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1 Introduction

This document specifies the Picnic public-key digital signature scheme. It also de-
scribes cryptographic primitives used to construct Picnic, and methods for serializing
signatures and public keys.

Picnic is designed to provide security against attacks by quantum computers, in
addition to attacks by classical computers. The building blocks are a zero-knowledge
proof system (with post-quantum security), and symmetric key primitives like hash
functions and block ciphers, with well-understood post-quantum security. In partic-
ular, Picnic does not require number-theoretic, or structured hardness assumptions.

1.1 Overview of the Picnic Signature Scheme

This section gives a very brief overview of the Picnic design. For a detailed description
and a complete list of references to related work see [CDG+17], and the additional
documentation submitted to the NIST Post-Quantum Standardization process.

The public key in Picnic is the pair (C, p) where C = Esk(p), and E is a block
cipher. This document specifies E as the block cipher LowMC [ARS+16, ARS+15].
To create a signature, the signer creates a non-interactive proof of knowledge of sk,
and binds the proof with the message to be signed. LowMC was chosen because the
resulting signature size is smaller than alternative choices.

The proof of knowledge is a specialized version of ZKBoo [GMO16], called ZKB++.
Informally, the prover simulates a multiparty computation protocol (MPC) that al-
lows players to jointly compute Esk(p), when each player has a share of sk. For
Picnic, the number of players is always three. The idea is to have the prover commit
to the simulated state and transcripts of all players, then have the verifier “corrupt”
a random subset of the simulated players by seeing their complete state. The verifier
then checks that the computation was done correctly from the perspective of the
corrupted players, and if so, he has some assurance that the output is correct. The
MPC protocol ensures that corrupting any two of the three players does not reveal
information about the secret. Iterating this process multiple times in parallel gives
the verifier high assurance that the prover knows the secret.

To make the proof non-interactive there are two options. The Fiat-Shamir trans-
form (FS) yields a signature scheme that is secure in the random oracle model (ROM),
whereas the Unruh transform (UR), yields a signature scheme that is secure in the
quantum ROM (QROM). The UR signatures are larger, however.
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1.2 Contributors

The Picnic signature algorithm was designed by the following team.
Melissa Chase, Microsoft
David Derler, Graz University of Technology
Steven Goldfeder, Princeton
Claudio Orlandi, Aarhus University
Sebastian Ramacher, Graz University of Technology
Christian Rechberger, Graz University of Technology & DTU
Daniel Slamanig, AIT Austrian Institute of Technology
Greg Zaverucha, Microsoft

2 Notation

This section describes the notation used in this document. In addition to the notation
in Table 1, the notation vec[0..2] denotes a vector of three elements: vec[0],
vec[1], vec[2]. When vec is used without an index it refers to the entire vector.
All indexing is zero-based.

S The expected security strength in bits (against classical attacks).
n The LowMC blocksize, in bits.
k The LowMC key size, in bits. This is also the signing key.
s The LowMC number of s-boxes.
r The LowMC number of rounds.

KDF A key derivation function (defined in 3.3).
H A hash function.
T Number of parallel repetitions required for soundness of the proof

of knowledge.
`H The output length of H, in bytes.
⊕ the binary exclusive or (XOR) of equal-length bitstrings.

Table 1: Notation used in this document.

3 Cryptographic Components

This section describes the cryptographic components that are used in the Picnic
algorithm.
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3.1 LowMC

Signing and verification compute the LowMC circuit, as part of a non-interactive
MPC protocol. The signing and verification algorithms specified here include suffi-
cient detail to implement LowMC. However, implementations need some constants
that are part of the LowMC definition. These parameters are different for each of
the three LowMC parameter sets in Table 2.

Kmatrix an array of n × k binary matrices, one for initial whitening, and one for
each LowMC round (r + 1 in total)

Lmatrix an array of n× n binary matrices, one for each LowMC round (r in total)

roundconstant an array of n-bit vectors, one for each LowMC round

We use the LowMC constants from the LowMC reference implementation [Tie17],
without modification. These are included in the Picnic reference implementation, in
the header file lowmc constants.c.

