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Changelog

This is the changelog of this document and the corresponding implementation of qTESLA.

Version Date Description of changes

1.0 11/30/2017
• Original submission to NIST.

2.0 06/14/2018
• qTESLA described generically using k > 1 R-LWE samples.
• Signing algorithm changed to probabilistic (instead of deter-

ministic).
• New parameter sets proposed: three heuristic and two

provably-secure parameter sets.
• Improved explanation of the realization of the different func-

tions (Section 2.4).
• Minor changes and refinements throughout the document.
• C-only reference implementation corrected; e.g., to have

proper protection against timing and cache attacks.
• C-only reference implementation improved; e.g., to have

more resilience against certain fault attacks.

2.1 06/30/2018
• Corrected typo that assumed a exponent d or d+ 1 instead

of d− 1 or d (resp.) in some places.
• Small fix in the bounds of the signature rejection evaluation,

line 18 of Algorithm 7. Updated KATs accordingly.
• Applied notation mod± to denote the use of a centered rep-

resentative in Algorithms 7 and 8.
• Updated correctness proof in Section 2.3.
• Replaced bit-hardness by corresponding bit-security figures

for the qTESLA parameter sets in Table 6.
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1 Introduction

This document presents a detailed specification of qTESLA, a family of post-quantum signa-
ture schemes based on the hardness of the decisional Ring Learning With Errors (R-LWE)
problem. qTESLA is an efficient variant of the Bai-Galbraith signature scheme —which in
turn is based on the “Fiat-Shamir with Aborts” framework by Lyubashevsky— adapted
to the setting of ideal lattices.

qTESLA utilizes two different approaches for parameter generation in order to target a wide
range of application scenarios. The first approach, referred to as “heuristic qTESLA”,
follows a heuristic parameter generation. The second approach, referred to as “provably-
secure qTESLA”, follows a provably-secure parameter generation according to existing se-
curity reductions.

Concretely, qTESLA includes five parameter sets targeting two security levels:

I Heuristic qTESLA:

(1) qTESLA-I: NIST’s security category 1.

(2) qTESLA-III-speed: NIST’s security category 3 (option for speed).

(3) qTESLA-III-size: NIST’s security category 3 (option for size).

II Provably-secure qTESLA:

(1) qTESLA-p-I: NIST’s security category 1.

(2) qTESLA-p-III: NIST’s security category 3.

The present document is organized as follows. In the remainder of this section, we sum-
marize the main features of qTESLA and describe related previous work. In Section 2, we
provide the specification details of the scheme, including a basic and a formal algorithmic
description, the functions that are required for the implementation, and the proposed pa-
rameter sets. In Section 3, we analyze the performance of our implementations. Section 4
includes the details of the known answer values. Then, we discuss the (provable) security
of our proposal in Section 5, including an analysis of the concrete security level and the
security against implementation attacks. Section 6 ends this document with a summary of
the advantages and limitations of qTESLA.

1.1 qTESLA highlights

qTESLA comes in two flavors: heuristic qTESLA and provably-secure qTESLA. The former
is optimized for efficiency and key size while the latter is tailored for high-security applica-
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tions in which the additional security assurances from the provably-secure proof are valued.
In the following paragraphs we highlight relevant properties of each approach.

qTESLA’s main features can be summarized as follows:

• Simplicity. qTESLA is simple and easy to implement, and its design makes possi-
ble the realization of compact and portable implementations that achieve high per-
formance. In addition, the use of a simplified Gaussian sampler is limited to key
generation.

• Compactness of signatures. qTESLA signatures are designed to be relatively small,
at the expense of (slightly) larger public keys.

• Security foundation. The underlying security of qTESLA is based on the hardness
of the decisional R-LWE problem, and comes accompanied by a tight security proof
in the (quantum) random oracle model.

• Practical security. By design, qTESLA facilitates secure implementations. In par-
ticular, it supports constant-time implementations (i.e., implementations that are
secure against timing and cache side-channel attacks), and is inherently protected
against certain simple yet powerful fault attacks.

• Scalability. qTESLA’s simple design makes it straightforward to easily support more
than one security level and parameter set with a single, efficient implementation.

