
The Picnic Signature Scheme

Design Document

Melissa Chase, David Derler, Steven Goldfeder,
Claudio Orlandi, Sebastian Ramacher, Christian Rechberger,

Daniel Slamanig, Greg Zaverucha

September 29, 2017
DRAFT Version 0.8

Contents

1 Introduction 3
1.1 The Picnic Design Team . 3

2 Building Blocks 4
2.1 Commitments . 4
2.2 Zero-Knowledge Proofs and Σ-Protocols 5
2.3 Non-interactive Zero-Knowledge Proofs of Knowledge 6
2.4 Fiat-Shamir Transform . 7
2.5 Unruh Transform . 8
2.6 (2,3)-Decomposition of Circuits 9
2.7 ZKB++ . 12
2.8 LowMC . 17

2.8.1 Comparison to Other Primitives 18
2.9 Signature Schemes . 19

3 The picnic-FS and picnic-UR Signature Schemes 21
3.1 Instantiation and Optimizations of Unruh’s Transform 21
3.2 Seed Generation . 23
3.3 Random Tapes . 23
3.4 Challenge Generation . 23
3.5 Function G . 23

4 Choice of Parameters 24
4.1 LowMC Parameters . 24
4.2 Number of Parallel Repetitions 24

5 Formal Security Analysis 25
5.1 Security Analysis of ZKB++ 25
5.2 Security Analysis of Picnic . 26

5.2.1 Security Analysis of picnic-FS 27
5.2.2 Security Analysis of picnic-UR 29

5.3 Strong Unforgeability of picnic-FS and picnic-UR 36

6 Analysis with Respect to Known Attacks 37
6.1 Usage and security margin of LowMC 38
6.2 Attacks in the Single-User Setting 39
6.3 Attacks in the Multi-User Setting 39

1

7 Expected Security Strength 40
7.1 LowMC Parameter Selection 42
7.2 Hash Function Security . 43

8 Advantages and Limitations 44
8.1 Compatibility with Existing Protocols 44

9 Additional Security Properties 44
9.1 Side-Channel Attacks . 44
9.2 Security Impact of Using Weak Ephemeral Values 46
9.3 Parameter Integrity . 47

10 Efficiency and Memory Usage 47
10.1 Description of the Benchmark Platforms 48

10.1.1 Platform A . 48
10.1.2 Platform B . 48
10.1.3 Platform C . 49

10.2 Description of the benchmarking methodology 49
10.3 Benchmark Results: Timings 49
10.4 Memory Requirements . 52

10.4.1 Reference Implementation Detailed Memory usage . . . 52
10.4.2 Optimized Implementation Detailed Memory usage . . 56

10.5 Size of precomputed constants and data 56

2

1 Introduction

Picnic is a signature scheme which is designed to provide security against
attacks by quantum computers, in addition to attacks by classical computers.
The building blocks are a zero-knowledge proof system (with post-quantum
security), and symmetric key primitives like hash functions and block ciphers,
with well-understood post-quantum security. In particular, Picnic does not
require number-theoretic, or structured hardness assumptions.

In this document we first present the building blocks of the Picnic signa-
ture scheme in Section 2. Second, in Section 3 we present two variants of the
Picnic signature scheme and various optimizations to the building blocks that
we can employ in our schemes. Third we specify the parameters for some
building blocks in Section 4 (and leave complete details of the parameters
to the specification document). In the subsequent Section 5 of this docu-
ment we include the formal security proofs for the proposed instantiations
of Picnic. Section 6 presents an analysis of the algorithm with respect to
known attacks and Section 7 provides a thorough description of the expected
security strength. Finally, Section 8 discuss advantages and limitations, Sec-
tion 9 discusses additional security properties and Section 10 presents results
on efficiency and memory usage of the Picnic scheme.

1.1 The Picnic Design Team

Picnic was designed collaboratively by the following group of people.
Melissa Chase, Microsoft
David Derler, Graz University of Technology
Steven Goldfeder, Princeton
Claudio Orlandi, Aarhus University
Sebastian Ramacher, Graz University of Technology
Christian Rechberger, Graz University of Technology & DTU
Daniel Slamanig, AIT Austrian Institute of Technology
Greg Zaverucha, Microsoft

3

2 Building Blocks

2.1 Commitments

Formally a (non-interactive) commitment scheme consists of three algorithms
KG,Com,Open with the following properties:

KG(1κ) : The key generation algorithm, on input the security parameter κ
it outputs a public key pk (we henceforth assume pk to be an implicit
input to the subsequent algorithms).

Com(M) : On input of a message M ∈ {0, 1}, the commitment algorithm
outputs (C,D) ← Com(M ;R), where R is a random value used when
forming the commitment. C is the commitment string, while D is the
decommitment string which is kept secret until opening time.

Open(C,D) : On input C,D, the verification algorithm either outputs a mes-
sage M or ⊥.

Computationally secure commitments must satisfy the following properties

Correctness If Com(M) outputs (C,D) then Open(C,D) = M .

Hiding For every message pairM,M ′ the probability ensembles {C : (C,D)←
Com(M)}κ∈N and {C : (C,D)← Com(M ′)}κ∈N are computationally in-
distinguishable for security parameter κ.

Binding We say that an adversary A wins if it outputs C,D,D′ such that
Open(C,D) = M , Open(C,D′) = M ′ and M 6= M ′. We require that
for all efficient algorithms A (running in time polynomial in κ), the
probability that A wins is a negligible function of κ.

Our implementation uses hash-based commitments, which requires mod-
eling the hash function as a random oracle in our security analysis. Let H be
a cryptographic hash function. The commitment scheme works as follows:

Com(M) : SampleR←R {0, 1}κ and set C ← H(R,M) and return (C, (R,M));

Open(C,D) : Parse D as (R,M) and return M if H(R,M) = C, and return
⊥ otherwise.

4

2.2 Zero-Knowledge Proofs and Σ-Protocols

A sigma protocol is a three-flow protocol between a prover and verifier, used
to prove knowledge of a secret. A well-known class of sigma protocols are
the so-called generalized Schnorr proofs, which allow the prover to prove
knowledge of a discrete logarithm, and that it satisfies certain properties. In
the present work we use a sigma protocol that allows one to prove knowledge
of an input to an arbitrary binary circuit. Sigma protocols are usually zero-
knowledge proofs, which informally means that the proof protocol does not
reveal any information about the secret. We describe interactive protocols,
but will show later how to make them non-interactive (so that signatures are
non-interactive). Let L be an NP-language with associated witness relation
R so that L = {x | ∃w : R(x,w) = 1}. A Σ-protocol for language L is defined
as follows.

Definition 2.1. A Σ-protocol for language L is an interactive three-move
protocol between a PPT prover P = (Commit,Prove) and a PPT verifier
V = (Challenge,Verify), where P makes the first move and transcripts are of
the form (a, e, z) ∈ A × E × Z, where a is output by Commit, e is output
by Challenge and z is output by Prove. Additionally, Σ protocols satisfy the
following properties

Completeness. A Σ-protocol for language L is complete, if for all security
parameters κ, and for all (x,w) ∈ R, it holds that

Pr[〈P(1κ, x, w),V(1κ, x)〉 = 1] = 1.

s-Special Soundness. A Σ-protocol for language L is s-special sound, if
there exists a PPT extractor E so that for all x, and for all sets of
accepting transcripts {(a, ei, zi)}i∈[s] with respect to x, generated by
any algorithm with polynomial runtime in κ, it holds that

Pr

[
w ← E(1κ, x, {(a, ei, zi)}i∈[s]) :

(x,w) ∈ R ∧
∀i, j ∈ [s], i 6= j : ei 6= ej

]
≥ 1− ε(κ).

Special Honest-Verifier Zero-Knowledge. A Σ-protocol is special honest-
verifier zero-knowledge, if there exists a PPT simulator S so that for

5

every x ∈ L and every challenge e from the challenge space, it holds
that a transcript (a, e, z), where (a, z) ← S(1κ, x, e) is computationally
indistinguishable from a transcript resulting from an honest execution
of the protocol.

The s-special soundness property gives an immediate bound for the sound-
ness of the protocol: if no witness exists then (ignoring a negligible error) the
prover can successfully answer at most to (s− 1)/t challenges, where t = |E|
is the size of the challenge space. In case this value is too large, it is possi-
ble to reduce the soundness error using well known properties of Σ-protocols
which we restate here for completeness (see [Dam10, CDS94] for details).

Lemma 2.2. The properties of Σ-protocols are invariant under parallel repe-
tition. In particular, the `-fold parallel repetition of a Σ-protocol for relation
R with challenge length t yields a new Σ-protocol with challenge length `t.

2.3 Non-interactive Zero-Knowledge Proofs of Knowl-
edge

For our signatures, we use non-interactive zero-knowledge proofs of knowl-
edge, in which the proof is a single message. Here we define zero knowledge
and the necessary notion of proof of knowledge. We present the definition
the random oracle model against classical adversaries and the definition in
the quantum random oracle model against quantum adversaries.1

Zero knowledge says that there is a simulator which can produce proofs
that are indistinguishable from those produced by P without knowing the
witnesses to an adversary who is given access to a simulated version of the
random oracle.

Definition 2.3. A protocol P, V for relation R is a zero knowledge against
(quantum) adversaries in the (quantum) random oracle model if there exist
PPT algorithms SR, Sim such that for all (quantum) PPT adversaries A

|Pr[b← AR(·),P (·,·)(1λ) : b = 1]− Pr[b← ASR(·),SimP (·,·)(1λ) : b = 1]|

is negligible in λ, where R is a random function to which A can provide
(quantum) inputs, SimP takes a pair (x,w) ∈ R and calls Sim(x), and Sim, SR

share state.
1These definition roughly combine the ROM definitions of [BPW12] and the QROM

definitions of [Unr15].

6

Simulation sound extractability says that an adversary cannot produce
a new proof for a statement for which he does not know the witness, even
if he is allowed to see proofs produced by someone else for statements of
his choice. More formally, we say that even when an adversary is given
access to the zero knowledge simulator to obtain proofs for (true or false)
statements of its choice, whenever it produces a new proof (not produced by
the simulator) that is accepted by the verifier, there is an extractor that can
look at the implementation of the adversary and extract a valid witness for
that statement.

Definition 2.4. A protocol P, V for relation R satisfies simulation-sound
extractability against (quantum) adversaries in the (quantum) random oracle
model if there exist PPT algorithms SR, Sim satisfying the zero-knowledge
definition and a PPT (quantum) extractor such that for all (quantum) PPT
adversaries A

Pr[(x, π)← ASR(·),Sim(·)(1λ); w ← E(A, x, π) :

V SR(x, π) = 1 ∧ (x, π) /∈ Q ∧ (x,w) /∈ R]

is negligible in λ, where SR, Sim, and E share state, Q is the list of A’s queries
to Sim and the resulting responses, and passing A as input to E means E is
given access to a (quantum) implementation of A.

2.4 Fiat-Shamir Transform

The Fiat-Shamir (FS) transform [FS86] is an elegant way to construct sig-
nature schemes from Σ-protocols. The basic idea is similar to constructing
NIZK proofs from Σ-protocols, but the challenge e is generated by hashing
the prover’s first message a and the message m to be signed, i.e., define a
modified challenge algorithm Challenge′ that outputs e ← H(a,m). Then,
the prover can locally obtain the challenge after computing the initial mes-
sage. Starting a verifier V′ = (Challenge′,Verify) on the same initial message
would yield the same challenge. The prover outputs (a, z) as the challenge.

More formally, by using the hash function H : A × X → E, which we
model as a random oracle, we obtain the non-interactive PPT algorithms
(ProveH , VerifyH) , defined as follows:

ProveH(1κ, (x,m), w) : Start P on input (1κ, x, w), obtain the first message
a, answer with e← H(a,m), and finally obtain z. Return π ← (a, z).

7

VerifyH(1κ, (x,m), π) : Parse π as (a, z). Start V′ on (1κ, x), send (a,m) as
the first message to the verifier. When V′ outputs e, reply with z and
output 1 if V′ accepts and 0 otherwise.

2.5 Unruh Transform

Similar to the Fiat-Shamir transform, Unruh’s transform [Unr12, Unr15,
Unr16] allows one to construct NIZK proofs and signature schemes from
Σ-protocols. In contrast to the FS transform, Unruh’s transform can be
proven secure in the QROM (quantum random oracle model), strengthening
the security guarantee against quantum adversaries.

At a high level, Unruh’s transform works as follows: Given a 2-special-
sound Σ-protocol, integers t andM , a statement x and a random permutation
G, the prover will repeat the first phase of the Σ-protocol t times. Then,
for each of the t runs, it produces proofs to M different randomly selected
challenges. All so-obtained responses are then permuted using G. The prover
then selects the responses to publish for each round of the Σ-protocol by
querying the random oracle on the message to be signed, all first rounds of
the Σ-protocol and all permuted responses.

For a more formal treatment, we keep t ∈ N as above and let M ∈ [2, |E|].
Let H : {0, 1}∗ → [M]t be a hash function we model as a random oracle.
We obtain the non-interactive PPT algorithms (ProveH , VerifyH) defined
as follows:

ProveH(1κ, (x,m), w) :

1. For i ∈ [t]:

(a) Start P on (1κ, x, w) and obtain first message ai.

(b) For j ∈ [M], set ei,j ←R E\{ei,1, . . . , ei,j−1} and obtain response
zi,j for challenge ei,j.

2. For i, j ∈ [t]× [M], set gi,j ← G(zi,j).

3. Let (J1, . . . , Jt)← H(m, (ai)i∈[t], (ei,j)(i,j)∈[t]×[M], (gi,j)(i,j)∈[t]×[M])

4. Return π ← ((ai)i∈[t], (ei,j)(i,j)∈[t]×[M], (gi,j)(i,j)∈[t]×[M], (zi,Ji)i∈[t])

VerifyH(1κ, (x,m), π) : Parse π as ((ai)i∈[t], (ei,j)(i,j)∈[t]×[M], (gi,j)(i,j)∈[t]×[M],
(zi)i∈[t]).

8

1. Let (J1, . . . , Jt)← H(m, (ai)i∈[t], (ei,j)(i,j)∈[t]×[M], (gi,j)(i,j)∈[t]×[M])

2. For i ∈ [t] check that all ei,1, . . . , ei,M are pairwise distinct.

3. For i ∈ [t] check whether V accepts the proof with respect to x,
first message ai, challenge ei,Ji and response zi.

4. For i ∈ [t] check gi,Ji = G(zi).

5. Output 1 if all checks succeeded and 0 otherwise.

We discuss a specialization of Unruh’s transform to our Σ-protocol in
Section 3.1.

2.6 (2,3)-Decomposition of Circuits

A circuit decomposition is a protocol for jointly computing a circuit, similar
to an MPC protocol, but with greater efficiency. In a (2,3)-decomposition
there are three players and the protocol has 2-privacy, i.e., it remains secure
even if two of the three players are corrupted.

