
  2261. glScissor(local_x, local_y, local_width, local_height);
  2262. glEnable(GL_SCISSOR_TEST);
  2263. glClearDepth(1.0f);
  2264. glClear(GL_DEPTH_BUFFER_BIT);
  2265. glDisable(GL_SCISSOR_TEST);
  2266. glDisable(GL_BLEND);
  2267. storage->_copy_screen();
  2268. }
  2269. }
  2270. glViewport(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height);
  2271. glColorMask(1, 1, 1, 1);
  2272. }
  2273. void RasterizerSceneGLES2::set_scene_pass(uint64_t p_pass) {
  2274. scene_pass = p_pass;
  2275. }
  2276. bool RasterizerSceneGLES2::free(RID p_rid) {
  2277. if (light_instance_owner.owns(p_rid)) {
  2278. LightInstance *light_instance = light_instance_owner.getptr(p_rid);
  2279. //remove from shadow atlases..
  2280. for (Set<RID>::Element *E = light_instance->shadow_atlases.front(); E; E = E->next()) {
  2281. ShadowAtlas *shadow_atlas = shadow_atlas_owner.get(E->get());
  2282. ERR_CONTINUE(!shadow_atlas->shadow_owners.has(p_rid));
  2283. uint32_t key = shadow_atlas->shadow_owners[p_rid];
  2284. uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
  2285. uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK;
  2286. shadow_atlas->quadrants[q].shadows.write[s].owner = RID();
  2287. shadow_atlas->shadow_owners.erase(p_rid);
  2288. }
  2289. light_instance_owner.free(p_rid);
  2290. memdelete(light_instance);
  2291. } else if (shadow_atlas_owner.owns(p_rid)) {
  2292. ShadowAtlas *shadow_atlas = shadow_atlas_owner.get(p_rid);
  2293. shadow_atlas_set_size(p_rid, 0);
  2294. shadow_atlas_owner.free(p_rid);
  2295. memdelete(shadow_atlas);
  2296. } else if (reflection_probe_instance_owner.owns(p_rid)) {
  2297. ReflectionProbeInstance *reflection_instance = reflection_probe_instance_owner.get(p_rid);
  2298. reflection_probe_release_atlas_index(p_rid);
  2299. reflection_probe_instance_owner.free(p_rid);
  2300. memdelete(reflection_instance);
  2301. } else {
  2302. return false;
  2303. }
  2304. return true;
  2305. }
  2306. void RasterizerSceneGLES2::set_debug_draw_mode(VS::ViewportDebugDraw p_debug_draw) {
  2307. }
  2308. void RasterizerSceneGLES2::initialize() {
  2309. state.scene_shader.init();
  2310. state.cube_to_dp_shader.init();
  2311. render_list.init();
  2312. render_pass = 1;
  2313. shadow_atlas_realloc_tolerance_msec = 500;
  2314. {
  2315. //default material and shader
  2316. default_shader = storage->shader_create();
  2317. storage->shader_set_code(default_shader, "shader_type spatial;\n");
  2318. default_material = storage->material_create();
  2319. storage->material_set_shader(default_material, default_shader);
  2320. default_shader_twosided = storage->shader_create();
  2321. default_material_twosided = storage->material_create();
  2322. storage->shader_set_code(default_shader_twosided, "shader_type spatial; render_mode cull_disabled;\n");
  2323. storage->material_set_shader(default_material_twosided, default_shader_twosided);
  2324. }
  2325. {
  2326. default_worldcoord_shader = storage->shader_create();
  2327. storage->shader_set_code(default_worldcoord_shader, "shader_type spatial; render_mode world_vertex_coords;\n");
  2328. default_worldcoord_material = storage->material_create();
  2329. storage->material_set_shader(default_worldcoord_material, default_worldcoord_shader);
  2330. default_worldcoord_shader_twosided = storage->shader_create();
  2331. default_worldcoord_material_twosided = storage->material_create();
  2332. storage->shader_set_code(default_worldcoord_shader_twosided, "shader_type spatial; render_mode cull_disabled,world_vertex_coords;\n");
  2333. storage->material_set_shader(default_worldcoord_material_twosided, default_worldcoord_shader_twosided);
  2334. }
  2335. {
  2336. //default material and shader
  2337. default_overdraw_shader = storage->shader_create();