In addition, Heuristic qTESLA, comprising the parameters sets qTESLA-I, qTESLA-III-speed
and qTESLA-III-size, features:

• High speed. Heuristic qTESLA achieves very high performance for the operations
that are typically time-critical, namely, signing and verification. This is accomplished
at the expense of a moderately more expensive key generation, which is usually
performed offline.

For added flexibility, we present two options for Heuristic qTESLA for the NIST’s security
category 3, namely, qTESLA-III-speed, which prioritizes raw speed over signature and key
sizes, and qTESLA-III-size, which prioritizes signature and key sizes over speed.

Security. The security of qTESLA is proven using the reductionist approach, i.e., we
construct an efficient reduction that turns any successful adversary against qTESLA into
one that solves R-LWE. Accordingly, we instantiate heuristic qTESLA such that the cor-
responding R-LWE parameters (namely the dimension n, the standard deviation of the
discrete Gaussian distribution σ, and the modulus q) provide an R-LWE instance of a cer-
tain hardness. This approach features high-speed execution and a small memory footprint
while requiring relatively compact keys and signatures.
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Since our security reductions are also explicit, i.e., they explicitly relate an instantiation
of qTESLA with an R-LWE instance, we go one step further and choose parameters ac-
cording to our security reduction. That is, these qTESLA instantiations, which are called
provably-secure qTESLA parameter sets, are provably secure in the (quantum) random
oracle model. For provably-secure qTESLA we present the parameter sets qTESLA-p-I

and qTESLA-p-III. Despite these security assurances, provably-secure qTESLA achieves
relatively good performance and offers relatively compact signatures. On the downside,
this option requires larger public keys.

In summary, the qTESLA family of post-quantum signature schemes offers great flexibility
by allowing a selection of schemes that exhibit different degrees of performance and security.
In each case, design decisions have been taken towards enabling efficient yet simple and
compact implementations.

1.2 Related work

The signature scheme proposed in this submission is the result of a long line of research.
The first work in this line is the signature scheme proposed by Bai and Galbraith [14]
which is based on the Fiat-Shamir construction of Lyubashevsky [47]. The scheme by Bai
and Galbraith is constructed over standard lattices and comes with a (non-tight) security
reduction from the LWE and the short integer solution (SIS) problems in the random
oracle model. Dagdelen et al. [26] presented improvements and the first implementation of
the Bai-Galbraith scheme. The scheme was subsequently studied under the name TESLA
by Alkim, Bindel, Buchmann, Dagdelen, Eaton, Gutoski, Krämer, and Pawlega [9], who
provided an alternative security reduction from the LWE problem in the quantum random
oracle model.

A variant of TESLA over ideal lattices was derived under the name ring-TESLA [1] by
Akleylek, Bindel, Buchmann, Krämer, and Marson. Since then, there have appeared sub-
sequent works aimed at improving the efficiency of the scheme [16, 39]. Most notably, a
scheme called TESLA# [16] by Barreto, Longa, Naehrig, Ricardini, and Zanon included
several implementation improvements. Finally, several works [19, 20, 34] have focused on
the analysis of ring-TESLA against side-channel and fault attacks.

In this document, we consolidate the most relevant features of the prior works with the
goal of designing the quantum-secure signature scheme qTESLA.
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2 Specification

Next, we give an informal description of the basic scheme that is used to specify qTESLA.
A formal specification of qTESLA’s key generation, signing and verification algorithms then
follows in Section 2.2. The correctness of the scheme is discussed in Section 2.3. We describe
the implementation of the functions required by qTESLA in Section 2.4, and explain all the
system parameters and the proposed parameter sets in Section 2.5.

2.1 Basic signature scheme

Informal descriptions of the algorithms that give rise to the signature scheme qTESLA are
shown in Algorithms 1, 2 and 3. These algorithms require two basic terms, namely, B-short
and well-rounded, which are defined below.