Definition 2.5 ((2,3)-decomposition). Let f(·) be a function that is com-
puted by an n-gate circuit φ such that f(x) = φ(x) = y. Let k1, k2, and k3 be
tapes of length κ chosen uniformly at random from {0, 1}κ corresponding to
players P1, P2 and P3, respectively. Consider the following set of functions,
D:

(view
(0)
1 , view

(0)
2 , view

(0)
3)← Share(x, k1, k2, k3)

view
(j+1)
i ← Update(view

(j)
i , view

(j)
i+1, ki, ki+1)

yi ← Output(Viewi)

y ← Reconstruct(y1, y2, y3)

such that Share is a potentially randomized invertible function that takes x
as input and outputs the initial view for each player containing the secret
share of xi of x - i.e. view

(0)
i = xi. The function Update computes the wire

values for the next gate and updates the view accordingly. The function
Outputi takes as input the final view, Viewi ≡ view

(n)
i after all gates have

been computed and outputs player Pi’s output share, denoted yi.

Correctness requires that reconstructing a (2,3)-decomposed evaluation of
a circuit φ yields the same value as directly evaluating φ on the input value.

9

The 2-privacy property requires that revealing the values from two shares
reveals nothing about the input value. More formally, these two properties
are defined as follows: We define the experiment EXP

(φ,x)
decomp in Experiment 1,

which runs the decomposition over a circuit φ on input x: We say that D is

EXP
(φ,x)
decomp:

1. First run the Share function on x: view
(0)
1 , view

(0)
2 , view

(0)
3 ←

Share(x, k1, k2, k3)

2. For each of the three views, call the update function successively for
every gate in the circuit: view

(j)
i = Update(view

(j−1)
i , view

(j−1)
i+1 , ki, ki+1)

for i ∈ [1, 3], j ∈ [1, n]

3. From the final views, compute the output share of each view: yi ←
output(Viewi)

Experiment 1: Decomposition Experiment

a (2, 3)-decomposition of φ if the following two properties hold when running

EXP
(φ,x)
decomp:

Correctness: For all circuits φ, for all inputs x and for the yi’s produced
by , for all circuits φ, for all inputs x,

Pr[φ(x) = Reconstruct(y1, y2, y3)] = 1.

2-Privacy: Let D be correct. Then for all e ∈ {1, 2, 3} there exists a PPT
simulator Se such that for any probabilistic polynomial-time (PPT)
algorithm A, for all circuits φ, for all inputs x, and for the distribution
of views and ki’s produced by EXP

(φ,x)
decomp we have that∣∣Pr[A(x, y, ke,Viewe, ke+1,Viewe+1, ye+2) = 1]−Pr[A(x, y,Se(φ, y)) = 1]

∣∣
is negligible.

We now discuss the (2,3)-decomposition used by ZKB++. Let R be an
arbitrary finite ring and φ a function such that φ : Rm → R` can be expressed
by an n-gate arithmetic circuit over the ring using addition by constant,

10

multiplication by constant, binary addition and binary multiplication gates.
A (2, 3)−decomposition of φ is given by the following functions. In the
notation below, arithmetic operations are done in Rs where the operands are
elements of Rs):

• (x1, x2, x3)← Share(x, k1, k2, k3) samples random x1, x2, x3 ∈ Rm such
that x1 + x2 + x3 = x.

• yi ← Outputi(view
(n)
i) selects the ` output wires of the circuit as stored

in the view view
(n)
i .

• y ← Reconstruct(y1, y2, y3) = y1 + y2 + y3

• view
(j+1)
i ← Update

(j)
i (view

(j)
i , view

(j)
i+1, ki, ki+1) computes Pi’s view of

the output wire of gate gj and appends it to the view. Notice that it
takes as input the views and random tapes of both party Pi as well as
party Pi+1. We use wk to refer to the k-th wire, and we use w

(i)
k to refer

to the value of wk in party Pi’s view. The update operation depends
on the type of gate gj.

The gate-specific operations are defined as follows.

Addition by Constant (wb = wa + k)

w
(i)
b =

{
w

(i)
a + k if i = 1,

w
(i)
a otherwise.

Multiplication by Constant (wb = wa · k)

w
(i)
b = k · w(i)

a

Binary Addition (wc = wa + wb)

w(i)
c = w(i)

a + w
(i)
b

Binary Multiplication (wc = wa · wb)

w(i)
c = w(i)

a · w
(i)
b + w(i+1)

a · w(i)
b +

w(i)
a · w

(i+1)
b +Ri(c)−Ri+1(c),

where Ri(c) is the c-th output of a pseudorandom generator seeded
with ki.

11

Note that with the exception of the constant addition gate, the gates are
symmetric for all players. Also note that Pi can compute all gate types locally
with the exception of binary multiplication gates as this requires inputs from
Pi+1. In other words, for every operation except binary multiplication, the

Update function does not use the inputs from the second party, i.e., view
(j)
i+1

and ki+1.
While we do not give the details here, [GMO16a] shows that this decom-

position meets the correctness and 2-privacy requirements of Definition 2.5.
In other words, for every operation except binary multiplication, the Update

function does not use the inputs from the second party, i.e., view
(j)
i+1 and Ri+1.

2.7 ZKB++

ZKB++, an optimized version of ZKBoo [GMO16a], is a proof system for
zero-knowledge proofs on arbitrary circuits. ZKBoo and ZKB++ build on
the MPC-in-the-head paradigm of Ishai et al. [IKOS09], that we describe
only informally here. The multiparty computation protocol (MPC) will im-
plement the relation, and the input is the witness. For example, the MPC
could compute y = SHA-256(x) where players each have a share of x and y
is public. The idea is to have the prover simulate a multiparty computation
protocol “in their head”, commit to the state and transcripts of all players,
then have the verifier “corrupt” a random subset of the simulated players by
seeing their complete state. The verifier then checks that the computation
was done correctly from the perspective of the corrupted players, and if so,
he has some assurance that the output is correct. Iterating this for many
rounds then gives the verifier high assurance.

ZKBoo generalizes the idea of [IKOS09] by replacing MPC with circuit
decompositions. In Scheme 1 and Scheme 2 we present the prover and the
verifier of the ZKB++ Σ-protocol.

We now discuss various instantiation aspects of ZKB++ that make the
optimizations with respect to ZKBoo possible. To highlight the differ-
ence, we also present the Fiat-Shamir transformed ZKBoo proof system
in Scheme 3 and the Fiat-Shamir transformed ZKB++ in Scheme 4.

The Share Function. We make the Share function sample the shares

12

P.Commit : 1. For each iteration i ∈ [t]: Sample random tapes k
(i)
1 , k

(i)
2 , k

(i)
3

obtain view View
(i)
j and output share y

(i)
j . For each player Pj

compute

(a) (x
(i)
1 , x

(i)
2 , x

(i)
3)← Share(x, k

(i)
1 , k

(i)
2 , k

(i)
3)

(b) View
(i)
j ← Update(. . . Update(x

(i)
j , x

(i)
j+1, k

(i)
j , k

(i)
j+1) . . .)

(c) y
(i)
j ← Output(View

(i)
j)

(d) Commit C
(i)
j ← Com(k

(i)
j , x

(i)
j ,View

(i)
j , y

(i)
j), and let a(i) ←

(y
(i)
1 , y

(i)
2 , y

(i)
3 , C

(i)
1 , C

(i)
2 , C

(i)
3).

2. Return (a(i))i∈[t].

P.Prove : On input of a challenge (e(i))i∈[t], set for each iteration i ∈ [1, t]

z(i) ←


(View

(i)
2 , k

(i)
1 , k

(i)
2) if e(i) = 1,

(View
(i)
3 , k

(i)
2 , k

(i)
3 , x

(i)
3) if e(i) = 2,

(View
(i)
1 , k

(i)
3 , k

(i)
1 , x

(i)
3) if e(i) = 3.

and return (z(i))i∈[t].

Scheme 1: The prover of the ZKB++ Σ-protocol.

pseudorandomly as:

(x1, x2, x3)← Share(x, k1, k2, k3) :=

x1 = R1(0), x2 = R2(0), x3 = x− x1 − x2.

Ri is a pseudorandom generator seeded with ki. We specify the Share func-
tion in this manner as it will lead to more compact proofs. Moving now to
the ZKBoo protocol, for each round, the prover is required to “open” two
views. In order to verify the proof, the verifier must be given both the random
tape and the input share for each opened view. If these values are generated
independently of one another, then the prover will have to explicitly include
both of them in the proof. However, with our sampling method, in View1

and View2, the prover only needs to include ki, as xi can be deterministically
computed by the verifier.

The exact savings depends on which views the prover must open, and
thus depends on the challenge.

13

V.Challenge : Store (a(i))i∈[t] and return (e(i))i∈[t]←R Et.

V.Verify : 1. For each iteration i ∈ [t] reconstruct the views, input and
output shares that were not explicitly given as part of the proof
response z(i):

(a) Set

x
(i)

e(i)
←

{
Re(i)(0) if e(i) 6= 3,

x
(i)
3 given as part of z(i) if e(i) = 3.

x
(i)

e(i)+1
←

{
Re(i)+1(0) if e(i) 6= 2,

x
(i)
3 given as part of z(i) if e(i) = 2.

(b) Obtain View
(i)

e(i)+1
from z(i).

(c) View(i)
e ← Update(. . . Update(x

(i)

e(i)
, x

(i)
e+1, k

(i)
e , k

(i)
e+1) . . .)

(d) y
(i)

e(i)
← Output(View

(i)

e(i)
)

(e) y
(i)

e(i)+1
← Output(View

(i)

e(i)+1
)

(f) y
(i)

e(i)+2
← y + y

(i)

e(i)
+ y

(i)

e(i)+1

2. Re-compute the commitments for views View
(i)

e(i)
and View

(i)

e(i)
. For

j ∈ {e(i), e(i) + 1}:

C
(i)
j ← Com(k

(i)
j , x

(i)
j ,View

(i)
j , y

(i)
j)

3. Set a′(i) ← (y
(i)
1 , y

(i)
2 , y

(i)
3 , C

(i)
1 , C

(i)
2 , C

(i)
3) taking C

(i)

e(i)+2
from a(i).

4. If a′(i) = a(i) for all i ∈ [t], output Accept, otherwise Reject.

Scheme 2: The verifier of the ZKB++ Σ-protocol.

Not Including Input Shares. Since the input shares are generated pseu-
dorandomly using the seed ki, we do not need to include them in the view
when e = 1. However, if e = 2 or e = 3, we still need to send one input share
for the third view for which the input share cannot be derived from the seed.
Thus we explicitly specify the input share when required and do not include
it in View

(j)
i .

14

ProveH(1κ, y, x) : 1. For each iteration i ∈ [1, t]: Sample random tapes

k
(i)
1 , k

(i)
2 , k

(i)
3 and run the decomposition to get an output view

View
(i)
j and output share y

(i)
j . In particular, for each player Pj:

(a) (x
(i)
1 , x

(i)
2 , x

(i)
3)← Share(x, k

(i)
1 , k

(i)
2 , k

(i)
3)

(b) View
(i)
j ← Update(. . . Update(x

(i)
j , x

(i)
j+1, k

(i)
j , k

(i)
j+1) . . .)

(c) y
(i)
j ← Output(View

(i)
j)

(d) Commit C
(i)
j ← Com(k

(i)
j ,View

(i)
j), and let a(i) ←

(y
(i)
1 , y

(i)
2 , y

(i)
3 , C

(i)
1 , C

(i)
2 , C

(i)
3).

2. Compute the challenge: e ← H(a(1), . . . , a(t)). Interpret the chal-
lenge such that for i ∈ [1, t], e(i) ∈ {1, 2, 3}

3. For each iteration i ∈ [1, t], let z(i) = (D
(i)

e(i)
, D

(i)

e(i)+1
).

4. Output π ← [(a(1), z(1)), (a(2), z(2)), · · · , (a(t), z(t))]

VerifyH(1κ, y, π) : 1. Parse π as [(a(1), z(1)), (a(2), z(2)), · · · , (a(t), z(t))].

2. Compute the challenge: e′ ← H(a(1), · · · , a(t)). Interpret the chal-
lenge such that for i ∈ [1, t], e′(i) ∈ {1, 2, 3}.

3. For each iteration i ∈ [1, t]: If there exists j ∈ {e′(i), e′(i) + 1}
such that Open(C

(i)
j , D

(i)
j) = ⊥, output Reject. Otherwise, for all

j ∈ {e′(i), e′(i) + 1}, set {k(i)
j ,View

(i)
j } ← Open(C

(i)
j , D

(i)
j).

4. For each iteration i ∈ [1, t]: If Reconstruct(y
(i)
1 , y

(i)
2 , y

(i)
3) 6= y,

output Reject. If there exists j ∈ {e′(i), e′(i) + 1} such that y
(i)
j 6=

Output(View
(i)
j), output Reject. For each wire value w

(e)
j ∈ Viewe,

if w
(e)
j 6= Update(view(j−1)

e , view
(j−1)
e+1 , ke, ke+1) output Reject.

5. Output Accept.

Scheme 3: The ZKBoo non-interactive proof system.

No Additional Randomness for Commitments. Since the first input
to the commitment is the seed value ki for the random tape, the protocol
input to the commitment doubles as a randomization value, ensuring that
commitments are hiding. Further, each view included in the commitment

15

must be well randomized for the security of the MPC protocol. In the random
oracle model the resulting commitments are hiding (the RO model is needed
here since ki is used both as seed for the PRG and as randomness for the
commitment. Since one already needs the RO model to make the proofs
non-interactive, there is no extra assumption here). Hence the hash-based
commitment scheme can be defined as:

Com(M) : Set C ← H(M) and return (C,M);

Open(C,D) : Return M if H(D) = C, and return ⊥ otherwise.

Not Including the Output Shares. The output shares yi are included in
the proof as part of a. Moreover, for the two views that are opened, those
output shares are included a second time. First, we do not need to send
two of the output shares twice. We actually do not need to send any output
shares at all as they can be deterministically computed from the rest of the
proof as follows:

For the two views that are given as part of the proof, the output share
can be recomputed from the remaining parts of the view. Essentially, the
output share is just the value on the output wires. Given the random tapes
and the communicated bits from the binary multiplication gates, all wires
for both views can be recomputed.

For the third view, recall that the Reconstruct function simply adds the
three output shares to obtain y. But the verifier is given y, and can thus
instead recompute the third output share. In particular, given yi, yi+1 and
y, the verifier can compute: yi+2 = y − yi − yi+1. Thus we explicitly specify

the output share when required and do not include it in View
(j)
i .

When applying the Fiat-Shamir and Unruh transforms to ZKB++ to
obtain a signature scheme, we can also perform the following modifications.

Not Including Commitments. It is unnecessary to send all three com-
mitments to the verifier. Since for the two views that are opened, the verifier
can recompute the commitment. Only for the third view that the verifier is
not given the commitment needs to be explicitly sent.

Security. One can observe that all optimizations except ”No Additional
Randomness for Commitments” are equivalence transformations, and, there-
fore, do not impact the security of the overall ZKB++ proof system. In
Section 5.1, we formally confirm that using no additional randomness for the
commitments does not impact the security of the ZKB++ proof system.

16

2.8 LowMC

LowMC [ARS+15, ARS+16] is a very parameterizable symmetric encryp-
tion scheme design enabling instantiation with low AND depth and low multi-
plicative complexity. Given any blocksize, a choice for the number of S-boxes
per round, and security expectations in terms of time and data complexity,
instantiations can be created minimizing the AND depth, the number of
ANDs, or the number of ANDs per encrypted bit. Table 1 lists the choices
for the parameters for security levels L1, L3, L5.