3.2 Hash functions

The hash functions in this specification are all based on the SHAKE128 or SHAKE256
SHA-3 functions [NIS15] that have variable output length. In this document when
we write H, this the SHAKE function given in Table 2 with the fixed output length
also specified in Table 2.

There are multiple hashing operations when computing signatures, once to com-
pute commitments, once to compute the challenge, (optionally) when computing
a second type of commitment, and when using a seed value in multiple places. We
prepend a fixed byte to the input of H in order to differentiate hash outputs in differ-
ent uses. When computing commitments we use H0 defined as H0(x) = H(0x00||x)
and when computing the challenge we use H1 defined as H1(x) = H(0x01||x). The
UR parameter sets also use H when computing the function G (defined in Section
4.5.6), and here we use H2 defined as H2(x) = H(0x02||x). Before each use of a seed
value, used in multiple places, we hash it before use with H2 in one instance and H4,
H5 in the others, which prepend the bytes 0x02, 0x04 and 0x05 respectively.

3.3 Key Derivation Functions

When creating and verifying signatures we must expand a short random value (128
to 512 bits) called the seed, into a longer one (about 1KB). This is done with a
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extendable-output function (XOF), based on SHA3, called SHAKE [NIS15]. This
choice allows a single function family (SHA3) for both hashing and key derivation,
as SHAKE with a fixed output length is also a secure hash function. At security
level 1 we use SHAKE128 and security levels 3 and 5 we use SHAKE256. In this
specification all calls to the KDF specify the complete input as a bitstring, i.e.,
additional values such as the context, label and output length, must be encoded as
described here, and passed to the XOF as a single input.

3.4 Views

Signing and verification must compute the views of three players in the MPC proto-
col. An individual view object has three components

view.iShare The input key share of this player, k bits long.

view.transcript The transcript of all communication during the protocol. The
length of this depends on the number of AND gates in the LowMC instance
being used. In particular, the number of AND gates is 3rs, so the length of
the transcript is the number of bytes required to store 3rs bits.

view.oShare The output share of this player, k bits long.

Views must be serialized as the simple concatenation of the above three values when
serialized to compute commitments. In the UR variants we also compute additional
commitments with the function G. The input to G includes the input share only
if the view is index 2 (corresponding to the third party) followed by the transcript,
and not the output share.

4 The Picnic Signature Algorithm

This section describes the parameter sets for Picnic, and the three main operations
key generation, signing and verifying.

4.1 Parameters

Table 2 gives parameters for three security levels L1, L3 and L5, as described in
[oST16], corresponding to the security of AES-128, AES-192 and AES-256 (respec-
tively). For each of the three security levels there are two possible signature algo-
rithms, one based on the Fiat-Shamir transform (FS), and one based on the Unruh
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(UR) transform. For discussion of the differences between these two variants, see
[CDG+17].

All parameters are chosen such that they are expected to provide S bits of security
against classical attacks, and at least S/2 bits of security against quantum attacks.

Parameter Set S n k s r Hash/KDF Digest length T
picnic-L1-FS

128 128 128 10 20 SHAKE128 256 219
picnic-L1-UR

picnic-L3-FS
192 192 192 10 30 SHAKE256 384 329

picnic-L3-UR

picnic-L5-FS
256 256 256 10 38 SHAKE256 512 438

picnic-L5-UR

Table 2: Parameters by security level.

4.2 Key Generation

This section describes how to generate a signing key pair. The public key is denoted
pk = (C, p) and the secret key is denoted sk. The input to key generation is a
security level (one of S = 128, 192 or 256). Note that for a key pair of security level
S it is technically possible to use it with both signature algorithms defined at this
level, e.g., a key pair created with the 128-bit parameter set may be used with both
picnic-L1-FS and picnic-L1-UR. It is not recommended to use a key pair with
multiple signature algorithms.