Let q, LE , LS , and d be system parameters that denote the modulus, the bound constant
for error polynomials, the bound constant for the secret polynomial, and the rounding
value, respectively. An integer polynomial y is B-short if each coefficient is at most B in
absolute value. We call an integer polynomial w well-rounded if w is (bq/2c − LE)-short
and [w]L is (2d−1−LE)-short, where [w]L denotes the unique integer in (−2d−1, 2d−1] ⊂ Z
such that w = [w]L modulo 2d. Likewise, [w]M is the value represented by all but the d
least significant bits of (w − [w]L). Let R = Z[x]/〈xn + 1〉 and Rq = Zq[x]/〈xn + 1〉. For
simplicity we assume that the hash oracle H(·) maps from {0, 1}∗ to H, where H denotes
the set of polynomials c ∈ R with coefficients in {−1, 0, 1} with exactly h nonzero entries,
i.e., we ignore the encoding function F introduced in Section 2.2.

Because of the random generation of the polynomial y (see line 1 of Alg. 2), Algorithm 2 is
described as a non-deterministic algorithm. This property implies that different random-
ness is required for each signature. For the formal specification of qTESLA we incorporate
an additional improvement: qTESLA requires a combination of fresh randomness and a fixed
value for the generation of y (see Section 2.2). This design feature is added in order to pre-

Algorithm 1 Informal description of the key generation

Require: -
Ensure: Secret key sk = (s, e1, ..., ek, a1, ..., ak), and public key pk = (a1, ..., ak, t1, ..., tk)

1: a1, ..., ak ← Rq invertible ring elements.
2: Choose s ∈ R with entries from Dσ. Repeat step if the h largest entries of s sum to LS .
3: For i = 1, ..., k: Choose ei ∈ R with entries from Dσ. Repeat step at iteration i if the h largest

entries of ei sum to LE .
4: For i = 1, ..., k: Compute ti ← ais+ ei ∈ Rq.
5: Return sk = (s, e1, ..., ek, a1, ..., ak) and pk = (a1, ..., ak, t1, ..., tk).
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Algorithm 2 Informal description of the signature generation

Require: Message m, secret key sk = (s, e1, ..., ek, a1, ..., ak)
Ensure: Signature (z, c)

1: Choose y uniformly at random among B-short polynomials in Rq.
2: c← H([a1y]M , ..., [aky]M ,m).
3: Compute z ← y + sc.
4: If z is not (B − LS)-short then retry at step 1.
5: For i = 1, ..., k: If aiy − eic is not well-rounded then retry at step 1.
6: Return (z, c).

Algorithm 3 Informal description of the signature verification

Require: Message m, public key pk = (a1, ..., ak, t1, ..., tk), and signature (z, c)
Ensure: “Accept” or “reject” signature

1: If z is not (B − LS)-short then return reject.
2: For i = 1, ..., k: Compute wi ← aiz − tic ∈ Rq.
3: If c 6= H([w1]M , ..., [wk]M ,m) then return reject.
4: Return accept.

vent some implementation pitfalls and, at the same time, protect against some simple but
devastating fault attacks. We discuss the advantages of our approach in Section 5.3.

2.2 Formal description of qTESLA

Below, we define all the necessary functions, sets, and system parameters in qTESLA.

The description of the scheme depends on the following system parameters: λ, κ, n, k, q,
σ, LE , LS , B, d, h, and bGenA. Let Zq = Z/qZ, R = Z[x]/〈xn + 1〉, Rq = Zq[x]/〈xn + 1〉,
Rq,[I] = {f ∈ Rq | f =

∑n−1
i=0 fix

i, fi ∈ [−I, I]}, and Hn,h = {f ∈ Rq | f =
∑n−1

i=0 fix
i, fi ∈

{−1, 0, 1},
∑n−1

i=0 |fi| = h}. Let R be a ring, and let inverse elements in this ring be
represented by R×. Let f =

∑n−1
i=0 fix

i ∈ R. Then we define the reduction of f modulo
q to be (f mod q) =

∑n−1
i=0 (fi mod q)xi ∈ Rq. Let d ∈ N and c ∈ Z. For an even (odd)

modulus m ∈ Z≥0, define c′ = c mod±m as the unique element −m/2 < c′ ≤ m/2 (resp.
−bm/2c < c′ ≤ bm/2c) such that c′ = c mod m. As defined before, we denote by [c]L
the unique integer in (−2d−1, 2d−1] ⊂ Z such that c = [c]L modulo 2d; that is, [c]L =
c mod±2d. Let [·]M be the function [·]M : Z→ Z, c 7→ (c mod±q − [c]L)/2d. Furthermore,
let f =

