123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660 |
- /* Power function
- Input: push Base
- push Exponent
- Output: Result on stack
- */
- #include "stdafx.h"
- #include "defs.h"
- void
- eval_power(void)
- {
- push(cadr(p1));
- eval();
- push(caddr(p1));
- eval();
- power();
- }
- void
- power(void)
- {
- save();
- yypower();
- restore();
- }
- void
- yypower(void)
- {
- int n;
- p2 = pop();
- p1 = pop();
- // both base and exponent are rational numbers?
- if (isrational(p1) && isrational(p2)) {
- push(p1);
- push(p2);
- qpow();
- return;
- }
- // both base and exponent are either rational or double?
- if (isnum(p1) && isnum(p2)) {
- push(p1);
- push(p2);
- dpow();
- return;
- }
- if (istensor(p1)) {
- power_tensor();
- return;
- }
- if (p1 == symbol(E) && car(p2) == symbol(LOG)) {
- push(cadr(p2));
- return;
- }
- if (p1 == symbol(E) && isdouble(p2)) {
- push_double(exp(p2->u.d));
- return;
- }
- // 1 ^ a -> 1
- // a ^ 0 -> 1
- if (equal(p1, one) || iszero(p2)) {
- push(one);
- return;
- }
- // a ^ 1 -> a
- if (equal(p2, one)) {
- push(p1);
- return;
- }
- // (a * b) ^ c -> (a ^ c) * (b ^ c)
- if (car(p1) == symbol(MULTIPLY)) {
- p1 = cdr(p1);
- push(car(p1));
- push(p2);
- power();
- p1 = cdr(p1);
- while (iscons(p1)) {
- push(car(p1));
- push(p2);
- power();
- multiply();
- p1 = cdr(p1);
- }
- return;
- }
- // (a ^ b) ^ c -> a ^ (b * c)
- if (car(p1) == symbol(POWER)) {
- push(cadr(p1));
- push(caddr(p1));
- push(p2);
- multiply();
- power();
- return;
- }
- // (a + b) ^ n -> (a + b) * (a + b) ...
- if (expanding && isadd(p1) && isnum(p2)) {
- push(p2);
- n = pop_integer();
- if (n > 1) {
- power_sum(n);
- return;
- }
- }
- // sin(x) ^ 2n -> (1 - cos(x) ^ 2) ^ n
- if (trigmode == 1 && car(p1) == symbol(SIN) && iseveninteger(p2)) {
- push_integer(1);
- push(cadr(p1));
- cosine();
- push_integer(2);
- power();
- subtract();
- push(p2);
- push_rational(1, 2);
- multiply();
- power();
- return;
- }
- // cos(x) ^ 2n -> (1 - sin(x) ^ 2) ^ n
- if (trigmode == 2 && car(p1) == symbol(COS) && iseveninteger(p2)) {
- push_integer(1);
- push(cadr(p1));
- sine();
- push_integer(2);
- power();
- subtract();
- push(p2);
- push_rational(1, 2);
- multiply();
- power();
- return;
- }
- // complex number? (just number, not expression)
- if (iscomplexnumber(p1)) {
- // integer power?
- // n will be negative here, positive n already handled
- if (isinteger(p2)) {
- // / \ n
- // -n | a - ib |
- // (a + ib) = | -------- |
- // | 2 2 |
- // \ a + b /
- push(p1);
- conjugate();
- p3 = pop();
- push(p3);
- push(p3);
- push(p1);
- multiply();
- divide();
- push(p2);
- negate();
- power();
- return;
- }
- // noninteger or floating power?
- if (isnum(p2)) {
- #if 1 // use polar form
- push(p1);
- mag();
- push(p2);
- power();
- push_integer(-1);
- push(p1);
- arg();
- push(p2);
- multiply();
- push(symbol(PI));
- divide();
- power();
- multiply();
- #else // use exponential form
- push(p1);
- mag();
- push(p2);
- power();
- push(symbol(E));
- push(p1);
- arg();
- push(p2);
- multiply();
- push(imaginaryunit);
- multiply();
- power();
- multiply();
- #endif
- return;
- }
- }
- if (simplify_polar())
- return;
- push_symbol(POWER);
- push(p1);
- push(p2);
- list(3);
- }
- //-----------------------------------------------------------------------------
- //
- // Compute the power of a sum
- //
- // Input: p1 sum
- //
- // n exponent
- //
- // Output: Result on stack
- //
- // Note:
- //
- // Uses the multinomial series (see Math World)
- //
- // n n! n1 n2 nk
- // (a1 + a2 + ... + ak) = sum (--------------- a1 a2 ... ak )
- // n1! n2! ... nk!