1. Choose a random n-bit string p, and a random k-bit string sk.

2. Using LowMC with the parameters given in Table 2, compute the encryption
of p with sk, C = E(sk, p).

3. Output: The pair (sk, pk). The secret key is sk, and the public key pk is (C, p).

4.3 Signing Operation

The functions matrix mul, mpc sbox, mpc xor, mpc and and H3 used to specify sign
are specified in later sections (Sections 4.5.4, 4.5.1, 4.5.3, 4.5.2 and 4.5.5 resp.).
The description of signature generation is independent of the security level, but
changes for the signature algorithms using the Unruh transform: picnic-L1-UR,
picnic-L3-UR and picnic-L5-UR. The description below is with respect to a fixed
security parameter, and the flag UR indicates whether the Unruh transform is used.
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Input: Signer’s key pair (sk, pk), a message to be signed the byte array M , such
that 1 ≤ |M | ≤ 255.

Output: Signature on M as a byte array.

1. Initialize a list of triples of views views[0..T-1][0..2], a list of commit-
ments C[0..T-1][0..2] (byte arrays, each of length `H), and a list of seeds
seeds[0..T-1][0..2]. If UR is set, initialize a list of commitments G[0..T-1][0..2]
(byte arrays of variable length, not exceeding the length of a view, including
the input share. See Step 3d below.).

2. Populate seeds with 3T random seeds, each of length S bits. It is recommended
that these be derived deterministically, by calling the KDF in Table 2, with
input

sk‖M‖pk‖S

where S is encoded as a 16-bit little endian integer. The number of bytes
requested is 3T (S/8) (three seeds for each of T iterations, each of size S/8
bytes).

The test vectors associated with this document will use this method to sim-
plify testing. However, the specific method of generating seed does not affect
interoperability, and implementations may differ (e.g., by choosing the seeds
uniformly at random, using an alternative derivation method, or including al-
ternative inputs to derivation).

3. For each parallel iteration t from 0 to T − 1:

(a) Create three random tapes, denoted rand[0..2], using the KDF specified
in Table 2, and the input seeds from Step 2. The seed is hashed with H2

then the digest and the output length are concatenated and input to
the KDF. The output length is encoded as a 16-bit little-endian integer.
Tape rand[0] and rand[1] have length k + 3rs bits, and tape rand[2]

has length 3rs bits. We use the notation rand[i].nextBit() to read the
next bit of the tape.

(b) Compute three shares of sk, denoted x[0..2], each of length k bits:

i. x[0] = first k bits of tape rand[1]

ii. x[1] = first k bits of tape rand[2]

iii. x[2] = sk ⊕ x[0] ⊕ x[1]
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(c) Simulate the MPC protocol to compute the LowMC encrypt circuit, record-
ing the views of the three players. Let state[0..2], be a triple of n-bit
vectors.

i. Compute the initial key shares, and whitening:
key = matrix mul(x, Kmatrix[0])

ii. XOR the round key with p, the plaintext portion of the public key
(C, p). For i from 0 to 2:
state = mpc xor constant(key, p)

iii. For each LowMC round i from 1 to r

A. Compute the round i key shares:
key = matrix mul(x, Kmatrix[i])

The function matrix mul is defined in Section 4.5.4.

B. Apply substitution layer (s-boxes) to state:
state = mpc sbox(state, rand, views[t])

The function mpc sbox is defined in Section 4.5.1.

C. Apply affine layer to state:
state = matrix mul(state, Lmatrix[i-1])

D. Update the state with the XOR of the round constant and the
state:
state = mpc xor constant(state, roundconstant[i-1])

The function mpc xor constant is defined in Section 4.5.3.