∑n−1
i=0 fix

i ∈ Rq, for which [f ]L =
∑n−1

i=0 [fi]L x
i and [f ]M =

∑n−1
i=0 [fi]M xi. Let

f ∈ Rq be a polynomial with coefficients being ordered (without losing any generality) as
|f1| ≥ |f2| ≥ ... ≥ |fn|. Then we define maxi(f) = fi. Parameter bGenA ∈ Z>0 represents
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the number of blocks requested to cSHAKE128 in a first call during generation of the public
polynomials a1, . . . , ak.

In the remainder, we write f =
∑n−1

i=0 fix
i to denote a polynomial in Rq (i.e., a polynomial

of degree at most n − 1 with coefficients from the ring Zq). We use the same symbol f
to also denote the coefficient vector f = (f0, f1, . . . , fn−1) ∈ Znq . In some instances we
represent polynomials as fj (e.g., to represent polynomials a1, . . . , ak). In these cases,
we write fj =

∑n−1
i=0 fj,ix

i, and the corresponding vector representation is given by fj =
(fj,0, fj,1, . . . , fj,n−1) ∈ Znq . Likewise, s-bit strings r ∈ {0, 1}s and r′ ∈ {−1, 0, 1}s are
written as vectors over the sets {0, 1} and {−1, 0, 1} (resp.), in which an element in the i-th
position is represented by ri (r′i, resp.). Multiple instances of the same set are represented
by appending an additional superscript. For example, {0, 1}s,t corresponds to t s-bit strings
each defined over the set {0, 1}.

The centered discrete Gaussian distribution for x ∈ Z with standard deviation σ is defined
to be Dσ = ρσ(x)/ρσ(Z), where σ > 0, ρσ(x) = exp(−x

2

2σ2 ), and ρσ(Z) = 1 + 2
∑∞

x=1 ρσ(x).
We write c ←σ Z to denote sampling of a value c with distribution Dσ. For a polynomial
c ∈ R, we write c←σ R to denote sampling each coefficient of c with distribution Dσ. For
a finite set S, we denote sampling the element s uniformly from S with s←$ S.

qTESLA’s algorithms for key generation, signing and signature verification are given in
Algorithms 4, 7, and 8, respectively. The two subroutines checkE and checkS that are
called during key generation are depicted in Algorithms 6 and 5, respectively.

Remark 1. In an earlier description of qTESLA, we described the algorithms in a less
general way using only one sample of the ring learning with errors problem. In particular,
the public key consisted of seeda (corresponding to a) and t, and the secret key consisted of
the polynomials s and e, together with seedy and seeda.

We define the following functions that are required in the implementation of qTESLA (refer
to the specified sections for explicit details about their realization):

• The pseudorandom function PRF1 : {0, 1}κ → {0, 1}κ,k+3. This function takes as
input a seed pre-seed that is κ bits long and maps it to (k + 3) seeds of κ bits each
(cf. Section 2.4.2).

• The pseudorandom function PRF2 : {0, 1}κ×{0, 1}κ×{0, 1}∗ → {0, 1}κ. This function
takes as inputs the seed seedy and the random value r, each κ bits long, and a message
m and maps them to the seed rand of κ bits (cf. line 3 of Algorithm 7).

• The generation function of the public polynomials a1, ..., ak GenA : {0, 1}κ → Rkq .
This function takes as input the seed seeda that is κ bits long and maps it to k
polynomials ai ∈ Rq (cf. Section 2.4.3).

• The Gaussian sampler function GaussSampler : {0, 1}κ × Z → Z. This function
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samples the polynomials s, e1, ..., ek according to the Gaussian distribution Dσ taking
as inputs a κ-bit seed rand and a nonce S ∈ Z>0 (cf. Section 2.4.4).

• The encoding function Enc : {0, 1}κ → {−1, 0, 1}h,2. This function encodes a κ-bit
hash value c′ as a polynomial c ∈ Hn,h. The polynomial c is in turn encoded as the
two lists post list and sign list ∈ {−1, 0, 1}h containing the positions and signs of
its nonzero coefficients, respectively (cf. Section 2.4.5).

