add.cpp 4.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328
  1. /* Symbolic addition
  2. Terms in a sum are combined if they are identical modulo rational
  3. coefficients.
  4. For example, A + 2A becomes 3A.
  5. However, the sum A + sqrt(2) A is not modified.
  6. Combining terms can lead to second-order effects.
  7. For example, consider the case of
  8. 1/sqrt(2) A + 3/sqrt(2) A + sqrt(2) A
  9. The first two terms are combined to yield 2 sqrt(2) A.
  10. This result can now be combined with the third term to yield
  11. 3 sqrt(2) A
  12. */
  13. #include "stdafx.h"
  14. #include "defs.h"
  15. static int flag;
  16. void
  17. eval_add(void)
  18. {
  19. int h = tos;
  20. p1 = cdr(p1);
  21. while (iscons(p1)) {
  22. push(car(p1));
  23. eval();
  24. p2 = pop();
  25. push_terms(p2);
  26. p1 = cdr(p1);
  27. }
  28. add_terms(tos - h);
  29. }
  30. /* Add n terms, returns one expression on the stack. */
  31. void
  32. add_terms(int n)
  33. {
  34. int i, h;
  35. U **s;
  36. h = tos - n;
  37. s = stack + h;
  38. /* ensure no infinite loop, use "for" */
  39. for (i = 0; i < 10; i++) {
  40. if (n < 2)
  41. break;
  42. flag = 0;
  43. qsort(s, n, sizeof (U *), cmp_terms);
  44. if (flag == 0)
  45. break;
  46. n = combine_terms(s, n);
  47. }
  48. tos = h + n;
  49. switch (n) {
  50. case 0:
  51. push_integer(0);
  52. break;
  53. case 1:
  54. break;
  55. default:
  56. list(n);
  57. p1 = pop();
  58. push_symbol(ADD);
  59. push(p1);
  60. cons();
  61. break;
  62. }
  63. }
  64. /* Compare terms for order, clobbers p1 and p2. */
  65. int
  66. cmp_terms(const void *q1, const void *q2)
  67. {
  68. int i, t;
  69. p1 = *((U **) q1);
  70. p2 = *((U **) q2);
  71. /* numbers can be combined */
  72. if (isnum(p1) && isnum(p2)) {
  73. flag = 1;
  74. return 0;
  75. }
  76. /* congruent tensors can be combined */
  77. if (istensor(p1) && istensor(p2)) {
  78. if (p1->u.tensor->ndim < p2->u.tensor->ndim)
  79. return -1;
  80. if (p1->u.tensor->ndim > p2->u.tensor->ndim)
  81. return 1;
  82. for (i = 0; i < p1->u.tensor->ndim; i++) {
  83. if (p1->u.tensor->dim[i] < p2->u.tensor->dim[i])
  84. return -1;
  85. if (p1->u.tensor->dim[i] > p2->u.tensor->dim[i])
  86. return 1;
  87. }
  88. flag = 1;
  89. return 0;
  90. }
  91. if (car(p1) == symbol(MULTIPLY)) {
  92. p1 = cdr(p1);
  93. if (isnum(car(p1))) {
  94. p1 = cdr(p1);
  95. if (cdr(p1) == symbol(NIL))
  96. p1 = car(p1);
  97. }
  98. }
  99. if (car(p2) == symbol(MULTIPLY)) {
  100. p2 = cdr(p2);
  101. if (isnum(car(p2))) {
  102. p2 = cdr(p2);
  103. if (cdr(p2) == symbol(NIL))
  104. p2 = car(p2);
  105. }
  106. }
  107. t = cmp_expr(p1, p2);
  108. if (t == 0)
  109. flag = 1;
  110. return t;
  111. }
  112. /* Compare adjacent terms in s[] and combine if possible.