E. Update the state with the XOR of the round key and the state:
state = mpc xor(state, key)

iv. Store the output shares in the views, for i from 0 to 2:
views[t][i].oShare = state[i]

(d) Form commitments C[t][0..2]. For i from 0 to 2:
C[t][i] = H0( H4(seed[i]), view[i])

If the flag UR is set, for i from 0 to 2, compute:
G[t][i]= G(H4(seed[i]), view[i])

Note that G is length-preserving, and when et = 0, the length of G[t][i]
is longer by n bits, since the view includes the input share in addition to
the transcript.
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4. Compute the challenge e, by hashing the output shares, commitments, the
signer’s public key pk and the message M .

e = H3(

view[0][0].oShare, view[0][1].oShare, view[0][2].oShare,

...

view[t-1][0].oShare, view[t-1][1].oShare, view[t-1][2].oShare,

C[0][0], C[0][1], C[0][2],

...

C[t-1][0], C[t-1][1], C[t-1][2],

[G[0][0], G[0][1], G[0][2],

...

G[t-1][0], G[t-1][1], G[t-1][2],]
pk, M)

The function H3 is defined in Section 4.5.5, it is a hash function with output
in {0, 1, 2}t. The commitments G[i][j] must be included when the flag UR is
set, and omitted otherwise. We write e as (e0, . . . , et−1) where ei ∈ {0, 1, 2}.

5. For each round t from 0 to T − 1, assemble the proof. For the challenge
et ∈ {0, 1, 2}, compute i = et + 2 (mod 3) and set
bt = C[t][i], [G[t][i]]

Note that G[t][i] is only present if UR is set. Then,
if et = 0, set zt to
view[t][1].transcript, seed[t][0], seed[t][1]

else if et = 1, set zt to
view[t][2].transcript, seed[t][1], seed[t][2], view[t][2].iShare

else if et = 2, set zt to
view[t][0].transcript, seed[t][2], seed[t][0], view[t][2].iShare

6. Serialize (e, b0, . . . , bt−1, z0, . . . , zt−1) as described in Section 5.1 and output it
as the signature.

4.4 Verification Operation

This section describes the Verify operation, to verify a signature created by the Sign
operation in Section 4.3. The functions matrix mul, mpc sbox verify, mpc xor,
mpc and and H3 used to specify verify are specified in later sections (Sections 4.5.4,
4.5.1, 4.5.3, 4.5.2 and 4.5.5 resp.). As with signing, the steps below work for all
security levels, and the flag UR is set for parameter sets using the Unruh transform.
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Input: Signer’s public key pk, a message as a byte array M , such that 1 ≤ |M | ≤
255, a signature σ (also a byte array).

Output: valid if σ is a signature of M with respect to pk or invalid if not.

1. Deserialize the signature σ to (e, b0, . . . , bt−1, z0, . . . , zt−1) as described in Sec-
tion 5.2. If deserialization fails, reject the signature and output invalid. Write
e as (e0, . . . , et−1) where ei ∈ {0, 1, 2}.

2. Initialize lists to contain the three commitments C[0..t-1][0..2], output
shares outputs[0..t-1][0..2], and extra commitments G[0..t-1][0..2]

(if UR is set only), for each parallel iteration. These will be inputs to H3,
verification will re-compute some of these values, and use some provided as
part of the signature.

3. For each parallel iteration t from 0 to T − 1:

(a) Initialize two views view[0] and view[1], random tapes rand[0] and
rand[1], and key shares x[0] and x[1].

(b) For this step there are three cases, one for each challenge value, as in Step
5 of the Sign operation.
If et = 0:

i. Use the provided seed[t][0] to recompute the random tape rand[0].

ii. Use the provided seed[t][2] to recompute the random tape rand[1].

iii. Set view[0].iShare and x[0] to the first k bytes of rand[0].

iv. Set view[1].iShare and x[1] to the first k bytes of rand[1].

If et = 1:

i. Use the provided seed[t][1] to recompute the random tape rand[0].

ii. Use the provided seed[t][2] to recompute the random tape rand[1].

iii. Set view[0].iShare and x[0] to the first k bytes of rand[0].

iv. Set view[1].iShare and x[1] to the input share in zt.