• The sampling function of the polynomial y, ySampler : {0, 1}κ × Z → Rq,[B]. This
function samples a polynomial y ∈ Rq,[B] taking as inputs a κ-bit seed rand and a
nonce S ∈ Z>0 (cf. Section 2.4.6).

• The hash function H : Rkq × {0, 1}∗ → {0, 1}κ. This function takes as inputs k
polynomials v1, ..., vk ∈ Rq and computes [v1]M , ..., [vk]M . The result is then hashed
together with a message m to a string κ bits long (cf. Section 2.4.7).

Algorithm 4 qTESLA’s key generation

Require: -
Ensure: secret key sk = (s, e1, ..., ek, seeda, seedy), and public key pk = (seeda, t1, ..., tk)

1: pre-seed←$ {0, 1}κ
2: seeds, seede1 , . . . , seedek , seeda, seedy ← PRF1(pre-seed) [Algorithm 9]
3: a1, ..., ak ← GenA(seeda) [Algorithm 10]
4: do
5: s←σ R [Algorithm 11]
6: while checkS(s) 6= 0 [Algorithm 5]
7: for i = 1, ..., k do
8: do
9: ei ←σ R [Algorithm 11]

10: while checkE(ei) 6= 0 [Algorithm 6]
11: ti ← ais+ ei mod q
12: end for
13: sk ← (s, e1, ..., ek, seeda, seedy)
14: pk ← (seeda, t1, ..., tk)
15: return sk, pk
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Algorithm 5 checkS: simplifies the security
reduction by ensuring that ‖sc‖∞ ≤ LS .

Require: s ∈ R
Ensure: {0, 1} . true, false

1: if
∑h

i=1 maxi(s) > LS then
2: return 1
3: end if
4: return 0

Algorithm 6 checkE: ensures correctness of
the scheme by checking that ‖ec‖∞ ≤ LE .

Require: e ∈ R
Ensure: {0, 1} . true, false

1: if
∑h

i=1 maxi(e) > LE then
2: return 1
3: end if
4: return 0

Algorithm 7 qTESLA’s signature generation

Require: message m, and secret key sk = (s, e1, ..., ek, seeda, seedy)
Ensure: signature (z, c′)

1: counter← 0
2: r ←$ {0, 1}κ
3: rand← PRF2(seedy, r,m)
4: y ← ySampler(rand, counter) [Algorithm 14]
5: a1, ..., ak ← GenA(seeda) [Algorithm 10]
6: for i = 1, ..., k do
7: vi = aiy mod±q
8: end for
9: c′ ← H([v1]M , ..., [vk]M ,m) [Algorithm 15]

10: c← Enc(c′) [Algorithm 13]
11: z ← y + sc
12: if z /∈ Rq,[B−LS ] then
13: counter++
14: Restart at step 4
15: end if
16: for i = 1, ..., k do
17: wi ← vi − eic mod±q
18: if ‖[wi]L‖∞ ≥ 2d−1 − LE ∨ ‖wi‖∞ ≥ bq/2c − LE then
19: counter++
20: Restart at step 4
21: end if
22: end for
23: return (z, c′)
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Algorithm 8 qTESLA’s signature verification

Require: message m, signature (z, c′), and public key pk = (seeda, t1, ..., tk)
Ensure: {0,−1} . accept, reject signature

1: c← Enc(c′) [Algorithm 13]
2: a1, ..., ak ← GenA(seeda) [Algorithm 10]
3: for i = 1, ..., k do
4: wi ← aiz − tic mod±q
5: end for
6: if z /∈ Rq,[B−LS ] ∨ c 6= H([w1]M , ..., [wk]M ,m) then
7: return −1
8: end if
9: return 0

2.3 Correctness of the scheme

To establish the correctness of qTESLA we need to prove that the nonce input to the hash
function H at signing (line 9 of Algorithm 7) is the same as the nonce input to the hash
function H at verification (line 6 of Algorithm 8). That is, we need to prove that, for
genuine signatures, [ay mod±q]M = [az− tc mod±q]M = [a(y+ sc)− (as+ e)c mod±q]M =
[ay+asc−asc−ec mod±q]M = [ay−ec mod±q]M . From the definition of [·]M , this means
proving that (ay mod±q− [ay mod±q]L)/2d = (ay− ec mod±q− [ay− ec mod±q]L)/2d, or
simply [ay mod±q]L = ec+ [ay − ec mod±q]L.