- //
- // The sum is over all n1 ... nk such that n1 + n2 + ... + nk = n.
- //
- //-----------------------------------------------------------------------------
- // first index is the term number 0..k-1, second index is the exponent 0..n
- #define A(i, j) frame[(i) * (n + 1) + (j)]
- void
- power_sum(int n)
- {
- int *a, i, j, k;
- // number of terms in the sum
- k = length(p1) - 1;
- // local frame
- push_frame(k * (n + 1));
- // array of powers
- p1 = cdr(p1);
- for (i = 0; i < k; i++) {
- for (j = 0; j <= n; j++) {
- push(car(p1));
- push_integer(j);
- power();
- A(i, j) = pop();
- }
- p1 = cdr(p1);
- }
- push_integer(n);
- factorial();
- p1 = pop();
- a = (int *) malloc(k * sizeof (int));
- if (a == NULL)
- stop("malloc failure");
- push(zero);
- multinomial_sum(k, n, a, 0, n);
- free(a);
- pop_frame(k * (n + 1));
- }
- //-----------------------------------------------------------------------------
- //
- // Compute multinomial sum
- //
- // Input: k number of factors
- //
- // n overall exponent
- //
- // a partition array
- //
- // i partition array index
- //
- // m partition remainder
- //
- // p1 n!
- //
- // A factor array
- //
- // Output: Result on stack
- //
- // Note:
- //
- // Uses recursive descent to fill the partition array.
- //
- //-----------------------------------------------------------------------------
- void
- multinomial_sum(int k, int n, int *a, int i, int m)
- {
- int j;
- if (i < k - 1) {
- for (j = 0; j <= m; j++) {
- a[i] = j;
- multinomial_sum(k, n, a, i + 1, m - j);
- }
- return;
- }
- a[i] = m;
- // coefficient
- push(p1);
- for (j = 0; j < k; j++) {
- push_integer(a[j]);
- factorial();
- divide();
- }
- // factors
- for (j = 0; j < k; j++) {
- push(A(j, a[j]));
- multiply();
- }
- add();
- }
- // exp(n/2 i pi) ?
- // p2 is the exponent expression
- // clobbers p3
- int
- simplify_polar(void)
- {
- int n;
- n = isquarterturn(p2);
- switch(n) {
- case 0:
- break;
- case 1:
- push_integer(1);
- return 1;
- case 2:
- push_integer(-1);
- return 1;
- case 3:
- push(imaginaryunit);
- return 1;
- case 4:
- push(imaginaryunit);
- negate();
- return 1;
- }
- if (car(p2) == symbol(ADD)) {
- p3 = cdr(p2);
- while (iscons(p3)) {
- n = isquarterturn(car(p3));
- if (n)
- break;
- p3 = cdr(p3);
- }
- switch (n) {
- case 0:
- return 0;
- case 1:
- push_integer(1);
- break;
- case 2:
- push_integer(-1);
- break;
- case 3:
- push(imaginaryunit);
- break;
- case 4:
- push(imaginaryunit);
- negate();
- break;
- }
- push(p2);
- push(car(p3));
- subtract();