If et = 2:

i. Use the provided seed[t][2] to recompute the random tape rand[0].

ii. Use the provided seed[t][0] to recompute the random tape rand[1].

iii. Set view[0].iShare and x[0] to the input share in zt.

iv. Set view[1].iShare and x[1] to the first k bytes of rand[1].
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(c) Simulate the MPC protocol to compute the LowMC encrypt circuit. This
is similar to signing since the circuit is the same, but because we are only
simulating two of the parties instead of all three, the MPC subroutines
are slightly different.

i. Compute initial round keys key[0] and key[1]:
key = matrix mul(x, Kmatrix[0])

The function matrix mul is defined in Section 4.5.4.

ii. Initialize shares of the state state[0] and state[1] with p, the plain-
text portion of the public key (C, p), and the key.
state = mpc xor constant verify(key, p, et )

iii. For each LowMC round i from 1 to r

A. Compute the round i key shares
key = matrix mul(x, Kmatrix[i])

B. Apply substitution layer (s-boxes) to state:
state = mpc sbox verify(state, rand, views[t])

C. Apply affine layer to state:
state = matrix mul(state, Lmatrix[i-1])

D. Update the state with the XOR of the round constant and the
state:
state = mpc xor constant verify(state, roundconstant[i-1], et)

E. Update the state with the XOR of the round key and the state:
state = mpc xor(state, key)

iv. Store the output shares in the views:
view[0].oShare = state[0]

view[1].oShare = state[1]

v. Update the list of commitments. Two commitments are recomputed
based on the recomputed views, and the third is provided in the proof.
C[t][et] = H0( H4(seed[0]), view[0])

C[t][et + 1 mod 3] = H0( H4(seed[1]), view[1])

C[t][et + 2 mod 3] = c
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where c is the commitment provided as part of the proof, the first
element in bt. If UR is set, additionally update G as follows:
G[t][et] = G(H4(seed[0]), view[0])

G[t][et + 1 mod 3] = G( H4(seed[1]), view[1])

G[t][et + 2 mod 3] = c′

where c′ is the commitment provided as part of the proof, the second
element in bt.

vi. Update the list of output shares
outputs[t][et] = view[0].oShare

outputs[t][et + 1] = view[1].oShare

outputs[t][et + 2] = view[0].oShare ⊕ view[1].oShare ⊕ C
where C is the ciphertext component of the public key (C, p), and the
addition is done modulo 3 (as above).

(d) Recompute the challenge
e′ = H3(

outputs[0][0], outputs[0][1], outputs[0][2],

...

outputs[T-1][0], outputs[T-1][1], outputs[T-1][2],

C[0][0], C[0][1], C[0][2],

...

C[T-1][0], C[T-1][1], C[T-1][2],

[G[0][0], G[0][1], G[0][2],

...

G[T-1][0], G[T-1][1], G[T-1][2],]
pk, M)

The commitments G[i][j] must be included when the flag UR is set, and
omitted otherwise.

(e) If e and e′ are equal, output valid and otherwise output invalid.

4.5 Supporting Functions

The Sign (§4.3) and Verify (§4.4) operations use similar functions to simulate the
MPC protocol used in the proof of knowledge. This section describes these functions.

4.5.1 LowMC S-Box Layer: mpc sbox, mpc sbox verify

This section describes how the internal LowMC state is updated in the s-box layer.
The number of s-boxes is fixed per parameter set, see Table 2. The input is the three
shares of the state, random tapes and views. The tapes and the views are input
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because the operations in the s-box layer use ANDs and so this function must update
the transcript of the MPC protocol. This function also depends on the parameter r,
defined in Table 2. The function mpc sbox is used when signing, and verification uses
mpc sbox verify, which has the same definition, but calls to mpc and are replaced
with calls to mpc and verify.

In the following pseudocode, indexing is bitwise and zero-based. The temporary
variables are triples of bits a[0..2], b[0..2] and c[0..2], of each of the three input
shares (ab, bc and ca have the same type).