The above equality must hold component-wise, so let us prove the corresponding property
for individual integers.

Assume that for integers α and ε it holds that |[α− ε mod±q]L| < 2d−1 − LE , |ε| ≤ LE <
bq/2c, |α− ε mod±q| < bq/2c − LE , and −bq/2c < α ≤ bq/2c (i.e., α mod±q = α). Then,
we need to prove that

[α]L = ε+ [α− ε mod±q]L. (1)

Proof. To prove equation (1), start by noticing that |ε| ≤ LE < 2d−1 implies [ε]L = ε.
Thus, from −2d−1 + LE < [α − ε mod±q]L < 2d−1 − LE and −LE ≤ [ε]L ≤ LE it follows
that

−2d−1 = −2d−1 + LE − LE < [ε]L + [α− ε mod±q]L < 2d−1 − LE + LE = 2d−1,

and therefore

[[ε]L + [α− ε mod±q]L]L = [ε]L + [α− ε mod±q]L = ε+ [α− ε mod±q]L. (2)

Next we prove that
[[ε]L + [α− ε mod±q]L]L = [α]L. (3)
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We note that since |ε| ≤ LE < bq/2c it holds that [ε]L = [ε mod±q]L. It holds further that

[[ε mod±q]L + [α− ε mod±q]L]L (4)

= ((ε mod±q) mod±2d + (α− ε mod±q) mod±2d) mod±2d (5)

by the definition of [·]L
= (ε mod±q + (α− ε mod±q)) mod±2d. (6)

Since |ε| ≤ LE and |α − ε mod±q| < bq/2c − LE , it holds that |α − ε| + |ε| < (bq/2c −
LE) + LE = bq/2c. Hence, equation (6) is the same as

= (ε+ α− ε mod±q) mod±2d = (α mod±q) mod±2d = α mod±2d

= [α]L.

Combining equations (2) and (3) we deduce that [α]L = ε+ [α− ε mod±q]L, which is the
equation we needed to prove.

Now define α := (ay)i and ε := (ec)i. From line 18 of Algorithm 7, we know that
‖[ay − ec]L‖∞ < 2d−1 − LE and ‖ay − ec‖∞ < bq/2c − LE for a valid signature, and
that Algorithm 4 (line 10) guarantees ‖ec‖∞ ≤ LE . Likewise, by definition it holds that
LE < bq/2c; see Section 2.5. Finally, v = ay is reduced mod±q in line 7 of Algorithm 7
and, hence, v is in the centered range −bq/2c < ay ≤ bq/2c.

In conclusion, we get the desired condition for ring elements, [ay]L = ec+[ay−ec]L, which
in turn means [az − tc]M = [ay]M as argued above.

2.4 Realization of the required functions

2.4.1 Hash and pseudorandom functions

In addition to the hash function H and the pseudorandom functions PRF1 and PRF2,
several functions that are used for the implementation of qTESLA require pseudorandom
bit generation. This functionality is provided by so-called extendable output functions
(XOF).

For the remainder, the format that we use to call a XOF is given by XOF(X, L, S), where
X is the input string, L specifies the output length in bytes, and S specifies an optional
domain separator 1.

Next, we summarize how XOFs are instantiated using SHAKE [31] and cSHAKE [42] in
the different functions requiring hashing or pseudorandom bit generation.

1Specifically, the domain separator S is used with cSHAKE, but ignored when SHAKE is used.
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• PRF1: the XOF is instantiated with SHAKE128 (resp. SHAKE256) for parameter
sets qTESLA-I and qTESLA-p-I (resp. for other parameter sets); cf. Algorithm 9.

• PRF2: the same as PRF1.

• GenA: the XOF is instantiated with cSHAKE128 (cf. Algorithm 10).