The description of LowMC is possible independently of the choice of
parameters using a partial specification of the S-box and arithmetic in vector
spaces over F2. In particular, let n be the blocksize, m be the number
of S-boxes, k the key size, and r the number of rounds, we choose round
constants Ci←R Fn2 for i ∈ [1, r], full rank matrices Ki←R Fn×k2 and regular
matrices Li←R Fn×n2 independently during the instance generation and keep
them fixed. Keys for LowMC are generated by sampling from Fk2 uniformly
at random.

LowMC encryption starts with key whitening which is followed by sev-
eral rounds of encryption. A single round of LowMC is composed of an
S-box layer, a linear layer, addition with constants and addition of the round
key, i.e.

LowMCRound(i) = KeyAddition(i)

◦ ConstantAddition(i)

◦ LinearLayer(i) ◦ SboxLayer.

SboxLayer is an m-fold parallel application of the same 3-bit S-box
on the first 3 · m bits of the state. The S-box is defined as S(a, b, c) =
(a⊕ bc, a⊕ b⊕ ac, a⊕ b⊕ c⊕ ab).

The other layers only consist of F2-vector space arithmetic. LinearLayer(i)
multiplies the state with the linear layer matrix Li, ConstantAdditon(i)
adds the round constant Ci to the state, and KeyAddition(i) adds the
round key to the state, where the round key is generated by multiplying the
master key with the key matrix Ki.

Algorithm 1 gives a full description of the encryption algorithm.
LowMC is very flexible in the choice of parameters: the block size n, the

key size k, the number of 3-bit S-boxes m in the substitution layer and the
allowed data complexity d of attacks can independently be chosen. To reduce

17

the multiplicative complexity, the number of S-boxes applied in parallel can
be reduced, leaving part of the substitution layer as the identity mapping.
The number of rounds r needed to achieve the goals is then determined
as a function of all these parameters. We discuss concrete choices of the
parameters in Section 4.1.

2.8.1 Comparison to Other Primitives

The signature size depends on constants that are close to the security expec-
tation. The only exceptions are the number of binary multiplication gates,
and the size of the ring, which both depend on the choice of the primitive.
In this section we compare LowMC to existing standardized primitives and
to other primitives with a low number of multiplications.

Standardized Primitives. The smallest known Boolean circuit for AES-
128 needs 5440 AND gates, AES-192 needs 6528 AND gates, and AES-256
needs 7616 AND gates [BMP13]. An AES circuit in F24 might be more
efficient in our setting, as in this case the number of multiplications is lower
than 1000 [CGP+12]. This results in an impact on the signature size that
is equivalent to 4000 AND gates. Even though collision resistance is often
not required, hash functions like SHA-256 are a popular choice for proof-
of-concept implementations. The number of AND gates of a single call to
the SHA-256 compression function is about 25000 and a single call to the
permutation underlying SHA-3 is 38400.

Lightweight Ciphers. Most early designs in this domain focused on small
area when implemented in hardware where an XOR gate is by a small
factor larger than an AND or NAND gate. Notable designs with a low
number of AND gates at the 128-bit security level are the block ciphers
Noekeon [DPVAR00] (2048 ANDs) and Fantomas [GLSV14] (2112 ANDs).
Furthermore, one should mention Prince [BCG+12] (1920 ANDs), or the
stream cipher Trivium [DP08] (1536 AND gates to compute 128 output bits,
with 80-bit security).

Custom Ciphers with a Low Number of Multiplications. Motivated
by applications in SHE/FHE schemes, MPC protocols and SNARKs, recently
a trend to design symmetric encryption primitives with a low number of
multiplications or a low multiplicative depth started to evolve. This is a
trend we can take advantage of.

We start with the LowMC [ARS+15] block cipher family. In the most

18

recent version of the design [ARS+16], the number of AND gates can be
below 500 for 80-bit security, below 800 for 128-bit security, and below 1400
for 256-bit security. The stream cipher Kreyvium [CCF+16] needs similarly
to Trivium 1536 AND gates to compute 128 output bits, but offers a higher
security level of 128 bits. Even though FLIP [MJSC16] was designed to have
especially low depth, it needs hundreds of AND gates per bit and is hence
not competitive in our setting.

Last but not least there are the block ciphers and hash functions around
MiMC [AGR+16] which need less than 2 · s multiplications for s-bit security
in a field of size close to 2s. Note that MiMC is the only design in this
category which aims at minimizing multiplications in a field larger than F2.
However, since the size of the signature depends on both the number of
multiplications and the size of the field, this leads to a factor 2s2 which, for
all arguably secure instantiations of MiMC, is already larger than the number
of AND gates in the AES circuit.

LowMC has two important advantages over other designs: It has the
lowest number of AND gates for every security level: The closest competitor
Kreyvium needs about twice as many AND gates and only exists for the
128-bit security level. The fact that it allows for an easy parameterization
of the security level is another advantage. We hence use LowMC for our
concrete proposal.

Keccak is a family of cryptographic primitives including hash functions
and extensible output functions (XOF). It was selected as the successor to
SHA-2 and was standardized as SHA3 [NIS15]. SHAKE is an XOF con-
structed from SHA3. Since both SHA3 and SHAKE have a large number of
AND gates (as described above), we do not use them for Picnic key genera-
tion. However, other parts of the ZKB++ protocol require a hash function.
We will use SHAKE in two modes

1. as a hash function with a fixed output length

2. as a key derivation function, where we expand a fixed length seed into a
larger pseudorandom value, by requesting larger, variable sized SHAKE
outputs.

2.9 Signature Schemes

In the following we recall a standard definition of signature schemes along
with two widely used security notions.

19

Definition 2.6. A signature scheme Σ is a triple (Gen, Sign,Verify) of PPT
algorithms, which are defined as follows:

Gen(1κ) : This algorithm takes a security parameter κ as input and outputs a
secret (signing) key sk and a public (verification) key pk with associated
message spaceM (we may omit to make the message spaceM explicit).

Sign(sk,m) : This algorithm takes a secret key sk and a message m ∈ M as
input and outputs a signature σ.

Verify(pk,m, σ) : This algorithm takes a public key pk, a message m ∈ M
and a signature σ as input and outputs a bit b ∈ {0, 1}.

Besides the usual correctness property, Σ needs to provide some unforge-
ability notion. We consider two notions, namely existential unforgeability
under adaptively chosen message attacks (EUF-CMA security) and its strong
variant (sEUF-CMA security), which we define below.

Definition 2.7 (EUF-CMA). A signature scheme Σ is EUF-CMA secure, if
for all PPT adversaries A there is a negligible function ε(·) such that

Pr
[

(sk, pk)← Gen(1κ), (m∗, σ∗)← ASign(sk,·)(pk) :

Verify(pk,m∗, σ∗) = 1 ∧ m∗ /∈ QSign
]
≤ ε(κ),

where the environment keeps track of the queries to the signing oracle via
QSign.

Definition 2.8 (sEUF-CMA). A signature scheme Σ is strongly EUF-CMA
(sEUF-CMA) secure, if for all PPT adversaries A there is a negligible function
ε(·) such that

Pr
[

(sk, pk)← Gen(1κ), (m∗, σ∗)← ASign(sk,·)(pk) :

Verify(pk,m∗, σ∗) = 1 ∧ (m∗, σ∗) /∈ QSign
]
≤ ε(κ),

where the environment keeps track of the queries and responses to and from
the signing oracle via QSign.

20

3 The picnic-FS and picnic-UR Signature Schemes

Let us recall that the Picnic signature scheme essentially uses a Fiat-Shamir
(FS) transformed, or Unruh (UR) transformed, respectively, version of the
ZKB++ protocol to prove knowledge of a witness with respect to a language
LR with associated witness relation R of pre-images of a one-way function fu :
Dκ → Rκ sampled uniformly at random from a family of one-way functions
{fu}u∈Kκ :

((y, u), x) ∈ R ⇐⇒ y = fu(x).

In the so-obtained signature scheme the public verification key pk contains
the image y and a description of f , and the secret signing key sk is a random
key x from Dκ.

In Scheme 5 we provide a general description of our two signature schemes.
In both schemes Prove is implemented with ZKB++, in picnic-FS it is made
non-interactive with the FS transform, while in picnic-UR, Unruh’s transform
is used. For the security analysis of the schemes we refer the reader to
Sections 5.2.1 and 5.2.2.

Gen(1κ) : Choose u←R Kκ, x←R Dκ, compute y ← fu(x), set pk← (y, u) and
sk← (pk, x) and return (sk, pk).

Sign(sk,m) : Parse sk as (pk, x), compute p = (r, s) ← ProveH((y, u), x)
and return σ ← p, where internally the challenge is computed as c ←
H(r, pk||m).

Verify(pk,m, σ) : Parse pk as (y, u), and σ as p = (r, s). Return 1 if the
following holds, and 0 otherwise:

VerifyH((y, u), p) = 1,

where internally the challenge is computed as c← H(r, pk||m).

Scheme 5: Generic description the picnic-FS and picnic-UR signature
schemes.

3.1 Instantiation and Optimizations of Unruh’s Trans-
form

We can apply Unruh’s transform to ZKB++ in a relatively straightforward
manner by modifying our protocol. Although ZKB++ has 3-special sound-

21

ness, whereas Unruh’s transform is only proven secure for Σ-protocols with
2-special soundness, the proof is easily modified to 3-special soundness.

Since ZKB++ has 3-special soundness, we would need at least three
responses for each iteration. Moreover, since there are only three possible
challenges in ZKB++, we run Unruh’s transform with E = {1, 2, 3} and
M = 3 – i.e., every possible challenge and response. We can then proceed as
follows:

ProveH(1κ, (x,m), w) : 1. For i ∈ [t]:

(a) Start P on (1κ, x, w) and obtain first message ai.

(b) For all ei,j = j ∈ E, obtain response zi,j for challenge ei,j.

2. For (i, j) ∈ [t]× E, set gi,j ← G(zi,j).

3. Let (J1, . . . , Jt)← H(m, (ai)i∈[t], (gi,1, . . . , gi,3)i∈[t])

4. Return π ← ((ai)i∈[t], (gi,1, . . . , gi,3)(i,j)∈[t], (zi,Ji)i∈[t])

As we no longer randomly select the challenges, we can omit them as input
to the hash function and do not need to include them in the proof.

To instantiate the function G in the protocol, Unruh shows that one does
not need a random oracle that is actually a permutation. Instead, as long
as the domain and codomain of G are the same size, it can be used, since
it is indistinguishable from a random permutation. So let G : {0, 1}|zi,j | →
{0, 1}|zi,j | be a hash function modeled as a random oracle. The size of the
response changes depending on what the challenge is. If the challenge is 0,
the response is slightly smaller as it does not need to include the extra input
share. So more precisely, this is actually two hash functions, G0 used for
the 0-challenge response and G1,2 used for the other two challenges. In our
specification document we define G precisely.

Optimization 1: Making Use of Overlapping Responses. We can
make use of the structure of the ZKB++ proofs to achieve a very significant
reduction in the proof size. Although we refer to three separate challenges,
in the case of the ZKB++ protocol, there is a large overlap between the
contents of the responses corresponding to these challenges. In particular,
there are only three distinct views in the ZKB++ protocol, two of which
are opened for a given challenge.

Instead of computing a permutation of each response, zi,j, we can compute
a permutation of each view, vi,j. For each i ∈ {1, . . . , t}, and for each j ∈ E,
the prover computes gi,j = G(vi,j).

22

The verifier checks the permuted value for each of the two views in the
response. In particular, for challenge j ∈ {1, 2, 3}, the verifier will need to
check that gi,j = G(vi,j) and gi,j+1 = G(vi,j+1).

Optimization 2: Omit Re-Computable Values. Moreover, since G is
a public function, we do not need to include G(vi,j) in the transcript if we
have included vi,j in the response. Thus for the two views (corresponding
to a single challenge) that the prover sends as part of the proof, we do not
need to include the permutations of those views. We only need to include
G(vi,(j+2)), where vi,(j+2) is the view that the prover does not open for the
given challenge.

3.2 Seed Generation

We generate seeds for the random tapes using SHAKE with the private key,
message and the public key as input and requesting the required number of
output bytes from the XOF. Complete details are given in the specification
document.

3.3 Random Tapes

We generate random tapes using SHAKE as a KDF by first hashing the seed
and then requesting the required number of output bytes from the XOF.
Complete details are given in the specification document.

3.4 Challenge Generation

For both the FS and Unruh transform the challenge is computed with a hash
function H : {0, 1}∗ → {0, 1, 2}t (implemented using SHAKE) and rejection
sampling: we split the output bits in pairs of two bits and reject all pairs
with both bits set.

3.5 Function G

As explained in Section 3.1, G may be implemented with a hash function
with the same domain and range. We implement G(x) with SHAKE, where
the requested number of output bits is |x|.

23

Security level Blocksize S-boxes Keysize Rounds
n m k r

L1 128 10 128 20
L3 192 10 192 30
L5 256 10 256 38

Table 1: Parameters for LowMC targeting security levels L1, L3 and L5.
All parameters are computed for data complexity d = 1.

4 Choice of Parameters

4.1 LowMC Parameters

To minimize the number of AND gates for a given keylength k and data
complexity d, we want to minimize r ·m (where r is the number of rounds
and m is the number of sboxes). One strategy would be to set m to 1, and
to look for an n that minimizes r. Examples of such an approach are already
given in the document describing version 2 of the LowMC design [ARS+16].
In our setting, this approach may not lead to the best results, as it ignores
the impact of the large amount of XOR operations it requires. While Pic-
nic signatures defined with these parameters have minimal length, the large
number of XOR gates make singing and verification slow. To find the most
suitable parameters, we thus explore a larger range of values for m, looking
to balance signing and verification cost with signature size.

Whenever we want to instantiate our signature scheme with LowMC
with κ-bit quantum security, we set k = n = 2 · κ. This matches AES, and
the security levels in the NIST call for proposals.

Furthermore, we observe that for a given key the adversary only ever
sees a single plaintext-ciphertext pair (namely, the public key in the Picnic
scheme). This is why we can set the data complexity d = 12.

4.2 Number of Parallel Repetitions

A single repetition of ZKB++ has a soundness error of 2/3, which means
that we need to perform parallel repetitions to achieve the desired soundness
error. Hence we need 219 parallel repetitions for 128-bit classical security

2d is given in units of log2(n), where n is the number of pairs. Thus setting d = 1
corresponds to 2-pairs, which is exactly what we need for our signature schemes.

24

((3/2)219 ≥ 2128). For 128-bit PQ security, we must set our repetition count
to t := 438. This is double the repetition count required for classical security
due to Grover’s algorithm [Gro96]. The required number of repetitions for
the L1, L3 and L5 security levels are given in Table 2.

level # parallel repetitions
L1 219
L3 329
L5 418

Table 2: Number of parallel repetitions required at each security level.