  2338. storage->shader_set_code(default_overdraw_shader, "shader_type spatial;\nrender_mode blend_add,unshaded;\n void fragment() { ALBEDO=vec3(0.4,0.8,0.8); ALPHA=0.2; }");
  2339. default_overdraw_material = storage->material_create();
  2340. storage->material_set_shader(default_overdraw_material, default_overdraw_shader);
  2341. }
  2342. {
  2343. glGenBuffers(1, &state.sky_verts);
  2344. glBindBuffer(GL_ARRAY_BUFFER, state.sky_verts);
  2345. glBufferData(GL_ARRAY_BUFFER, sizeof(Vector3) * 8, NULL, GL_DYNAMIC_DRAW);
  2346. glBindBuffer(GL_ARRAY_BUFFER, 0);
  2347. }
  2348. {
  2349. uint32_t immediate_buffer_size = GLOBAL_DEF("rendering/limits/buffers/immediate_buffer_size_kb", 2048);
  2350. ProjectSettings::get_singleton()->set_custom_property_info("rendering/limits/buffers/immediate_buffer_size_kb", PropertyInfo(Variant::INT, "rendering/limits/buffers/immediate_buffer_size_kb", PROPERTY_HINT_RANGE, "0,8192,1,or_greater"));
  2351. glGenBuffers(1, &state.immediate_buffer);
  2352. glBindBuffer(GL_ARRAY_BUFFER, state.immediate_buffer);
  2353. glBufferData(GL_ARRAY_BUFFER, immediate_buffer_size * 1024, NULL, GL_DYNAMIC_DRAW);
  2354. glBindBuffer(GL_ARRAY_BUFFER, 0);
  2355. }
  2356. // cubemaps for shadows
  2357. {
  2358. int max_shadow_cubemap_sampler_size = 512;
  2359. int cube_size = max_shadow_cubemap_sampler_size;
  2360. glActiveTexture(GL_TEXTURE0);
  2361. while (cube_size >= 32) {
  2362. ShadowCubeMap cube;
  2363. cube.size = cube_size;
  2364. glGenTextures(1, &cube.cubemap);
  2365. glBindTexture(GL_TEXTURE_CUBE_MAP, cube.cubemap);
  2366. for (int i = 0; i < 6; i++) {
  2367. glTexImage2D(_cube_side_enum[i], 0, GL_DEPTH_COMPONENT, cube_size, cube_size, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL);
  2368. }
  2369. glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
  2370. glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
  2371. glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
  2372. glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
  2373. glGenFramebuffers(6, cube.fbo);
  2374. for (int i = 0; i < 6; i++) {
  2375. glBindFramebuffer(GL_FRAMEBUFFER, cube.fbo[i]);
  2376. glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, _cube_side_enum[i], cube.cubemap, 0);
  2377. }
  2378. shadow_cubemaps.push_back(cube);
  2379. cube_size >>= 1;
  2380. }
  2381. }
  2382. {
  2383. // directional shadows
  2384. directional_shadow.light_count = 0;
  2385. directional_shadow.size = next_power_of_2(GLOBAL_GET("rendering/quality/directional_shadow/size"));
  2386. glGenFramebuffers(1, &directional_shadow.fbo);
  2387. glBindFramebuffer(GL_FRAMEBUFFER, directional_shadow.fbo);
  2388. glGenTextures(1, &directional_shadow.depth);
  2389. glBindTexture(GL_TEXTURE_2D, directional_shadow.depth);
  2390. glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, directional_shadow.size, directional_shadow.size, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL);
  2391. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
  2392. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
  2393. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
  2394. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
  2395. glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, directional_shadow.depth, 0);
  2396. GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
  2397. if (status != GL_FRAMEBUFFER_COMPLETE) {
  2398. ERR_PRINT("Directional shadow framebuffer status invalid");
  2399. }
  2400. }
  2401. shadow_filter_mode = SHADOW_FILTER_NEAREST;
  2402. }
  2403. void RasterizerSceneGLES2::iteration() {
  2404. shadow_filter_mode = ShadowFilterMode(int(GLOBAL_GET("rendering/quality/shadows/filter_mode")));
  2405. }
  2406. void RasterizerSceneGLES2::finalize() {
  2407. }
  2408. RasterizerSceneGLES2::RasterizerSceneGLES2() {
  2409. }