• GaussSampler: the XOF is instantiated with cSHAKE128 (resp. cSHAKE256) for
parameter sets qTESLA-I and qTESLA-p-I (resp. for other parameter sets); cf. Al-
gorithm 11.

• Enc: the XOF is instantiated with cSHAKE128 (cf. Algorithm 13).

• ySampler: the XOF is instantiated with cSHAKE128 (resp. cSHAKE256) for parame-
ter sets qTESLA-I and qTESLA-p-I (resp. for other parameter sets); cf. Algorithm 14.

• Hash H: the hash is instantiated with cSHAKE128 (resp. cSHAKE256) for parameter
sets qTESLA-I and qTESLA-p-I (resp. for other parameter sets); cf. Algorithm 15.

In the cases of the functions GenA, Enc, and H, implementations of qTESLA need to follow
strictly the XOF specifications based on SHAKE/cSHAKE given above in order to be fully
compatible. However, for the rest of the cases (i.e., PRF1, PRF2, and ySampler) users can
opt for a different cryptographic PRF.

2.4.2 Pseudorandom bit generation of seeds

qTESLA requires the generation of seeds during key generation; see line 2 of Algorithm 4.
These seeds are then used to produce the polynomials s, ei, ai and y. Specifically, these
seeds are:

• seeds, which is used to generate the polynomial s,

• seedei , which are used to generate the polynomials ei for i = 1, . . . , k,

• seeda, which is used to generate the polynomials ai for i = 1, . . . , k, and

• seedy, which is used to generate the polynomial y.

The size of each of these seeds is κ bits. In the accompanying implementations, the seeds
are generated by first calling the system random number generator (RNG) to produce a
pre-seed of size κ bits at line 1 of Algorithm 4, and then expanding this pre-seed through
Algorithm 9. As explained in Section 2.4.1, in this case the XOF function is instantiated
with SHAKE in our implementations.
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Algorithm 9 Seed generation

Require: pre-seed ∈ {0, 1}κ
Ensure: (seeds, seede1 , ..., seedek , seeda), where each seed is κ bits long

1: 〈seeds〉‖〈seede1〉‖ . . . ‖〈seedek〉‖〈seeda〉‖〈seedy〉 ← XOF(pre-seed, κ · (k + 3)/8), where each
〈seed〉 ∈ {0, 1}κ

2: return (seeds, seede1 , ..., seedek , seeda)

2.4.3 Generation of a1, ...,ak

In qTESLA, the polynomials a1, ..., ak are freshly generated per secret/public keypair using
the seed seeda during key generation; see line 3 of Algorithm 4. This seed is then stored
as part of both the private and public keys so that the signing and verification operations
can regenerate a1, ..., ak.

The approach above permits to save bandwidth since we only need κ bits to store seeda
instead of the k·n·dlog2 qe bits that are required to represent the full polynomials. Moreover,
the use of fresh a1, ..., ak per keypair makes the introduction of backdoors more difficult
and reduces drastically the scope of all-for-the-price-of-one attacks [10,16].

The procedure depicted in Algorithm 10 to generate a1, ..., ak is as follows. The seed seeda
obtained from Algorithm 9 is expanded to (rateXOF ·bGenA) bytes using cSHAKE128, where
rateXOF is the SHAKE128 rate constant (i.e., the value 168 [31]) and bGenA is a qTESLA

parameter that represents the number of blocks requested in the first XOF call. The
values of bGenA for the different parameter sets were chosen as to allow the generation of
slightly more bytes than are necessary to fill out all the coefficients of the polynomials (see
Tables 2 and 3). Then, the algorithm proceeds to do rejection sampling over each 8b-bit
string of the cSHAKE output, discarding every package that has a value greater than the
modulus q, where b is the number of bytes needed to represent q. Since there is a possibility
that the cSHAKE output is exhausted before all the k · n coefficients are filled out, the
algorithm permits successive (and as many as necessary) calls to the function requesting
rateXOF bytes each time (lines 9–12). The particular form of the expression to evaluate if
more cSHAKE128 calls are necessary at line 9 facilitates high-performance implementations
that evaluate up to four coefficients at a time in the if-loop of lines 5–8. It should be noted
that the first call to cSHAKE128 uses the value S = 0 as domain separator. This value is
incremented by one at each subsequent call.
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Algorithm 10 Generation of public polynomials ai, GenA