5 Formal Security Analysis

In this section we first formally confirm that the modifications/optimizations
induced by moving from ZKBoo [GMO16b] to ZKB++ [CDG+17] as pre-
sented in Section 2.7 do not impact the security of the Σ-protocol. Then we
move on to formally analyze the security of the Picnic signature scheme. In
particular, we separately analyze the security of the two variants picnic-FS
and picnic-UR schemes, which differ in the way the underlying Σ-protocol
based on ZKB++ is made non-interactive.

5.1 Security Analysis of ZKB++

First, we observe that all modifications except ”No Additional Randomness
for Commitments” are equivalence transformations, and, therefore, do not
impact the security of the overall ZKB++ Σ-protocol. Thus, we only have to
show that including no additional randomness in the commitments preserves
completeness, 3-special soundness, and special honest-verifier zero-knowledge
of ZKB++.

First, we observe that completeness is clearly not impacted and the corol-
lary below follows from this and [GMO16b, Proof of Proposition 2].

Corollary 5.1. The modified version of ZKBoo—where the commitments
no longer contain additional randomness—is complete, i.e., ZKB++ is com-
plete.

25

Second, under the observation that removing the randomness in the com-
mitments does not impact the binding property of the commitments we can
derive the following corollary from [GMO16b, Proof of Proposition 2].

Corollary 5.2. The modified version of ZKBoo—where the commitments
no longer contain additional randomness—is 3-special sound, i.e., ZKB++
is 3-special sound.

What remains is to prove the following theorem.

Theorem 5.3. The modified version of ZKBoo—where the commitments no
longer contain additional randomness—is special honest-verifier zero-know-
ledge in the random oracle model, i.e., ZKB++ is special honest-verifier
zero-knowledge in the (quantum) random oracle model.

Before we prove the theorem, we recall that—as the challenge can be
determined a priori in the proof for special honest-verifier zero-knowledge—
we can use the 2-privacy simulator of the (2,3)-decomposition underlying
ZKB++ (cf. Section 2.6 for details) to produce satisfying transcripts for
the two views which need to be opened according to the challenge. Now, in
the original proof [GMO16b, Proof of Proposition 2], the hiding property of
the commitment which is not required to be opened ensures that the simu-
lation works out. We have to argue that this still holds when no additional
randomness is included in the commitments. Since we already use the ran-
dom oracle heuristic for our signature scheme, we also rely on the random
oracle heuristic for the subsequent proof.

Proof (Sketch). Essentially, for every commitment to a view we have that all
values which depend on this seed are also only contained in this commitment
and do not appear in other values. Now if a commitment is not opened, it is
immediate that in the random oracle model the probability of breaking the
hiding property is upper bounded by 2−κ, with κ being the min-entropy of
the seed for the PRG, is negligible.

5.2 Security Analysis of Picnic

In the following sections we show that making the ZKB++ protocol non-
interactive via the respective transformation yields a simulation-sound ex-
tractable non-interactive zero-knowledge proof system. As we will show in
Section 5.3, this property directly yields strongly unforgeable signatures, i.e.,

26

the schemes satisfy strong existential unforgeability under chosen message
attacks (sEUF-CMA) security.

5.2.1 Security Analysis of picnic-FS

If we view ZKB++ as a canonical identification scheme that is secure against
passive adversaries one just needs to keep in mind that most definitions are
tailored to (2-)special soundness, and the 3-special soundness of ZKB++
requires an additional rewind. In particular, an adapted version of the proof
of [Kat10, Theorem 8.2], which considers this additional rewind, attests the
security of picnic-FS. We obtain the following:

Corollary 5.4. picnic-FS instantiated with ZKB++ and a secure one-way
function yields an EUF-CMA secure signature scheme in the ROM.

However, we actually aim for a stronger result, i.e., sEUF-CMA, which also
excludes malleability of the signatures. To show that picnic-FS also satisfies
this property, we need to view ZKB++ as a Σ-protocol which is transformed
to its non-interactive counterpart via the FS transform and show that this
protocol is actually simulation-extractable. We base our argumentation upon
the argumentation of [FKMV12] to confirm simulation-extractability. What
we have to do is to show that the FS transformed ZKB++ is zero-knowledge
and provides quasi-unique responses. We do so by proving two lemmas.
Combining those lemmas with [FKMV12, Theorem 2 and Theorem 3] then
yields simulation-extractability as a corollary.

Lemma 5.5. Let QH be the number of queries to the random oracle H, QS be
the overall queries to the simulator, and let the commitments be instantiated
via a RO H ′ with output space {0, 1}ρ and the committed values having min
entropy ν. Then the probability ε(κ) for all PPT adversaries A to break zero-
knowledge of κ parallel executions of the FS transformed ZKB++ is bounded
by ε(κ) ≤ s/2ν + (QS ·QH)/23·ρ.

The subsequent proof is similar to the general results for Σ-protocols
from [FKMV12], yet we have to account for the additional challenge that the
simulator only outputs transcripts which are statistically close to original
transcripts (which is in contrast to the identically distributed transcripts
in [FKMV12]). Furthermore, we also provide concrete bounds.

27

Proof. We bound the probability of any PPT adversary A to win the zero-
knowledge game by showing that the simulation of the proof oracle is sta-
tistically close to the real proof oracle. For our proof let the environment
maintain a list H where all entries are initially set to ⊥.

Game 0: The zero-knowledge game where the proofs are honestly com-
puted, and the ROs are simulated honestly.

Game 1: As Game 0, but whenever the adversary requests a proof for some
tuple (x,w) we choose e←R {0, 1, 2}κ before computing a and z. If
H[(a, x)] 6= ⊥ we abort and call that event E. Otherwise, we set
H[(a, x)]← e.

Transition - Game 0 → Game 1: Game 0 and Game 1 proceed identically
unless E happens. The message a includes 3 RO commitments with
respect to H ′, i.e., a lower bound for the min-entropy is 3 · ρ. We have
that |Pr[S0]− Pr[S1]| ≤ (QS ·QH)/23·ρ.

Game 2: As Game 1, but we compute the commitments in a so that the
commitments which will never be opened according to e contain random
values.

Transition - Game 1 → Game 2: The statistical difference between Game 1
and Game 2 can be upper bounded by |Pr[S1]− Pr[S2]| ≤ κ · 1/2ν (for
compactness we collapsed the s game changes into a single game).

Game 3: As Game 2, but we use the HVZK simulator to obtain (a, e, z).

Transition - Game 2 → Game 3: This change is conceptual, i.e., Pr[S2] =
Pr[S3].

In Game 0, we sample from the first distribution of the zero-knowledge game,
whereas we sample from the second one in Game 3; the distinguishing bounds
shown above conclude the proof.

Lemma 5.6. Let the commitments be instantiated via a RO H ′ with output
space {0, 1}ρ and let QH′ be the number of queries to H ′, then the probability
to break quasi-unique responses is bounded by Q2

H′/2ρ.

Proof. To break quasi-unique responses, the adversary would need to come
up with two valid proofs (a, e, z) and (a, e, z′). The last message z (resp z′)

28

only contains openings to commitments, meaning that breaking quasi unique
responses implies finding a collision for at least one of the commitments. The
probability for this to happen is upper bounded by Q2

H′/2ρ which concludes
the proof.

Combining Lemma 5.5 and Lemma 5.6 with [FKMV12, Theorem 2 and
Theorem 3] yields the following corollary.

Corollary 5.7. The FS transformed ZKB++ protocol provides simulation-
extractability.

5.2.2 Security Analysis of picnic-UR

Here we prove that the proof system we get by applying our modified Unruh
transform to ZKB++ is both zero knowledge and simulation-extractable in
the quantum random oracle model.

Before we begin, we note that the quantum random oracle model is highly
non-trivial, and a lot of the techniques used in standard random oracle proofs
do not apply. The adversary is a quantum algorithm that may query the
oracle on quantum inputs which are a superposition of states and receive
superposition of outputs. If we try to measure those states, we change the
outcome, so we do not for example have the same ability to view the ad-
versary’s input and program the responses that we would in the standard
ROM.

Here we rely on lemmas from Unruh’s work on quantum-secure Fiat-
Shamir like proofs [Unr15]. We follow his proof strategy as closely as possible,
modifying it to account for the optimizations we made and the fact that we
have only 3-special soundness in our underlying Σ-protocol.

Zero Knowledge This proof very closely follows the proof from [Unr15].
The main difference is that we also use the random oracle to form our com-
mitments, which is addressed in the transition from game 2 to game 3 below.

Consider the simulator described in Figure 6. From this point on we
assume for simplicity of notation that View3 includes x3.

We proceed via a series of games.

Game 1: This is the real game in the quantum random oracle model. Let
Hcom be the random oracle used for forming the commitments, Hchal

be the random oracle used for forming the challenge, and G be the
additional random permutation.

29

Game 2: We change the prover so that it first chooses random e∗ =
e∗(1), . . . , e∗(t), and then on step 2, it programs Hchal(a

(1), . . . , a(t), h(1),
. . . , h(t)) = e∗.
Note that each the a(1), . . . , a(t), h(1), . . . , h(t) has sufficient collision-
entropy, since it includes {h(i) = (g

(i)
1 , g

(i)
2 , g

(i)
3)}, the output of a per-

mutation on input whose first k bits are chosen at random (the k
(i)
j),

so we can apply Corollary 11 from [Unr15] (using a hybrid argument)
to argue that Game 1 and Game 2 are indistinguishable.

Game 3: We replace the output of each Hcom(ke∗(i) ,Viewe∗(i)) and G(ke∗(i) ,
Viewe∗(i)) with a pair of random values.

First, note that Hcom and G are always called (by the honest party)
on the same inputs, so we will consider them as a single random oracle
with a longer output space, which we refer to as H for this proof.

Now, to show that Games 2 and 3 are indistinguishable, we proceed
via a series of hybrids, where the i-th hybrid replaces the first i such
outputs with random values.

To show that the i-th and i+ 1-st hybrid are indistinguishable, we rely
on Lemma 9 from [Unr15]. This lemma says the following: For any
quantum A0, A1 which make q0, q1 queries to H respectively and clas-
sical AC , all three of which may share state, let PC be the probability
if we choose a random function H and a random output B, then run
AH0 followed by AC to generate x, and then run AH1 (x,B), that for a
random j, the j-th query AH1 makes is measured as x′ = x. Then as
long as the output of AC has collision-entropy at least k, the advan-
tage with which AH1 , when run after A0, AC as described, distinguishes
(x,B) from (x,H(x)) is at most (4 +

√
2)
√
q02−k/4 + 2q1

√
PC .

In other words, if we can divide our game into three such algorithms
and argue that the A1 queries H on something that collapses to x with
only negligible probability, then we can conclude that the two games
are indistinguishable. Let A0 run the game up until just before the
i th iteration in the proof generation. Let AC be the process which
chooses k

(i)
1 , k

(i)
2 , k

(i)
3 and generates View

(i)
1 ,View

(i)
2 ,View

(i)
3 , and outputs

x = ke∗(i) ,Viewe∗(i) . (Note that this has collision entropy |ke∗(i) | which
is sufficient.) Let A1 be the process which runs the rest of the proof,
and then runs the adversary on the response.

30

Now we just have to argue that the probability that we make a mea-
surement of A1’s j-th query to H and get x is negligible. To do this, we
reduce to the security of the PRG used to generate the random tapes
(and hence the views). Note that besides the one RO query, ke∗(i) is
only used as input to the PRG. So, suppose there exists a quantum
adversary A for which the resulting A1 has non-negligible probability
of making an H-query that collapses to x. Then we can construct a
quantum attacker for the PRG: we run the above A0, AC , but instead
of choosing ke∗(i) we use the PRG challenge as the resulting random
tape, and return a random value as the RO output. Then we run A1,
which continues the proof (which should query ke∗(i) only with negli-
gible probability since ks are chosen at random), and then runs the
adversary. We pick a random j, and on the adversary’s j-th query, we
make a measurement and if it gives us a seed consistent with our chal-
lenge tape, we output 1, otherwise a random bit. If PC is non-negligible
then we will obtain the correct seed and distinguish with non-negligible
probability.

Game 4: For each i instead of choosing random ke∗(i) and expanding it via
the PRG to get the random tape used to compute the views, we choose
those tapes directly at random.

Note that in Game 3, ke∗(i) are now only used as seeds for the PRG, so
this follow from pseudo-randomness via a hybrid argument.

Game 5: We use the simulator to generate the views that will be opened,
i.e. j 6= e∗(i) for each i. We note that now the simulator no longer uses
the witness.

This is identical by perfect privacy of the circuit decomposition.

Game 6: To allow for extraction in the simulation-extractability game we
replace the random oracles with random polynomials whose degree is
larger than the number of queries the adversary makes. The argument
here identical to that in [Unr15].

Online Extractability Before we prove online simulation-extractability, we
define some notation to simplify the presentation:

For any proof π = e, {b(i), g(i), z(i)}i=1...t, let hash-input(π) = {a(i), h(i) =

(g
(i)
1 , g

(i)
2 , g

(i)
3)} be the values that the verifier uses as input to Hchal in the

verification of π as described in Figure 4.

31

For a proof π = (e, {b(i), g(i), z(i)}i=1...t), let open0(z(i)), open1(z(i)) denote

the values derived from z(i) and used to compute C
(i)
ei and C

(i)
ei+1 respectively

in the description of Ver in Figure 4.
We say a tuple (a, j, (o1, o2)) is valid if a = (y1, y2, y3, C1, C2, C3), Cj =

Hcom(o1), Cj+1 = Hcom(o2) and o1, o2 consist of k,View pairs for player
j, j + 1 that are consistent according to the circuit decomposition. We say
(a, j, (O1, O2)) is set-valid if there exists o1 ∈ O1 and o2 ∈ O2 such that
(a, j, (o1, o2)) is valid and set-invalid if not.

We first restate lemma 16 from [Unr15] tailored to our application, in
particular the fact that our proofs do not explicitly contain the commitment
but rather the information the verifier needs to recompute it.

Lemma 5.8. Let qG be the number of queries to G made by the adversary
A and the simulator S in the simulation extractability game, and let n be
the number of proofs generated by S. Then the probability that A produces
x, π∗ /∈ simproofs where x, π∗ is accepted by VerH , and hash-input(π∗) =
hash-input(π′) for a previous proof π′ produced by the simulator, is at most
n(n+ 1)/2(2−κ)3t +O((qG + 1)32−κ) (Call this event MallSim.)

Proof. This proof follows almost exactly as in [Unr15].
First, we argue that G is indistinguishable from a random function exactly

in [Unr15].
Then, observe that there are only two ways MallSim can occur:
Let e′ be the hash value in π′. Then either S reprograms H sometime

after π′ is generated so that H(hash-input(π′)) is no longer e′, or π∗ also
contains the same e as π, i.e. e = e′. S only reprograms H if it chooses
the same hash-input in a later proof - and hash-input includes g

(i)
j , i.e. a

random function applied to an input which includes a randomly chosen seed.
Thus, the probability that S chooses the same hash-input twice is at most
n(n+ 1)/2(2−κ)3t +O((qG + 1)32−κ, where (2−κ)3t is the probability that two
proofs use all the same seeds, and O((qG + 1)32−κ is the probability that
two different seeds result in a collision in G, where the latter follows from
Theorem 8 in [Unr15].