Input: Shares of LowMC state state, random tapes rand, and views as defined in
Section 4.3. The input views a triple of views, corresponding to one parallel round.
Output: The input variable state is modified in place
Pseudocode:

for i from 0 to (3*r - 1)

for j from 0 to 2

a[j] = state[j][n - 1 - i - 2]

b[j] = state[j][n - 1 - i - 1]

c[j] = state[j][n - 1 - i]

ab = mpc_AND(a, b, rand, views)

bc = mpc_AND(b, c, rand, views)

ca = mpc_AND(c, a, rand, views)

for j from 0 to 2

state[j][n - 1 - i - 2] = a[j] XOR bc[j]

state[j][n - 1 - i - 1] = a[j] XOR b[j] XOR ca[j]

state[j][n - 1 - i] = a[j] XOR b[j] XOR c[j] XOR ab[j]

4.5.2 MPC AND operations: mpc and, mpc and verify

These functions take secret shares of bits a, b and compute the binary AND c =

a AND b, updating the transcript of the MPC protocol. The randomness is read
from the pre-computed random tapes, also provided as input. For signing, mpc and

takes three inputs, and for verification, a simpler two-input version, mpc and verify

is used. Note that in verification, one of the players’ output shares is provided as
input.

mpc and
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Input: random tapes rand, the triple of views for this parallel round views, and
secret-shared inputs a[0..2], b[0..2]
Output: secret shares c[0..2] = a AND b, updates to the transcripts in views

Pseudocode:

r[0] = rand[0].nextBit()

r[1] = rand[1].nextBit()

r[2] = rand[2].nextBit()

for i from 0 to 2

c[i] = (a[i] AND b[(i + 1) % 3]) XOR

(a[(i + 1) % 3] AND b[i]) XOR

(a[i] AND b[i]) XOR

r[i] XOR r[(i + 1) % 3]

views[i].transcript.append(c[i])

return c

mpc and verify

Input: random tapes rand, the pair of views for this parallel round views, and
secret-shared inputs a[0..1], b[0..1]
Output: secret shares c[0..1] = a AND b, updates to the transcripts in views

Pseudocode:

r[0] = rand[0].nextBit()

r[1] = rand[1].nextBit()

c[0] = (a[0] AND b[1]) XOR (a[1] AND b[0]) XOR

(a[0] AND b[0]) XOR r[0] XOR r[1]

views[0].transcript.append(c[0])

c[1] = views[1].transcript.nextBit()

return c

4.5.3 MPC XOR operation: mpc xor, mpc xor constant

This function takes secret-shared input bits a, b and computes the secret shares of
c = a⊕ b. Unlike the AND operation, which requires communication between play-
ers, the XOR operation is done locally in the MPC protocol, and does not need to
update the views.
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Input: m bit vectors of length L: a[0..m - 1][0..L - 1] and b[0..m - 1][0..L

- 1]

Output: XOR of the two inputs c[0..2][0..L - 1]

Pseudocode:

for i = 0 to m - 1

c[i] = a[i] XOR b[i] // XOR of L-bit strings

Note that (i) m is always 3 during the Sign operation, and 2 during verify, and
(ii) implementations may work on multiple bits simultaneously using the processor’s
XOR instruction on word size operands.

XOR with a constant When one of the operands is a public constant instead of a
secret share vector, the constant is XORed with only one of the secret shares. When
signing, in mpc xor constant, the first share is always XORed with the constant.
When verifying, in mpc xor constant verify, if the challenge et = 0 then we XOR
the first secret share with the constant, and when et = 2 we XOR the second secret
share with the constant. (This is because the state corresponding to the first player
is in a different position depending on the challenge.)