- exponential();
- multiply();
- return 1;
- }
- return 0;
- }
- #if SELFTEST
- static char *s[] = {
- "2^(1/2)",
- "2^(1/2)",
- "2^(3/2)",
- "2*2^(1/2)",
- "(-2)^(1/2)",
- "i*2^(1/2)",
- "3^(4/3)",
- "3*3^(1/3)",
- "3^(-4/3)",
- "1/(3*3^(1/3))",
- "3^(5/3)",
- "3*3^(2/3)",
- "3^(2/3)-9^(1/3)",
- "0",
- "3^(10/3)",
- "27*3^(1/3)",
- "3^(-10/3)",
- "1/(27*3^(1/3))",
- "(1/3)^(10/3)",
- "1/(27*3^(1/3))",
- "(1/3)^(-10/3)",
- "27*3^(1/3)",
- "27^(2/3)",
- "9",
- "27^(-2/3)",
- "1/9",
- "102^(1/2)",
- "2^(1/2)*3^(1/2)*17^(1/2)",
- "32^(1/3)",
- "2*2^(2/3)",
- "9999^(1/2)",
- "3*11^(1/2)*101^(1/2)",
- "10000^(1/3)",
- "10*2^(1/3)*5^(1/3)",
- "sqrt(1000000)",
- "1000",
- "sqrt(-1000000)",
- "1000*i",
- "sqrt(2^60)",
- "1073741824",
- // this is why we factor irrationals
- "6^(1/3) 3^(2/3)",
- "3*2^(1/3)",
- // inverse of complex numbers
- "1/(2+3*i)",
- "2/13-3/13*i",
- "1/(2+3*i)^2",
- "-5/169-12/169*i",
- "(-1+3i)/(2-i)",
- "-1+i",
- // other
- "(0.0)^(0.0)",
- "1",
- "(-4.0)^(1.5)",
- "-8*i",
- "(-4.0)^(0.5)",
- "2*i",
- "(-4.0)^(-0.5)",
- "-0.5*i",
- "(-4.0)^(-1.5)",
- "0.125*i",
- // more complex number cases
- "(1+i)^2",
- "2*i",
- "(1+i)^(-2)",
- "-1/2*i",
- "(1+i)^(1/2)",
- "(-1)^(1/8)*2^(1/4)",
- "(1+i)^(-1/2)",
- "-(-1)^(7/8)/(2^(1/4))",
- "(1+i)^(0.5)",
- "1.09868+0.45509*i",
- "(1+i)^(-0.5)",
- "0.776887-0.321797*i",
- // test cases for simplification of polar forms, counterclockwise
- "exp(i*pi/2)",
- "i",
- "exp(i*pi)",
- "-1",
- "exp(i*3*pi/2)",
- "-i",
- "exp(i*2*pi)",
- "1",
- "exp(i*5*pi/2)",
- "i",
- "exp(i*3*pi)",
- "-1",
- "exp(i*7*pi/2)",
- "-i",
- "exp(i*4*pi)",
- "1",
- "exp(A+i*pi/2)",
- "i*exp(A)",
- "exp(A+i*pi)",
- "-exp(A)",
- "exp(A+i*3*pi/2)",
- "-i*exp(A)",
- "exp(A+i*2*pi)",
- "exp(A)",
- "exp(A+i*5*pi/2)",
- "i*exp(A)",
- "exp(A+i*3*pi)",
- "-exp(A)",
- "exp(A+i*7*pi/2)",
- "-i*exp(A)",
- "exp(A+i*4*pi)",
- "exp(A)",
- // test cases for simplification of polar forms, clockwise
- "exp(-i*pi/2)",
- "-i",
- "exp(-i*pi)",
- "-1",
- "exp(-i*3*pi/2)",
- "i",
- "exp(-i*2*pi)",
- "1",
- "exp(-i*5*pi/2)",
- "-i",
- "exp(-i*3*pi)",
- "-1",
- "exp(-i*7*pi/2)",
- "i",
- "exp(-i*4*pi)",
- "1",
- "exp(A-i*pi/2)",
- "-i*exp(A)",
- "exp(A-i*pi)",
- "-exp(A)",
- "exp(A-i*3*pi/2)",
- "i*exp(A)",
- "exp(A-i*2*pi)",
- "exp(A)",
- "exp(A-i*5*pi/2)",
- "-i*exp(A)",
- "exp(A-i*3*pi)",
- "-exp(A)",
- "exp(A-i*7*pi/2)",
- "i*exp(A)",
- "exp(A-i*4*pi)",
- "exp(A)",
- };
- void
- test_power(void)
- {
- test(__FILE__, s, sizeof s / sizeof (char *));
- }
- #endif
|