The other possibility is that hash-input(π∗) = hash-input(π′) , and e =
e′, but b(i), g(i), z(i) 6= b′(i), g′(i), z′(i) for some i. First note, that if e = e′

and hash-input(π∗) = hash-input(π′), then g(i) = g′(i) and b(i) = b′(i) for all
i, by definition of hash-input. Thus, the only remaining possibility is that
z(i) 6= z′(i) for some i. But since h(i) = h′(i) for all i, this implies a collision

32

in G, which again by Theorem 8 in [Unr15] occurs with probability at most
O((qG + 1)32−κ.

We conclude that MallSim occurs with probability at most n(n+1)/2(2−κ)3t+
O((qG + 1)32−κ.

Here, next we present our variant of lemma 17 from [Unr15]. Note that
this is quoted almost directly from Unruh with two modifications to account
for the fact that our proofs do not explicitly contain the commitment but
rather the information the verifier needs to recompute it, and the fact that our
underlying Σ-protocol has only 3 challenges and satisfies 3-special soundness.
H0 in this lemma will correspond in our final proof to the initial state of Hchal.

Lemma 5.9. Let G,Hcom be arbitrarily distributed functions, and let H0 :
{0, 1}≤` → {0, 1}2t be uniformly random (and independent of G). , Then,

it is hard to find x and π such that for {a(i), (g
(i)
1 , g

(i)
2 , g

(i)
3)} = hash-input(π)

and J1|| . . . ||Jt := H0(hash-input(π))

(i) g
(i)
Ji

= G(open0(z(i))) and g
(i)
Ji+1 = G(open1(z(i))) for all i.

(ii) (a(i), Ji, (open0(z(i)), open1(z(i)))) is valid for all i.

(iii) For every i, there exists a j such that (a(i), j, G−1(gi,j), G
−1(gi,j+1))) is

set-invalid.

More precisely, if AG,H0 makes at most qH queries to H0, it outputs (x, π)
with these properties with probability at most 2(qH + 1)(2

3
)t/2

Proof. Without loss of generality, we can assume that G,Hcom are fixed
functions which A knows, so for this lemma we only treat H0 as a random
oracle.

For any given value of H0, we call a tuple c = (x, {a(i)}i, {g(i)
j }i,j) a candi-

date iff: for each i, among the three transcripts, (a(i), 1, G−1(g1)(i), G−1(g
(i)
2)),

(a(i), 2, G−1(g
(i)
2),

G−1(g
(i)
3)), and (a(i), 3, G−1(g

(i)
3), G−1(g

(i)
1)) at least one is set-valid, and at

least one is set-invalid. Let ntwovalid(c) be the number of i’s for which there are
2 set-valid transcripts. Let Evalid(c) be the set of challenge tuples which corre-
spond to only set-valid conversations. (Note that |Evalid(c)| = 2ntwovalid(c).) We
call a candidate an H0-solution if the challenge produced by H0 only opens
set-valid conversations, i.e. in lies in Evalid(c). We now aim to prove that AH

outputs an H0 solution with negligible probability.

33

For any given candidate c, for uniformly random H0, the probability that
c is an H0-solution is ≤ (2

3
)t. In particular, for candidate c the probability is

(2
3
)t ∗ 2ntwovalid(c)−t.
Let Cand be the set of all candidates. Let F : Cand→ {0, 1} be a random

function such that for each c F (c) is i.i.d. with Pr[F (c) = 1] = (2/3)t .
Given F , we construct HF : {0, 1}∗ → Zt3 as follows:

• For each c /∈ Cand, HF (c) is set to a uniformly random y ∈ Zt3.

• For each c ∈ Cand such that F (c) = 0, HF (c) is set to a uniformly
random y ∈ Zt3 \ Evalid(c).

• For each c ∈ Cand with F (c) = 1, with probability 2ntwovalid−t, choose a
random challenge tuple e from Evalid(c), and set HF (c) := e. Otherwise
HF (c) is set to a uniformly random y ∈ Zt3 \ Evalid(c).

Note that for each c, and e the probability of H(c) being set to e is 3−t.
Suppose AH0 outputs an H0-solution with probability µ, then since HF has
the same distribution as H0, AHF () outputs an HF solution c with probability
µ. By our definition of HF , if c is an HF solution, then F (c) = 1. Thus,
AHF () outputs c such that F (c) = 1 with probability at least µ.

As in [Unr15], we can simulate AHF () with another algorithm which gen-
erates HF on the fly, and thus makes at most the same number of queries to
F that A makes to HF . Thus by applying Lemma 7 from [Unr15], we get

µ ≤ 2(qH + 1)(
2

3
)t/2.

Finally, as the sigma protocol underlying our proofs is only computa-
tionally sound (because we use Hcom for our commitment scheme), we need
to argue that an extractor can extract from 3 valid transcripts with all but
negligible probability.

Lemma 5.10. There exists an extractor EΣ such that for any PPT quantum
adversary A, the probability that A can produce (a, {(ν1,j, ν2,j)}j=1,2,3) such
that (a, j, (ν1,j, ν2,j)) is a valid transcript for j = 1, 2, 3, but EΣ(a, {(ν1,j,
ν2,j)}j=1,2,3) fails to extract a proof, is negligible.

Proof. Recall that a = (y1, y2, y3, C1, C2, C3), and if all three transcripts
are valid, Cj = Hcom(ν1,j) = Hcom(ν2,j−1) for j = 1, 2, 3. Thus, either we

34

have ν1,j = ν2,j−1 for all j or A has found a collision in Hcom. But, Theorem
8 in [Unr15] tells us that the probability of finding a collision in a random
function with k-bit output using at most q queries is at most O((q+ 1)32−k),
which is negligible. If ν1,j = ν2,j−1 for all j, then we have 3 kj||Viewj values,
all of which are pairwise consistent, so we conclude by the correctness of the
circuit decomposition, and the fact that (x = y, w) ∈ R iff φ(w) = y that
if we sum the input share in View1,View2,View3, we get a witness such that
(x,w) ∈ R.

Theorem 5.11. Our version of the Unruh protocol satisfies simulation-
extractability against a quantum adversary.

Proof. We define the following extractor:

1. On input π, compute hash-input(π) = {a(i), h(i) = (g
(i)
1 , g

(i)
2 , g

(i)
3)}

2. For i ∈ 1, . . . , t: For j ∈ 1, 2, 3, check whether there is a solution
ν1,j ∈ G−1(g

(i)
j), ν2,j ∈ G−1(g

(i)
j+1) such that (a(i), j, (ν1,j, ν2,j)) is a valid

transcript. If there is a valid transcript for all j, output EΣ(a(i), {(ν1,j,
ν2,j)}j=1,2,3) as defined by Lemma 5.10 and halt.

3. If no solution is found, output ⊥.

First we define some notation, again borrowed heavily from [Unr15]:
Let Evi,Evii,Eviii be events denoting that A in the simulation extractabil-

ity game produces a proof satisfying conditions (i), (ii), and (iii) from Lemma
5.9 respectively.

Let SigExtFail be the event that the extractor finds a successful (a, {(ν1,j,
ν2,j)}j=1,2,3), but EΣ fails to produce a valid witness.

Let ShouldExt denote the event that A produces x, π such that VerH

accepts and (x, π) /∈ simproofs.
Then our goal is to prove that the w produced by the extractor is such

that (x,w) ∈ R. I.e., we want to prove that the following probability is
negligible.

35

Pr[ShouldExt ∧ (x,w) /∈ R]

≤Pr[ShouldExt ∧ (x,w) /∈ R ∧ ¬MallSim]

+ Pr[MallSim]

= Pr[ShouldExt ∧ (x,w) /∈ R ∧ ¬MallSim ∧ ¬Eviii]

+ Pr[ShouldExt ∧ (x,w) /∈ R ∧ ¬MallSim ∧ Eviii]

+ Pr[MallSim]

≤Pr[(x,w) /∈ R ∧ ¬Eviii]

+ Pr[ShouldExt ∧ (x,w) /∈ R ∧ ¬MallSim ∧ Eviii]

+ Pr[MallSim]

= Pr[SigExtFail]

+ Pr[ShouldExt ∧ (x,w) /∈ R ∧ ¬MallSim ∧ Eviii]

+ Pr[MallSim]

= Pr[SigExtFail]

+ Pr[ShouldExt ∧ (x,w) /∈ R ∧ ¬MallSim ∧ Evi ∧ Evii ∧ Eviii]

+ Pr[MallSim]

≤Pr[SigExtFail]

+ Pr[Evi ∧ Evii ∧ Eviii]

+ Pr[MallSim]

Here, the second equality follows from the definition of SigExtFail and
Eviii, and the description of the extractor. The third equality follows from
the fact that ¬MallSim means that the hash function on hash-input(π) has not
been reprogrammed, and the fact that ShouldExt means verification succeeds,
which means that conditions (i) and (ii) are satisfied.

Finally, by Lemmas 5.10, 5.9, and 5.8, we conclude that this probability
is negligible.

5.3 Strong Unforgeability of picnic-FS and picnic-UR

We have shown that picnic-FS and picnic-UR are a simulation-extractable
NIZK proof systems in the classical (resp. quantum) random oracle model

36

against classical (resp. quantum) adversaries. Strong unforgeability (sEUF-
CMA security) follows directly: this is a well known result in the classical
model, and shown in [Unr15] in the quantum setting. For completeness, we
briefly sketch this result:

Suppose there exist an adversary A who can break the strong unforgeabil-
ity property (cf. Definition 2.8). Then we can construct an adversary against
the ZK property of the NIZK, the simulation-extractability property of the
NIZK, or the one-wayness of the one-way function. We proceed through a
series of games. In the first transition, we switch the signature algorithm to
use the ZK simulator rather than the prover. This is indistinguishable by
ZK, so the adversary will still produce forgeries with high probability, or we
have a distinguisher which breaks the ZK property. Then, when the adver-
sary produces a valid forgery, we run the extractor to produce a pre-image
of the one-way function. If this extractor does not succeed with high proba-
bility whenever the adversary produces a forgery, we break simulation-sound
extractability. Note here, that our extractor is guaranteed to work as soon
as either the statement or the proof is different from what the simulator pro-
duced, so we will be able to extract from new signatures on previously signed
messages as required in strong unforgeability. Otherwise, we have produced
a pre-image given only the output of the one-way function (recall that we use
the simulator to sign, so we do not need the pre-image there), so we break
the one-wayness property.

6 Analysis with Respect to Known Attacks

In this section we analyze the Picnic signature scheme with respect to known
attacks. First, we observe that in case we deal with ideal primitives, Corol-
lary 5.4 already gives us a provable bound for EUF-CMA security. Since those
primitives are instantiated with concrete building blocks however, we con-
sider concrete attacks on those building blocks. In our scheme, we use the
classical approach to turn Σ-protocols into signature schemes in the random
oracle model. Based on the fact that, since the introduction of the random
oracle model [BR93], no attack which arises from the assumption that a hash
function behaves as a random oracle (except for some artificial counterexam-
ples such as [CGH98]) was found [KM15], we claim that the best attacks
against our scheme are attacks which also invalidate the claims made for the
underlying symmetric primitives.

37

All cryptographic primitives, except the one-way function LowMC, rely
on the SHA3 function SHAKE [NIS15], a well established and standardized
primitive, and we use it in a standard way. For those primitives, we have
already gained substantial confidence regarding security due to extensive
cryptanalysis efforts within the community. We therefore do not see these
building blocks as a central attack surface and assume that the bounds given
in [NIS15, Table 4] hold. We note that improvements in attacks against those
primitives also lead to improvements in the attacks against our signature
scheme.

6.1 Usage and security margin of LowMC

Consequently, we henceforth put focus on attacks on the one-way function
f . Essentially, the function f could be any one-way function, but since
we found block ciphers—and, in particular the LowMC family of block
ciphers [ARS+15, ARS+16]—gave the most efficient signatures, we decided
to use them in our signature scheme. In particular, we assume that using
LowMC as described below yields a suitable family of one-way functions
{fu}u∈Kκ . We use this function to establish a suitable relation between secret
and public keys. In particular, let

fu(x) := E(x, u),

and let E denote LowMC encryption with respect to a single block u under
key x. The keys in our signature scheme are generated as follows. First, one
chooses a LowMC encryption key x, as well as a single block u uniformly
at random. Then, the the public verification key pk, as well as the secret
signing key sk are defined as follows

pk := (y, u) = (fu(x), u), sk := (pk, x).

The choice of the number of rounds within LowMC comes with a signifi-
cant security margin. For security level L1 with the specified 20 rounds, the
best attack known is on 12 rounds. For security level L3 with the specified
30 rounds, the best attack known is on 19 rounds. For security level L5 with
the specified 38 rounds, the best attack known is on 26 rounds. And even
those attacks require an attacker to see two plaintext-ciphertext pairs for the
same key, whereas within our signature scheme an attacker only ever sees a
single input-output pair for every key.

38

6.2 Attacks in the Single-User Setting

In the single-user setting, the attacker only ever sees a single key pair for the
Picnic signature scheme, i.e., a single plaintext-ciphertext pair (fu(x), u) of
LowMC with respect to a uniformly random key x and a uniformly random
block u. Consequently, in this setting cryptanalytic results for LowMC also
directly apply to our scheme, and also the claimed bounds carry over to the
Picnic signature scheme. Note that, one could even globally fix x to further
shrink the size of the public verification key pk. However, we chose not to do
so, as we also want to consider attacks in the multi-user setting (as discussed
below).

6.3 Attacks in the Multi-User Setting

The multi-user setting more accurately models reality, in that there are mul-
tiple users, each with a public key, and the adversary is considered successful
if he can attack any one of the users.

Multi-user EUF-CMA. Even if single-user EUF-CMA security generically
implies multi-user EUF-CMA (MU-EUF-CMA) security under a polynomial
loss [GMS02], we put concrete focus on attack scenarios which become ap-
plicable by moving to the multi-user setting. Here, the adversary may see
many signing key pairs and we need to be cautious with respect to more
sophisticated attacks that might apply.

In particular—in contrast to the single-user setting—our decision to choose
an independent and uniformly random block u, being the encryption function
E(·, u) of LowMC, per signing key pair turns out to be important. This
is because using the same, fixed block u with independent keys x1, . . . , xn
for each of the n users would allow to apply multi-user key recovery at-
tacks [Bih02] and generic time-memory trade-off attacks like [Hel80] and in
particular time/memory/key trade-off attacks [BMS05]. In these attacks one
of n block cipher keys may be recovered in less time than the cost of recover-
ing a single key, and the attacks become more efficient for large n. Intuitively,
the random block chooses a unique function per user, and work done to at-
tack one user (function) can not be used to simultaneously attack another
user (function). In addition, Banegas and Bernstein [BB17] have recently
shown that parallel collision search attacks [vOW94] can also be applied in
the quantum setting which also supports making a random choice of u per
user. Finally, we note that one could choose a smaller value that is unique

39

per user (with a potential decrease in security) to reduce the size of the public
key. However, since public keys in our schemes are small (at most 64 bytes),
our design uses a full random block.

Key-substitution attacks. These are attacks where an adversary who is
given a signature σA on message M under A’s public key pkA manages to
come up with a public key pkE (different from pkA) such that σA verifies
under pkE and message M . Menezes and Smart in [MS04] provide a formal
model to cover such attacks, which are not covered by EUF-CMA security.
Therefore, we explicitly consider such attacks. Security against these types
of attacks can be generically achieved. This has been shown in [MS04], and
we recall their theorem below.