4.5.4 Binary Vector-Matrix Multiplication: matrix mul

This function computes a vector-matrix product, with elements in GF(2). For sign-
ing, three vectors x, y, and z in GF(2)k are input along with a single matrix M ∈
GF(2)k×k, and three vectors xM, yM and zM in GF(2)k are output. For signature
verification, only x and y are input, and xM and yM are output. The pseudocode
below is modified for verification by omitting lines depending on z.

The function parity(v) is the usual parity function: on input a vector v, of length
k, it returns 1 if the number of 1 bits in v is odd, and zero otherwise. It can be
implemented as v0 ⊕ v1 ⊕ ...⊕ vk−1.

Let x[i] denote the i-th bit of x, and M[i][j] denote the bit in the i-th row and
j-th column of M .

Input: three k-bit vectors x, y, z, a k-bit by k-bit matrix M
Output: three k-bit vectors a = xM , b = yM and c = zM
Pseudocode:

tempA, tempB, tempC are k-bit vectors

for i = 0 to k - 1

for j = 0 to k - 1
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tempA[j] = x[j] AND M[i][j]

tempB[j] = y[j] AND M[i][j]

tempC[j] = z[j] AND M[i][j]

a[k - 1 - i] = parity(tempA)

b[k - 1 - i] = parity(tempB)

c[k - 1 - i] = parity(tempC)

Output (a,b,c)

Notes

1. If inputs and outputs may overlap (e.g., when computing x = xM) a temporary
variable is required for the output.

2. There are many ways to compute this function, implementations may use an
alternative algorithm for better efficiency. For example, see [Alb17].

4.5.5 Computing the challenge: H3

The function H3 hashes an arbitrary length bitstring to a length T output in {0, 1, 2}
(i.e., H3 : {0, 1}∗ → {0, 1, 2}t). The hash function H is called on the input, then
iterated as required, to compute an output of length T .

In the pseudocode below, the hash function H is given in Table 2, along with the
value for the parameter T . Recall that H1 is defined as H1(x) = H(0x01||x).

Input: bitstring b
Output: vector e, of integers in {0, 1, 2}
Pseudocode:

1. Compute h = H1(b), write h in binary as (h0, h1, ..., hS).

2. Iterate over pairs of bits (h0, h1), (h2, h3), . . .. If the pair is

(0, 0), append 0 to e,

(0, 1), append 1 to e,

(1, 0), append 2 to e,

(1, 1), do nothing.

If e has length T , return.

3. If all pairs are consumed and e still has fewer than T elements, set h = H(h)
and return to Step 2.
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4.5.6 Function G

The function G has two inputs: a seed of length S bits, and a view, v, of varying
length. The output has length `G, computed as the sum of the length of the seed
and the length of the view. Recall that not all views are equal length, `G differs
depending on which player computed the view. G is implemented with the KDF
from Table 2, namely, with SHAKE and the following input:

H5(seed)‖v‖`G

The integer `G is encoded as a 16-bit little endian integer.

5 Serialization

In this section we specify how to serialize and deserialize Picnic keys and signatures.

5.1 Serialization of Signatures

This section specifies how to serialize signatures created in Section 4.3.
This is a binary, fixed-length encoding, designed to minimize the space required

by the signature. The components of the signature (views, seeds, commitments, etc.)
are all of fixed length for a given parameter set. The Fiat-Shamir parameter sets
have signatures that vary in size, depending on the challenge; note that in Step 5, an
additional input share is output when the challenge is 1 or 2. The serialization does
not include an identifier indicating the parameter set, as not all applications require
it.

Input: The signature (e, b0, . . . , bT−1, z0, . . . , zT−1), as computed in Section 4.3,
Step 5.

Output: A byte array B, encoding the signature.

1. Write the challenge to B, using 2T bits, padding with zero bits on the right to
the nearest byte.

2. For each t from 0 to T − 1, append (bt, zt) as follows. For values that do not
use an even number of bytes, pad with zero bits to the next byte.