  113. Returns the number of terms remaining in s[].
  114. n number of terms in s[] initially
  115. */
  116. int
  117. combine_terms(U **s, int n)
  118. {
  119. int i, j, t;
  120. for (i = 0; i < n - 1; i++) {
  121. check_esc_flag();
  122. p3 = s[i];
  123. p4 = s[i + 1];
  124. if (istensor(p3) && istensor(p4)) {
  125. push(p3);
  126. push(p4);
  127. tensor_plus_tensor();
  128. p1 = pop();
  129. if (p1 != symbol(NIL)) {
  130. s[i] = p1;
  131. for (j = i + 1; j < n - 1; j++)
  132. s[j] = s[j + 1];
  133. n--;
  134. i--;
  135. }
  136. continue;
  137. }
  138. if (istensor(p3) || istensor(p4))
  139. continue;
  140. if (isnum(p3) && isnum(p4)) {
  141. push(p3);
  142. push(p4);
  143. add_numbers();
  144. p1 = pop();
  145. if (iszero(p1)) {
  146. for (j = i; j < n - 2; j++)
  147. s[j] = s[j + 2];
  148. n -= 2;
  149. } else {
  150. s[i] = p1;
  151. for (j = i + 1; j < n - 1; j++)
  152. s[j] = s[j + 1];
  153. n--;
  154. }
  155. i--;
  156. continue;
  157. }
  158. if (isnum(p3) || isnum(p4))
  159. continue;
  160. p1 = one;
  161. p2 = one;
  162. t = 0;
  163. if (car(p3) == symbol(MULTIPLY)) {
  164. p3 = cdr(p3);
  165. t = 1; /* p3 is now denormal */
  166. if (isnum(car(p3))) {
  167. p1 = car(p3);
  168. p3 = cdr(p3);
  169. if (cdr(p3) == symbol(NIL)) {
  170. p3 = car(p3);
  171. t = 0;
  172. }
  173. }
  174. }
  175. if (car(p4) == symbol(MULTIPLY)) {
  176. p4 = cdr(p4);
  177. if (isnum(car(p4))) {
  178. p2 = car(p4);
  179. p4 = cdr(p4);
  180. if (cdr(p4) == symbol(NIL))
  181. p4 = car(p4);
  182. }
  183. }
  184. if (!equal(p3, p4))
  185. continue;
  186. push(p1);
  187. push(p2);
  188. add_numbers();
  189. p1 = pop();
  190. if (iszero(p1)) {
  191. for (j = i; j < n - 2; j++)
  192. s[j] = s[j + 2];
  193. n -= 2;
  194. i--;
  195. continue;
  196. }
  197. push(p1);
  198. if (t) {
  199. push(symbol(MULTIPLY));
  200. push(p3);
  201. cons();
  202. } else
  203. push(p3);
  204. multiply();
  205. s[i] = pop();
  206. for (j = i + 1; j < n - 1; j++)
  207. s[j] = s[j + 1];
  208. n--;
  209. i--;
  210. }
  211. return n;
  212. }
  213. void
  214. push_terms(U *p)
  215. {
  216. if (car(p) == symbol(ADD)) {
  217. p = cdr(p);
  218. while (iscons(p)) {
  219. push(car(p));
  220. p = cdr(p);
  221. }
  222. } else if (!iszero(p))
  223. push(p);
  224. }
  225. /* add two expressions */
  226. void
  227. add()
  228. {
  229. int h;
  230. save();
  231. p2 = pop();
  232. p1 = pop();
  233. h = tos;
  234. push_terms(p1);
  235. push_terms(p2);
  236. add_terms(tos - h);
  237. restore();
  238. }
  239. void
  240. add_all(int k)
  241. {
  242. int h, i;
  243. U **s;
  244. save();
  245. s = stack + tos - k;
  246. h = tos;
  247. for (i = 0; i < k; i++)
  248. push_terms(s[i]);
  249. add_terms(tos - h);
  250. p1 = pop();
  251. tos -= k;
  252. push(p1);
  253. restore();
  254. }
  255. void
  256. subtract(void)
  257. {
  258. negate();
  259. add();
  260. }