Theorem 6.1 ([MS04], Theorem 6). Let (Gen, Sign,Verify) be an EUF-CMA
secure signature scheme. Then, (Gen, Sign′,Verify) with Sign′ := Sign(sk, pk‖m)
and pk being an unambiguous encoding of the public key is a secure signature
scheme in the multi-user setting.

We stress that the above result in particular holds for sEUF-CMA secure
signature schemes.

As discussed in Section 3 (see also Section 4.3 of the specification), the
public key is prepended to the message on signing, and the specification
provides an unambiguous encoding (since the public key is a pair of bitstrings,
the encoding is trivial). Consequently, we have the following corollary.

Corollary 6.2. picnic-FS and picnic-UR provide security in the multi-user
setting in the sense of [MS04, Definition 6].

7 Expected Security Strength

Since a Picnic keypair is a block cipher key and plaintext/ciphertext pair, we
chose to define parameters at the L1/AES-128, L3/AES-192 and L5/AES-
256 security levels. By the CFP, this means that L2 is implicitly defined by
L3 and L4 is defined by L5.

We expect each parameter set to provide security equivalent to AES. For
example, at L1, we expect 128-bits of security against classical attacks, and
at least 64-bits against quantum attacks. Like AES, key recovery attacks
using Grover’s algorithm against LowMC are the best known quantum at-
tacks on Picnic. The estimate of 64-bits comes from an idealized version of

40

Grover’s algorithm capable of running for a long time. Like AES this may be
conservative, even more so in the case of LowMC, since the circuit is much
larger than AES, due to the large amount of constant data required to im-
plement it. 3 For example, at level L1, the Picnic LowMC instance requires
84KBytes of constant data. These constants must either be encoded into
the circuit, or the circuit must be expanded to recompute them on the fly.
Thus the LowMC circuit is orders of magnitude larger than AES, making
attacking LowMC with Grover’s algorithm at least as difficult as attacking
AES.

We’re similarly set the number of parallel iterations to provide 128-bit
security against classical attacks, and 64-bits against quantum attacks using
an idealized version of Grover’s algorithm. Like with LowMC, the circuit
required to break ZKB++ soundness with Grover’s algorithm is orders of
magnitude larger than the AES circuit.

In more detail, suppose an attacker is trying to forge a proof as a generic
search problem. In particular, if an attacker can find a permutation of a
set of transcripts that hash to a challenge chosen in advance, he can forge a
proof. Consider a T round protocol (Picnic specifies 219, 329 and 438 rounds
at levels L1, L3 and L5, resp.). Then there are 3T possible challenges that
can come from hashing those 3T transcripts (since there are 3 challenges).

Now consider an attacker who constructs invalid ZKB++ “proofs” such
that for each ZKB++ iteration, he can give a valid response to two of the
challenges but not the third. If we model the hash function as a random
oracle, the probability of getting a challenge for which he can respond is (2

3
)T ,

and thus we expect that if the attacker searches a space of (3
2
)T candidates

(i.e., permutations of transcripts that are constructed in this manner) he can
find one. Grover’s algorithm allows the attacker to search the space in time
(3

2
)T/2.
However, the items in the space are larger, and changes in one value (e.g.,

a seed value) requires re-computing many others (the random tape, the MPC
transcript, and the commitments). Clearly this is far more expensive than a
single AES evaluation, and so we assume that Grover’s algorithm applied to
breaking ZKB++ soundness is at least as costly as AES key recovery.

3Previously, when we compared the LowMC circuit size to AES, we were looking only
at AND gates, but here we’re considering all gates.

41

7.1 LowMC Parameter Selection

The choice of LowMC parameters may seem aggressive in the context of a
general-purpose block cipher. The LowMC spec recommends an additional
1.3 times the number of rounds, as a security margin against unknown at-
tacks. Picnic does not use these additional rounds.

The general block cipher security definition gives attackers as much power
as possible, to model the worst case scenario. Consider the CPA security
game, where attackers may choose plaintexts, query the encryption oracle
many times, and must only distinguish encryptions of chosen plaintexts in
order to break the cipher (as opposed to recovering plaintext or private keys).
This strong security definition is sensible when the primitive will be used in
a variety of (potentially unforeseen) applications.

By contrast, for the security of Picnic signatures, attackers are severely
restricted. They are given a single plaintext/ciphertext pair, for a randomly
chosen block and key, and succeed if they can recover the key. Signatures are
zero-knowledge proofs, so by definition provide no additional useful informa-
tion. The success criteria for a Picnic attacker is key recovery, which is more
difficult than indistinguishability, while the capabilities are more limited. In
this context, the parameters we have chosen for LowMC are arguably very
conservative. We believe that reducing the number of rounds further would
maintain security, but chose to use the full number of rounds as a security
margin, given LowMC is a relatively new design.

Further, it is difficult to quantitatively support parameter selection in our
restricted attack model, since most research focuses on the standard security
definition. Our claim is that the complexity of a key recovery attack against
LowMC, given only a Picnic public key, is at least as difficult as attacking
the CPA security of AES (for equivalent key size, and with Picnic the block
size always matches the key size).

As we improve our understanding of LowMC security in this restricted
attack model, we expect to be able to justify reducing the number of rounds
further. The motivation is the direct impact this has on the size of Picnic
signatures. For example, at L1 with 128-bit blocksize and keysize, with 10
s-boxes, the recommended number of rounds is 20 and signatures are about
33KB. Reducing the number of rounds to 10 would make signatures 24KB.

42

7.2 Hash Function Security

Picnic depends on secure hash functions when computing signatures, for
commitments and the challenge. In our security analysis we have modeled
these as random oracles. While choosing parameters we also took into ac-
count some some more specific security properties (all implied by a random
oracle).

All hash functions are implemented with SHAKE128 with 256-bit digests
at security level L1, and SHAKE256 at levels L3 and L5, with 384 and
512-bit digests, respectively.4 We expect the concrete security provided by
SHAKE for collision and preimage resistance claimed in [NIS15], extended
to quantum attacks.

For preimage resistance, in the classical case it is common to assume
O(2n) operations for standard hash functions. When considering quantum
algorithms, Grover’s algorithm can find preimages with O(2n/2) operations.
Therefore, we assume that our uses of SHAKE128 and SHAKE256 provide
this level of preimage resistance.

When considering quantum algorithms, in theory it may be possible to
find collisions using a generic algorithm of Brassard et al. [BHT98] with cost
O(2n/3) (for n-bit digests). A detailed analysis of the costs of the algorithm
in [BHT98] by Bernstein [Ber09] found that in practice the quantum algo-
rithm is unlikely to outperform the O(2n/2) classical algorithm. Multiple
cryptosystems have since made the assumption that standard hash functions
with n-bit digests provide n/2 bits of collision resistance against quantum at-
tacks (for examples, see papers citing [Ber09]). We make this assumption as
well, and in particular, that SHAKE128 with 256-bit digests provides 128 bits
of PQ security, SHAKE256 with 384-bits provides 192-bits and SHAKE256
with 512-bit digests provides 256-bits.

4We considered using SHAKE256 at all three levels for simplicity, but L1 signing and
verify times increased by roughly 10%.

43

8 Advantages and Limitations

8.1 Compatibility with Existing Protocols

A preliminary version of the Picnic implementation has been integrated with
the Open Quantum Safe (OQS) project.5 Then, using a version of OpenSSL6

modified to use OQS, we were able to create X.509 certificates signed with
Picnic and certifying Picnic public keys. These keys and certificates were then
used to establish TLS 1.2 connections, where the key exchange algorithm was
one of the Microsoft Research version of NewHope, Frodo or SIDH. We then
built Apache web server with this version of OpenSSL, and configured it to
use our PQ ciphersuites, to serve a simple HTTP request. On the client
side we used a command line tool that ships with OpenSSL for testing, as
modifying a browser to support these ciphersuites is a much larger effort.

The parameter set for this earlier version of Picnic most resembled Picnic-

L5-FS and Picnic-L5-UR, so signatures were 100KB.
OpenSSL had to be patched in one place to handle larger signature sizes,

since the TLS 1.2 standard has a limit of 216−1 bytes. Signatures for the L1
parameter sets are under this limit, but for L3 and L5 we would likely need
an extension to support larger signatures. Ideally a future version of TLS
would allow larger signatures, but this is not pressing as we expect the L1
parameter set to provide sufficient security in the short and medium term.
Otherwise the integration was smooth, and performance seemed acceptable
in our limited experiments. In particular the certificate stack (X.509/ASN.1)
worked unmodified with signatures this large, something we did not expect.

The final version of this document will describe our experience using the
current version of Picnic in this software stack along with benchmarks.

9 Additional Security Properties

9.1 Side-Channel Attacks

Key Generation. Key generation requires generating a random LowMC
key and plaintext, and computing the LowMC block cipher. A fast imple-
mentation of the LowMC block cipher may use precomputed data, and have

5https://github.com/open-quantum-safe/liboqs
6https://github.com/christianpaquin/openssl/tree/add_oqs_sig_with_

picnic

44

https://github.com/open-quantum-safe/liboqs
https://github.com/christianpaquin/openssl/tree/add_oqs_sig_with_picnic
https://github.com/christianpaquin/openssl/tree/add_oqs_sig_with_picnic

cache-timing side channels, because the access pattern depends on the secret
key. However, there are a couple mitigations:

1. Since key generation happens infrequently, a slower LowMC implemen-
tation with a constant access pattern can be be used.

2. Even if a side channel is present in key generation, since only one
encryption with a given secret key is ever computed, and known attacks
require observing multiple runs, the feasibility of a successful attack is
unlikely.

Signing. Generally speaking, since the three party protocol simulated during
signing is circuit-based, the same operations are performed, regardless of the
values on the input wires of the circuit.

Signing is not constant time in the absolute sense, but is constant time
with respect to the operations that depend on the ephemeral random val-
ues (that in turn depend on the signing key). The timing (and signature
size) variation is due to the different operations performed depending on the
(public) bits of the challenge. The reference implementation is constant time
relative to the secret key.

Our fast implementation of the binary matrix multiplication step for
LowMC uses precomputed data (the so-called ”method of four Russians”).
Look-ups to the table of precomputed data are done based on the LowMC
state and round key. Therefore, the access pattern to memory is dependent
on secret data (the access pattern of one of the three players is sensitive
and should remain secret). This is mitigated since the LowMC secret keys
used by each of the players is a randomized secret sharing of the actual key.
The shares are only ever used once, and the randomization means that ac-
cess pattern information learned by an attacker in one parallel iteration of
ZKB++ can not be combined with information from other iterations. Since
cache-timing side-channel attacks overwhelmingly require multiple observa-
tions (called traces), we expect this mitigation to be effective.

The circuit decomposition technique is similar to the side channel coun-
termeasure called masking, commonly used to protect block cipher imple-
mentations from side channel attacks. An early, well cited paper on the
topic is Goubin and Patarin [GP99]. With further study, we may find that
the ZKB++ circuit decomposition provides other types of side channel re-
sistance, for example, resistance to differential power analysis.

45

9.2 Security Impact of Using Weak Ephemeral Values

The specification recommends that the per-signature random values used
when computing a signature be derived from the signing key and the message,
to simplify testing and to mitigate the security impact of a defective random
number generator during signing. The goal is that signatures are secure,
provided the random number generator was secure during key generation.

Like (EC)DSA, given the random values used when computing a signa-
ture, it is possible to recover the signer’s secret key. Recall that in each
parallel iteration of ZKB++, three seed values are generated, one for each
party in the MPC protocol. In normal operation, two of these seed values
are revealed, and one is kept secret. The MPC protocol remains secure when
two of the three parties are corrupted (i.e., have their seed exposed, which
exposes their state, input and output shares). Given the entire third seed,
it is possible to recover the input share of the third player, and recover the
secret key.

Unlike (EC)DSA, slight biases in the random number generator do not
allow the secret to be recovered from multiple signatures. This is because the
seed values are never used directly; they are always hashed, then expanded
with an extendable output functions (XOF) into a random tape, and the
random tape values are used.

Regardless of how the seeds are generated, a bias in the XOF output
may lead to an attack. For example, if the XOF/PRF used to derandom-
ize (EC)DSA, EdDSA, and other ElGamal-like signatures was biased, the
ephemeral value is biased, and the lattice attacks studied in the context of
RNG biases apply [Ble00, HS01]. For Picnic, it’s not clear if this could be
exploited.

Alternative Parameter Selections. We could reduce the feasibility of
Grover key recovery attacks against LowMC by increasing the keysize and
keeping the block length fixed. There would still be a chance to use Grover’s
algorithm to break the soundness of ZKB++ (unless the number of paral-
lel iterations was increased). However, a quick inspection reveals that the
computation of attacking soundness is computationally much more complex
than attacking LowMC. For example, checking whether a candidate secret
key corresponds to a given public key requires one LowMC evaluation, while
checking whether a set of cheating commitments leads to a challenge that
does not catch the cheating requires hundreds of SHA3 computations.

46

9.3 Parameter Integrity

With some cryptographic primitives if the system parameters are changed,
security is lost. For example, if an elliptic curve secret key is used on a weak
curve, the primitive may still work, but leak the secret key.

In Picnic, the parameters are small integer values like the parallel repeti-
tion count that tend to be hard-coded in software, and the LowMC matrices
and constants. Using weak parameters for LowMC could weaken the cipher
to the point where key recovery attacks are feasible. If weak parameters are
used for key generation it is possible to generate a weak keypair, however, it
will not produce signatures that verify with respect to the correct parame-
ters. So the common PKI practice of signing a certificate request with the
subject key will catch keys generated with invalid parameters.

Creating signatures with invalid parameters can also be a security risk.
Suppose a set of weak LowMC parameters were used, so that the signing
algorithm proves knowledge of the signing key k, for an new circuit E ′, i.e.,
E ′k(x) = pk, where E ′ is LowMC with invalid parameters. The signature
would be invalid in most cases, unless key generation and verification also
used E ′. However, the invalid signature contains enough information to re-
cover E ′k(x), from which it may be possible to recover k.

10 Efficiency and Memory Usage

This section gives performance benchmarks of the Picnic signature scheme. A
single core/thread was used for all benchmarks. All times are in milliseconds.
We benchmark three implementations:

Reference An expository C implementation. Makes no performance opti-
mizations.

Optimized-C A somewhat optimized implementation using C only.

Optimized An optimized implementation that uses processor-specific com-
piler intrinsics for vector instructions, e.g. SSE2 and AVX2 on Intel
x86-64 and NEON on ARM v8.

47

10.1 Description of the Benchmark Platforms

10.1.1 Platform A

The primary benchmarking platform, Platform A, has the following speci-
fications:

CPU Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz

Memory 16 GB

OS Ubuntu 17.04

Compiler GCC 6.3

Intel Turbo Boost (dynamic frequency scaling) was disabled. For comparison,
OpenSSL version 1.0.2g reports 0.03 ms for ECDSA signing and 0.08 ms for
verification on Platform A7.