(a) Append bt, a commitment of length `H , and if the UR flag is set, also
append the second commitment (denoted G[t][i] in Step 3d of signing).
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(b) Append zi (in the order presented in Step 5 of Sign)

i. Append the transcript.

ii. Append the two seed values in zt,

iii. If et is 1 or 2, append the input share.

3. Output B.

5.2 Deserialization of Signatures

This section describes how to deserialize a byte array created by Section 5.1 to a
signature for use in verification. The deserialization process reads the input bytes
linearly. Since the signature length can vary depending on the challenge (encoded
first in the byte array), it is recommended that implementations first compute the
expected length from e, and reject the signature before parsing further, if B does
not have the expected number of remaining bytes.

Input: A byte array B, encoding the signature.

Output: The signature (e, b0, . . . , bT−1, z0, . . . , zT−1), as computed in Section 4.3,
Step 5, or null if deserialization fails.

1. Read the first (2T + 7)/8 bytes from B. If the read fails, return null. Ensure
that each pair of bits in the first 2T bits are in {0, 1, 2} and return null if
not. If padding bits are required for this value of T (see §5.1), ensure that all
padding bits are zero, and return null if not. Assign these bytes to e. We use
the notation e = (e0, . . . , eT−1) to denote the individual pairs of bits.

2. For each t from 0 to T − 1, read (bt, zt) from B as follows. If any of the reads
are not possible because B is too short, abort and return null.

(a) Create bt by reading a commitment of length `H from B. If UR is set, also
read a second commitment from B, of length 3rs + n bits when et == 0
and 3rs bits otherwise.

(b) Read zt, as follows:

i. Read the transcript from B, assign it to the first component of zt.
Recall that the length of the transcript is 3rs bits (where r and s are
specified in Table 2).

ii. Read the first seed value of length S bits from B, append it to zt.
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iii. Read the second seed value of length S bits from B, append it to zt.

iv. If et is 1 or 2, read an input share of length S bits from B and append
it to zt.

3. Output (e, b0, . . . , bT−1, z0, . . . , zT−1).

5.3 Serialization of Picnic Keys

A Picnic public key (C, p) should be serialized as the bits of C, followed by the
bits of p. Both are first converted to byte arrays, are both S bits long, and S is
guaranteed to be a multiple of eight. For a given parameter set, public keys can
therefore be unambiguously parsed. Note that the length of a serialized public key
uniquely identifies the security level, but not the exact parameter set, e.g., public
keys for both Picnic-L1-FS and Picnic-L1-UR have the same length. Applications
that handle multiple parameter sets are responsible for encoding the parameter set
along with the public key.

Serializing the private key is done by serializing the S bits of sk, as a byte array.
As with public keys, the length of the private key identifies the security level, but not
the parameter set. Applications working with private keys for multiple parameter
sets must also serialize the parameter set.

6 Additional Considerations

6.1 Signing Large Messages

Note that the sign operation makes two passes over M , once to generate the per-
signature randomness, and once when computing the challenge. In applications
where this cost is prohibitive, it is recommended to first hash M , and pass H(M) to
the signature algorithm specified here. The function H must be collision resistant,
and the performance of picnic signatures is only weakly affected by the output length.
Implementations that must pre-hash M should use SHAKE-256 with 512-bit digests,
SHA3-512, or SHA-512.

A signing key used with pre-hashing must not be used without it, and vice-versa.

6.2 Test Vectors

The reference implementation and the submission package for the NIST Post-Quantum
Standardization process contain test vectors that implementations may use to verify
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conformance with this specification. The test vectors contain serialized versions of
Picnic key pairs, messages and the corresponding Picnic signature. The intermediate
values list the individual components of the signature, that should be produced after
deserialization.

Note that key generation tests the correctness of an implementation’s LowMC
implementation, and in particular, that all of the constants required by LowMC are
correct. In order to test the output of signing against a known value, implementations
must use the de-randomized implementation specified here (§4.3, Step 2), where the
per-signature ephemeral random values are derived from the signer’s secret key and
the message to be signed (as opposed to being randomly generated).
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