10.1.2 Platform B

The secondary benchmarking platform, Platform B (Raspberry Pi 3 Model
B), has the following specifications:

CPU Quad Core 1.2GHz Broadcom BCM2837 64-bit CPU, ARM Cortex
A53 (ARMv8)

Memory 1 GB RAM

OS openSUSE Leap 42.2

Compiler GCC 6.2

openSSL: 11ms sign, 40ms verify

For comparison, OpenSSL version 1.0.2j reports 11 ms for ECDSA signing
and 40 ms for verification on Platform B.

7As reported by the command openssl speed ecdsap256

48

10.1.3 Platform C

A third platform, Platform C, is an older x64-based system, has the follow-
ing specifications:

CPU Intel(R) Xeon(R) CPU E31230 @ 3.20GHz

Memory 8 GB

OS Ubuntu 16.04.3 LTS

Compiler GCC 5.4

For comparison, OpenSSL 1.0.2g reports 0.05 ms for ECDSA signing and
0.12 ms for ECDSA verification on Platform C.

10.2 Description of the benchmarking methodology

Timings results for key generation, signing and signature verification were
averaged over 1000 runs.

On Platforms A and C we measured CPU cycles using the perf event

performance monitoring subsystem of the Linux kernel. On Platform B CPU
cycles were measured using the hardware performance counter available via
the MRS instruction.

10.3 Benchmark Results: Timings

In this section we describe the time required for various operations, on the
three benchmark platforms. In all tables presented in this section we give
the timing information as milliseconds and CPU cycles.

In Tables 3, 4 and 5 we present the benchmark results of all implementa-
tions on Platform A. On this platform we observe speed improvements of the
optimized implementation compared to the optimized-C implementation
of 20% up to 50% percent. Additionally, Tables 6 and 7 also give bench-
mark results with the GCC link time optimization (LTO) feature enabled.
The optimized-C implementation shows improved performance figures with
LTO enabled. The same holds for the optimized implementation except for
Picnic-L5-FS, which is interestingly now closer to the performance figures
of Picnic-L5-UR.

49

Parameters Keygen Sign Verify
Picnic-L1-FS 0.05 36.50 23.91
(cycles) 163850 131390415 86062091
Picnic-L1-UR 0.04 44.12 29.48
(cycles) 146193 158826399 106128443
Picnic-L3-FS 0.10 122.85 81.03
(cycles) 364079 442257404 291723398
Picnic-L3-UR 0.10 144.96 97.40
(cycles) 369536 521842013 350635309
Picnic-L5-FS 0.20 298.11 196.85
(cycles) 722494 1073183185 7086526474
Picnic-L5-UR 0.21 329.86 221.46
(cycles) 740633 1187481996 797249015

Table 3: Benchmarks for the reference implementation, on benchmark
Platform A.

Parameters Keygen Sign Verify
Picnic-L1-FS 0.02 3.35 2.29
(cycles) 86938 12055646 8245436
Picnic-L1-UR 0.02 4.33 3.06
(cycles) 86631 15590725 11014466
Picnic-L3-FS 0.06 11.86 8.07
(cycles) 208123 42683333 29039354
Picnic-L3-UR 0.06 13.81 9.55
(cycles) 214387 49699928 34373293
Picnic-L5-FS 0.11 38.04 25.81
(cycles) 378326 136942395 92906288
Picnic-L5-UR 0.10 39.70 27.35
(cycles) 375633 142906149 98449354

Table 4: Benchmarks for the optimized-C implementation, on benchmark
Platform A.

50

Parameters Keygen Sign Verify
Picnic-L1-FS 0.01 2.10 1.45
(cycles) 41635 7544639 5228793
Picnic-L1-UR 0.01 2.78 2.01
(cycles) 43189 10024950 7223730
Picnic-L3-FS 0.06 7.41 5.23
(cycles) 199127 26669631 18813324
Picnic-L3-UR 0.06 9.47 6.76
(cycles) 205247 34092091 24331615
Picnic-L5-FS 0.06 14.88 10.49
(cycles) 204178 53572733 37749441
Picnic-L5-UR 0.06 19.75 14.33
(cycles) 209861 71097205 51603839

Table 5: Benchmarks for the optimized implementation, on benchmark
Platform A.

Parameters Keygen Sign Verify
Picnic-L1-FS 0.02 2.73 1.87
(cycles) 79586.35 9820159.24 6741989.53
Picnic-L1-UR 0.02 3.44 2.45
(cycles) 78805.89 12369790.39 8812970.22
Picnic-L3-FS 0.05 10.72 7.23
(cycles) 196082.92 38608875.12 26042494.71
Picnic-L3-UR 0.05 10.98 7.58
(cycles) 196882.47 39510719.80 27284410.02
Picnic-L5-FS 0.10 33.72 22.92
(cycles) 342773.08 121409878.24 82504407.64
Picnic-L5-UR 0.10 37.52 25.99
(cycles) 345184.62 135055232.98 93576995.97

Table 6: Benchmarks for the optimized-C implementation with LTO en-
abled, on benchmark Platform A.

51

Parameters Keygen Sign Verify
Picnic-L1-FS 0.01 1.99 1.39
(cycles) 40654 7154708 5018443
Picnic-L1-UR 0.01 2.69 1.94
(cycles) 40335 9690701 6995335
Picnic-L3-FS 0.05 7.21 5.06
(cycles) 191327 25945491 18224318
Picnic-L3-UR 0.06 9.26 6.60
(cycles) 199197 33350422 23743318
Picnic-L5-FS 0.06 17.22 12.46
(cycles) 214424 61992252 44849301
Picnic-L5-UR 0.06 17.49 12.70
(cycles) 216542 62963501 45732244

Table 7: Benchmarks for the optimized implementation with LTO enabled,
on benchmark Platform A.

Next we give the results of the evaluation of our implementations on
Platform B in Tables 8, 9 and 10. Again we observe improved performance
figures for the optimized implementation, but they are not as significant as
on Platform A. GCC’s optimizer vectorizes the code on Platform B more ag-
gressively for optimized-C implementation and thus the performance gains
of the optimized implementation are smaller.

10.4 Memory Requirements

In this section we give the memory requirements for our implementations.
The memory requirements of an implementation are assumed to be the same
for all platforms.

10.4.1 Reference Implementation Detailed Memory usage

Memory usage was benchmarked using the Valgrind8 tool Massif. Massif was
run on an example program, that generates a key pair, creates a signature,
then verifies it, using the API in picnic.h. Then the tool massifcherrypick9

was used to determine the peak memory usage of specific functions.

8http://valgrind.org/docs/manual/ms-manual.html
9https://github.com/lnishan/massif-cherrypick

52

https://github.com/lnishan/massif-cherrypick

Parameters Keygen Sign Verify
Picnic-L1-FS 2.10 276.70 182.70
(cycles) 2518975.68 332042859.49 219239633.21
Picnic-L1-UR 2.09 338.02 228.30
(cycles) 2508982.43 405624756.71 273961444.67
Picnic-L3-FS 2.58 954.93 633.51
(cycles) 3095449.36 1145919907.20 760208950.65
Picnic-L3-UR 2.60 1135.01 766.11
(cycles) 3117483.80 1362017384.32 919332592.31
Picnic-L5-FS 3.43 2392.14 1596.34
(cycles) 4121029.50 2870568905.80 1915611672.97
Picnic-L5-UR 3.48 2648.95 1789.57
(cycles) 4175474.33 3178740376.65 2147486636.49

Table 8: Benchmarks for the reference implementation, on benchmark
Platform B.

Parameters Keygen Sign Verify
Picnic-L1-FS 2.01 47.61 32.02
(cycles) 2411719.08 57126852.40 38425485.52
Picnic-L1-UR 2.05 50.82 34.79
(cycles) 2463859.98 60982466.78 41751597.25
Picnic-L3-FS 2.32 173.52 116.65
(cycles) 2787111.83 208218410.35 139974921.54
Picnic-L3-UR 2.32 180.27 121.81
(cycles) 2778689.69 216320405.46 146168964.21
Picnic-L5-FS 2.60 376.07 251.26
(cycles) 3121580.16 451282793.61 301510063.31
Picnic-L5-UR 2.61 389.13 262.32
(cycles) 3126934.73 466958725.13 314780997.66

Table 9: Benchmarks for the optimized-C implementation, on benchmark
Platform B.

53

Parameters Keygen Sign Verify
Picnic-L1-FS 1.99 43.69 30.06
(cycles) 2386054.21 52430033.06 36072091.59
Picnic-L1-UR 2.04 47.58 32.94
(cycles) 2445307.79 57099807.09 39529669.74
Picnic-L3-FS 2.44 186.95 125.55
(cycles) 2925039.83 224339885.99 150664840.51
Picnic-L3-UR 2.34 179.84 121.38
(cycles) 2807774.21 215809662.97 145655170.18
Picnic-L5-FS 2.52 357.11 238.07
(cycles) 3025127.71 428529315.98 285685718.82
Picnic-L5-UR 2.56 369.85 248.75
(cycles) 3068088.66 443818338.13 298501331.24

Table 10: Benchmarks for the optimized implementation, on benchmark
Platform B.

Parameters Keygen Sign Verify
Picnic-L1-FS 0.07 51.92 33.92
(cycles) 212881 166159669 108529436
Picnic-L1-UR 0.06 62.51 41.71
(cycles) 193569 200039945 133478227
Picnic-L3-FS 0.14 172.82 113.70
(cycles) 462757 553026245 363831127
Picnic-L3-UR 0.15 203.82 136.54
(cycles) 471108 652218966 436915884
Picnic-L5-FS 0.28 415.36 275.93
(cycles) 901355 1329138266 882984854
Picnic-L5-UR 0.29 459.44 308.87
(cycles) 922864 1470196303 988380511

Table 11: Benchmarks for the reference implementation, on benchmark
Platform C.

54

Parameters Keygen Sign Verify
Picnic-L1-FS 0.03 4.50 3.12
(cycles) 100469 14403397 9998428
Picnic-L1-UR 0.03 5.84 4.19
(cycles) 100825 18678042 13413739
Picnic-L3-FS 0.07 14.68 10.14
(cycles) 239214 46980834 32456544
Picnic-L3-UR 0.07 19.87 14.05
(cycles) 234956 63576699 44966117
Picnic-L5-FS 0.14 46.41 31.76
(cycles) 435994 148516664 101624906
Picnic-L5-UR 0.14 51.44 36.37
(cycles) 440258 164615202 116384582

Table 12: Benchmarks for the optimized-C implementation, on benchmark
Platform C.

Parameters Keygen Sign Verify
Picnic-L1-FS 0.02 3.50 2.42
(cycles) 48587 11193948 7745406
Picnic-L1-UR 0.02 4.87 3.48
(cycles) 48760 15594829 11132090
Picnic-L3-FS 0.07 13.46 9.39
(cycles) 226283 43076300 30061948
Picnic-L3-UR 0.07 17.36 12.42
(cycles) 230344 55549079 39737866
Picnic-L5-FS 0.10 32.21 22.22
(cycles) 311304 103056039 71098134
Picnic-L5-UR 0.10 37.77 26.82
(cycles) 314544 120862142 85830001

Table 13: Benchmarks for the optimized implementation, on benchmark
Platform C.

55

Parameter set Sign Verify
Picnic-L1-FS 227,103 183,154
Picnic-L1-UR 315,579 254,772
Picnic-L3-FS 480,835 379,860
Picnic-L3-UR 645,335 565,034
Picnic-L5-FS 802,197 652,539
Picnic-L5-UR 1,091,277 959,553

Table 14: Peak memory usage (stack and heap combined) of reference imple-
mentation, in bytes. This excludes memory used for the LowMC constants,
which was stored as static data in program binary.

Massif was invoked with the command:

valgrind --tool=massif --stacks=yes ./example

When creating a signature, peak memory usage ranged from about 227K
to 1091K bytes, as shown in Table 14, while verification ranged from about
183K to 959K bytes.

Massif measures memory usage by sampling so there is some variability
in these measurements. The variance was low so these are a reasonable
estimate, since we’re only interested in peak usage.

10.4.2 Optimized Implementation Detailed Memory usage

With the same methodology as used for the reference implementation, peak
memory usage data was generated with valgrind. The data is presented in
Table 15. A more detail discussion of the precomputed constants and data
follows below.

10.5 Size of precomputed constants and data

Size of LowMC constants The LowMC block cipher uses a large amount
of constant data when compared to traditional block ciphers. This data may
be computed on-the-fly as needed, or precomputed and stored in advance.
All our implementations compile this data into the binary.

We did not investigate the cost of re-computing the LowMC constants at
runtime. The output of the Grain LSFR is used as a self-shrinking generator
to create the constants.

56

Parameter set Precomputed Data Sign Verify
Picnic-L1-FS 1,835,744 133,598 79,724
Picnic-L1-UR 1,835,744 196,889 126,590
Picnic-L3-FS 7,078,944 230,300 108,570
Picnic-L3-UR 7,078,944 373,415 214,508
Picnic-L5-FS 11,797,792 398,580 189,216
Picnic-L5-UR 11,797,792 642,546 370,548

Table 15: Peak memory usage (stack and heap combined) of the optimized
implementation, in bytes. This excludes memory used for the LowMC con-
stants, which was stored as static data in program binary.

The optimized-C and optimized implementations include additional
precomputed matrices used to compute the round keys, which allow one to
split the round key computation into parts that are affected by the Sbox
layer and parts which are not. The sizes of those matrices are are given in
Table 17 in the Reduced Key Matrices column.

Params Linear Matrices Round Constants Key Matrices Total
L1 40,960 320 43,008 84,288
L3 138,240 720 142,848 281,808
L5 311,296 1,216 319,488 632,000

Table 16: Size of constant data (in bytes) required by LowMC as used by
the reference implementation, with the parameters used in Picnic at security
levels L1, L3 and L5.

Size of precomputed data In order to reduce the time required to imple-
ment the binary matrix multiplication step and the linear layer of LowMC,
the optimized implementations pre-compute some data based on the con-
stants. The size of the data is given in Table 18. Once the implementation
has this data, it no longer needs the constant data from Table 16 (except the
round constants).

References

[AGR+16] Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger,
Arnab Roy, and Tyge Tiessen. MiMC: Efficient encryption and

57

Params Linear
Matrices

Round
Constants

Key
Matrices

Reduced Key
Matrices

Total

L1 41,600 960 43,680 14,400 100,640
L3 185,280 1,920 191,456 30,784 409,440
L5 315,512 2,432 320,736 49,216 684,896

Table 17: Size of constant data (in bytes) required by LowMC as used by the
optimized implementations, with the parameters used in Picnic at security
levels L1, L3 and L5.

Params Linear Matrices Key Matrices
L1 1,311,360 458,816
L3 5,899,200 983,104
L5 9,962,688 1,572,928

Table 18: Size of precomputed data (in bytes) required by LowMC, with
the parameters used in Picnic at security levels L1, L3 and L5.

cryptographic hashing with minimal multiplicative complexity.
In ASIACRYPT, pages 191–219, 2016.

[ARS+15] Martin R. Albrecht, Christian Rechberger, Thomas Schneider,
Tyge Tiessen, and Michael Zohner. Ciphers for MPC and FHE.
In EUROCRYPT, 2015.

[ARS+16] Martin R. Albrecht, Christian Rechberger, Thomas Schneider,
Tyge Tiessen, and Michael Zohner. Ciphers for MPC and FHE.
IACR Cryptology ePrint Archive, 2016:687, 2016.

[BB17] Gustavo Banegas and Daniel J. Bernstein. Low-communication
parallel quantum multi-target preimage search. Cryptology
ePrint Archive, Report 2017/789, 2017. http://eprint.iacr.
org/2017/789.

[BCG+12] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge
Kavun, Miroslav Knezevic, Lars R. Knudsen, Gregor Leander,
Ventzislav Nikov, Christof Paar, Christian Rechberger, Peter
Rombouts, Søren S. Thomsen, and Tolga Yalçin. PRINCE - a
low-latency block cipher for pervasive computing applications -
extended abstract. In ASIACRYPT, 2012.

58

http://eprint.iacr.org/2017/789
http://eprint.iacr.org/2017/789

[Ber09] Daniel J. Bernstein. Cost analysis of hash collisions: Will
quantum computers make SHARCS obsolete? 2009. http:

//cr.yp.to/hash/collisioncost-20090823.pdf.

[BHT98] Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum crypt-
analysis of hash and claw-free functions. In Claudio L. Lucchesi
and Arnaldo V. Moura, editors, LATIN 1998, volume 1380 of
LNCS, pages 163–169. Springer, Heidelberg, April 1998.

[Bih02] Eli Biham. How to decrypt or even substitute des-encrypted

messages in 228 steps. Inf. Process. Lett., 84(3):117–124, 2002.

[Ble00] Daniel Bleichenbacher. On the generation of one-time keys in dl
signature schemes. Presentation at IEEE P1363 Working Group
meeting, November 2000. Unpublished., 2000.

[BMP13] Joan Boyar, Philip Matthews, and René Peralta. Logic mini-
mization techniques with applications to cryptology. Journal of
Cryptology, 26(2):280–312, 2013.

[BMS05] Alex Biryukov, Sourav Mukhopadhyay, and Palash Sarkar. Im-
proved time-memory trade-offs with multiple data. In Se-
lected Areas in Cryptography, 12th International Workshop,
SAC 2005, Kingston, ON, Canada, August 11-12, 2005, Re-
vised Selected Papers, pages 110–127, 2005.

[BPW12] David Bernhard, Olivier Pereira, and Bogdan Warinschi. How
not to prove yourself: Pitfalls of the Fiat-Shamir heuristic and
applications to Helios. In Xiaoyun Wang and Kazue Sako, edi-
tors, ASIACRYPT 2012, volume 7658 of LNCS, pages 626–643.
Springer, Heidelberg, December 2012.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practi-
cal: A paradigm for designing efficient protocols. In ACM CCS,
1993.

[CCF+16] Anne Canteaut, Sergiu Carpov, Caroline Fontaine, Tancrède
Lepoint, Maŕıa Naya-Plasencia, Pascal Paillier, and Renaud
Sirdey. Stream ciphers: A practical solution for efficient
homomorphic-ciphertext compression. In FSE, 2016.

59

http://cr.yp.to/hash/collisioncost-20090823.pdf
http://cr.yp.to/hash/collisioncost-20090823.pdf

[CDG+17] Melissa Chase, David Derler, Steven Goldfeder, Claudion Or-
landi, Sebastian Ramacher, Christian Rechberger, Daniel Sla-
manig, and Greg Zaverucha. Post-quantum zero-knowledge and
signatures from symmetric-key primitives. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communi-
cations Security, Dallas, USA, October 30 - November 3, 2017,
2017. to appear.

[CDS94] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers.
Proofs of partial knowledge and simplified design of witness hid-
ing protocols. In CRYPTO, 1994.

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random
oracle methodology, revisited (preliminary version). In Proceed-
ings of the Thirtieth Annual ACM Symposium on the Theory of
Computing, Dallas, Texas, USA, May 23-26, 1998, pages 209–
218, 1998.

[CGP+12] Claude Carlet, Louis Goubin, Emmanuel Prouff, Michaël
Quisquater, and Matthieu Rivain. Higher-order masking
schemes for s-boxes. In FSE, 2012.

[Dam10] Ivan Damg̊ard. On Σ-protocols. 2010. http://www.cs.au.dk/

~ivan/Sigma.pdf.

[DP08] Christophe De Cannière and Bart Preneel. Trivium. In New
Stream Cipher Designs - The eSTREAM Finalists. 2008.

[DPVAR00] Joan Daemen, Michaël Peeters, Gilles Van Assche, and Vincent
Rijmen. Nessie proposal: Noekeon. In First Open NESSIE
Workshop, 2000.

[FKMV12] Sebastian Faust, Markulf Kohlweiss, Giorgia Azzurra Marson,
and Daniele Venturi. On the non-malleability of the fiat-shamir
transform. In INDOCRYPT, 2012.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical
solutions to identification and signature problems. In CRYPTO,
pages 186–194, 1986.

60

http://www.cs.au.dk/~ivan/Sigma.pdf
http://www.cs.au.dk/~ivan/Sigma.pdf

[GLSV14] Vincent Grosso, Gaëtan Leurent, François-Xavier Standaert,
and Kerem Varici. Ls-designs: Bitslice encryption for efficient
masked software implementations. In FSE, 2014.

[GMO16a] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. ZKBoo:
Faster zero-knowledge for boolean circuits. Cryptology ePrint
Archive, Report 2016/163, 2016. http://eprint.iacr.org/

2016/163.

[GMO16b] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. ZKBoo:
Faster zero-knowledge for boolean circuits. In USENIX Security,
2016.

[GMS02] Steven D. Galbraith, John Malone-Lee, and Nigel P. Smart.
Public key signatures in the multi-user setting. Inf. Process.
Lett., 83(5):263–266, 2002.

[GP99] Louis Goubin and Jacques Patarin. DES and differential power
analysis (the “duplication” method). In Çetin Kaya Koç and
Christof Paar, editors, CHES’99, volume 1717 of LNCS, pages
158–172. Springer, Heidelberg, August 1999.

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for
database search. In STOC, 1996.

[Hel80] Martin Hellman. A cryptanalytic time-memory trade-off. IEEE
transactions on Information Theory, 26(4):401–406, 1980.

[HS01] Nick Howgrave-Graham and Nigel P. Smart. Lattice attacks on
digital signature schemes. Des. Codes Cryptography, 23(3):283–
290, 2001.

[IKOS09] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sa-
hai. Zero-knowledge proofs from secure multiparty computation.
SIAM Journal on Computing, 39(3):1121–1152, 2009.

[Kat10] Jonathan Katz. Digital Signatures. Springer, 2010.

[KM15] Neal Koblitz and Alfred J. Menezes. The random oracle model:
a twenty-year retrospective. Des. Codes Cryptography, 77(2-
3):587–610, 2015.

61

http://eprint.iacr.org/2016/163
http://eprint.iacr.org/2016/163

[MJSC16] Pierrick Méaux, Anthony Journault, François-Xavier Standaert,
and Claude Carlet. Towards stream ciphers for efficient FHE
with low-noise ciphertexts. In EUROCRYPT, 2016.

[MS04] Alfred Menezes and Nigel P. Smart. Security of signature
schemes in a multi-user setting. Des. Codes Cryptography,
33(3):261–274, 2004.

[NIS15] NIST. SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions. National Institute of Standards
and Technology (NIST), FIPS PUB 202, U.S. Department of
Commerce, 2015.

[Unr12] Dominique Unruh. Quantum proofs of knowledge. In
David Pointcheval and Thomas Johansson, editors, EURO-
CRYPT 2012, volume 7237 of LNCS, pages 135–152. Springer,
Heidelberg, April 2012.

[Unr15] Dominique Unruh. Non-interactive zero-knowledge proofs in the
quantum random oracle model. In Elisabeth Oswald and Marc
Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of
LNCS, pages 755–784. Springer, Heidelberg, April 2015.

[Unr16] Dominique Unruh. Computationally binding quantum commit-
ments. In EUROCRYPT, 2016.

[vOW94] Paul C. van Oorschot and Michael J. Wiener. Parallel colli-
sion search with application to hash functions and discrete log-
arithms. In CCS ’94, Proceedings of the 2nd ACM Conference
on Computer and Communications Security, Fairfax, Virginia,
USA, November 2-4, 1994., pages 210–218, 1994.

62

ProveH(1κ, y, x) : 1. For each iteration i ∈ [t]: Sample random tapes

k
(i)
1 , k

(i)
2 , k

(i)
3 and obtain output view View

(i)
j and output share y

(i)
j .

For each player Pj compute

(a) (x
(i)
1 , x

(i)
2 , x

(i)
3)← Share(x, k

(i)
1 , k

(i)
2 , k

(i)
3)

(b) View
(i)
j ← Update(. . . Update(x

(i)
j , x

(i)
j+1, k

(i)
j , k

(i)
j+1) . . .)

(c) y
(i)
j ← Output(View

(i)
j)

(d) Commit C
(i)
j ← Com(k

(i)
j , x

(i)
j ,View

(i)
j , y

(i)
j), and let a(i) ←

(y
(i)
1 , y

(i)
2 , y

(i)
3 , C

(i)
1 , C

(i)
2 , C

(i)
3).

2. Compute the challenge: e← H(a(1), . . . , a(t)).

3. For each iteration i ∈ [1, t] set: z(i) ← (View
(i)
2 , k

(i)
1 , k

(i)
2) if e(i) = 1

and z(i) ← (View
(i)

e(i)+1
, k

(i)

e(i)
, k

(i)

e(i)+1
, x

(i)
3) otherwise, and return π ←

(e, z
(i)
i∈[t]).

VerifyH(1κ, y, π) : Parse π as (e, z
(i)
i∈[t]).

1. For each iteration i ∈ [t] reconstruct the views, input and output
shares that were not explicitly given as part of the proof z(i):

(a) Set x
(i)

e(i)
← Re(i)(0) if e(i) 6= 3, otherwise obtain x

(i)
3 from z(i).

Set x
(i)

e(i)+1
← Re(i)+1(0) if e(i) 6= 2, otherwise obtain x

(i)
3 from

z(i).

(b) Obtain View
(i)

e(i)+1
from z(i).

(c) View(i)
e ← Update(. . . Update(x

(i)

e(i)
, x

(i)
e+1, k

(i)
e , k

(i)
e+1) . . .)

(d) y
(i)

e(i)
← Output(View

(i)

e(i)
), y

(i)

e(i)+1
← Output(View

(i)

e(i)+1
)

(e) y
(i)

e(i)+2
← y + y

(i)

e(i)
+ y

(i)

e(i)+1

2. Re-compute the commitments for views View
(i)

e(i)
and View

(i)

e(i)
. For

j ∈ {e(i), e(i) + 1}: C(i)
j ← Com(k

(i)
j , x

(i)
j ,View

(i)
j , y

(i)
j).

3. Set a′(i) ← (y
(i)
1 , y

(i)
2 , y

(i)
3 , C

(i)
1 , C

(i)
2 , C

(i)
3) taking C

(i)

e(i)+2
from a(i).

4. Re-compute the challenge: e′ ← H(a′(1), . . . , a′(t)). If e = ′ output
Accept, otherwise Reject.

Scheme 4: The Fiat-Shamir transformed ZKB++ protocol.

63

Algorithm 1 LowMC encryption for key matrices Ki ∈ Fn×k2 for i ∈ [0, r],
linear layer matrices Li ∈ Fn×n2 and round constants Ci ∈ Fn2 for i ∈ [1, r].

Require: plaintext p ∈ Fn2 and key y ∈ Fk2
s← K0 · y + p
for i ∈ [1, r] do

s← Sbox(s)
s← Li · s
s← Ci + s
s← Ki · y + s

end for
return s

64

p← Sim(x): In the simulator, we follow Unruh, and replace the initial state
(before programming) of the random oracles with random polynomials of
degree 2q − 1 where q is an upper bound on the number of queries the
adversary makes.

1. For i ∈ [1, t], choose random e(i) ← {1, 2, 3}. Let e be the corresponding
binary string.

2. For each iteration ri, i ∈ [1, t]: Sample random seeds k
(i)

e(i)
, k

(i)

e(i)+1
and

run the circuit decomposition simulator to generate View
(i)

e(i)
, View

(i)

e(i)+1
,

output shares y
(i)
1 , y

(i)
2 , y

(i)
3 , and if e(i) = 1 x

(i)
3 .

For j = e(i), e(i) + 1 commit [C
(i)
j , D

(i)
j]← [H(k

(i)
j ,View

(i)
j), k

(i)
j ||View

(i)
j],

and compute g
(i)
j = G(k

(i)
j ,View

(i)
j).

Choose random Ce(i)+2, g
(i)

e(i)+2

Let a(i) = (y
(i)
1 , y

(i)
2 , y

(i)
3 , C

(i)
1 , C

(i)
2 , C

(i)
3). And h(i) = g

(i)
1 , g

(i)
2 , g

(i)
3 .

2. Set the challenge: program H(a(1), . . . , a(t)) := e.

3. For each iteration ri, i ∈ [1, t]: let b(i) = (y
(i)

e(i)+2
, C

(i)

e(i)+2
) and set

z(i) ←


(View

(i)
2 , k

(i)
1 , k

(i)
2) if e(i) = 1,

(View
(i)
3 , k

(i)
2 , k

(i)
3 , x

(i)
3) if e(i) = 2,

(View
(i)
1 , k

(i)
3 , k

(i)
1 , x

(i)
3) if e(i) = 3.

4. Output p← [e, (b(1), z(1)), (b(2), z(2)), · · · , (b(t), z(t))].

Scheme 6: The zero knowledge simulator

65

	Introduction
	The Picnic Design Team

	Building Blocks
	Commitments
	Zero-Knowledge Proofs and -Protocols
	Non-interactive Zero-Knowledge Proofs of Knowledge
	Fiat-Shamir Transform
	Unruh Transform
	(2,3)-Decomposition of Circuits
	ZKB++
	LowMC
	Comparison to Other Primitives

	Signature Schemes

	The picnic-FS and picnic-UR Signature Schemes
	Instantiation and Optimizations of Unruh's Transform
	Seed Generation
	Random Tapes
	Challenge Generation
	Function G

	Choice of Parameters
	LowMC Parameters
	Number of Parallel Repetitions

	Formal Security Analysis
	Security Analysis of ZKB++
	Security Analysis of Picnic
	Security Analysis of picnic-FS
	Security Analysis of picnic-UR

	Strong Unforgeability of picnic-FS and picnic-UR

	Analysis with Respect to Known Attacks
	Usage and security margin of LowMC
	Attacks in the Single-User Setting
	Attacks in the Multi-User Setting

	Expected Security Strength
	LowMC Parameter Selection
	Hash Function Security

	Advantages and Limitations
	Compatibility with Existing Protocols

	Additional Security Properties
	Side-Channel Attacks
	Security Impact of Using Weak Ephemeral Values
	Parameter Integrity

	Efficiency and Memory Usage
	Description of the Benchmark Platforms
	Platform A
	Platform B
	Platform C

	Description of the benchmarking methodology
	Benchmark Results: Timings
	Memory Requirements
	Reference Implementation Detailed Memory usage
	Optimized Implementation Detailed Memory usage

	Size of precomputed constants and data