Require: seeda ∈ {0, 1}κ. Set b = d(log2 q)/8e and the SHAKE128 rate constant rateXOF = 168
Ensure: ai ∈ Rq for i = 1, . . . , k

1: S ← 0
2: 〈c0〉‖〈c1〉‖ . . . ‖〈cT 〉 ← cSHAKE128(seeda, rateXOF · bGenA, S), where each 〈ct〉 ∈ {0, 1}8b
3: i← 0, pos← 0
4: while i < k · n do
5: if q > cpos mod 2dlog2 qe then
6: abi/nc+1,i−n·bi/nc ← cpos mod 2dlog2 qe, where a polynomial ax is interpreted as a vector

of coefficients (ax,0, ax,1, . . . , ax,n−1)
7: pos← pos+ 1, i← i+ 1
8: end if
9: if pos > (rateXOF · bGenA − 4 · b) then

10: S ← S + 1, pos← 0
11: 〈c0〉‖〈c1〉‖ . . . ‖〈cT 〉 ← cSHAKE128(seeda, rateXOF, S), where each 〈ct〉 ∈ {0, 1}8·b
12: end if
13: end while
14: return (a1, ..., ak)

The procedure to generate a1, ..., ak produces polynomials with uniformly random coeffi-
cients. Thus, following a standard practice, qTESLA assumes that the resulting polynomials
a1, ..., ak from Algorithm 10 are in the NTT domain. This permits an important speedup of
some of the polynomial arithmetic operations. We remark that, although this assumption
does not affect the security of the scheme, it does affect the correctness. In other words,
implementations of the scheme need to follow this specification in order to be compatible
with the qTESLA design. In particular, polynomial multiplications with these polynomials
need to consider that they are expressed in NTT domain. For example, in the accom-
panying implementations multiplications in line 11 of Algorithm 4, line 7 of Algorithm 7
and line 4 of Algorithm 8 are done by computing ai · b = NTT−1(ai ◦ NTT(b)) for some
polynomial b ∈ Rq (see Section 2.4.8 for details about the NTT computations).

2.4.4 Gaussian sampling

One of the advantages of qTESLA is that Gaussian sampling is only required during key
generation to sample e1, ..., ek, and s (see Alg. 4). Nevertheless, certain applications might
still require an efficient and secure implementation of key generation and one that is, in
particular, protected against timing and cache side-channel attacks. In that direction, we
adopt the “constant-time” Gaussian sampler proposed in [16], which is an improvement
upon the sampler proposed by Ducas et al. [27, Section 6]. We give the pseudocode of the
proposed Gaussian sampler in Algorithms 11 and 12.
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Algorithm 11 Sampling Dσ, GaussSampler

Require: seed rand ∈ {0, 1}κ, and nonce S ∈ Z>0. Set ξ ∈ Z, the computer wordsize w,
and the precomputed CDT table.

Ensure: z ∈ Z according to Dσ

1: S ← S · 28

2: do
3: do
4: y ← XOF(rand, sizeof(ξ), S)
5: S ← S + 1
6: while y < ξ − 1
7: r ← XOF(rand, w/8, S)
8: S ← S + 1
9: x← 0

10: while r < CDT[x] do
11: x← x+ 1
12: end while
13: z ← ξ · x+ y
14: r ← XOF(rand, w/8, S)
15: S ← S + 1
16: while (BerSampler(r, y(y + 2ξx)) = 0)
17: Generate a random bit b
18: if z = 0 ∧ b = 0 then
19: Restart at step 3
20: end if
21: Generate a random bit b
22: return (−1)b · z

In our implementations we target w = 64. The precomputed CDT table for this case is generated
by the Magma script gaussSigma2Sample_table.magma found in the folder \Supporting_Documentation\

Scripts_for_Gaussian_sampler.
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Algorithm 12 Sampling Bexp(−t/(2σ2)) for t ∈ [0, 2w), BerSampler

Require: r ∈ {0, 1}w and t ∈ [0, 2w). Set the computer wordsize w, and the precomputed
Bernoulli table B, which consists of Btables sub-tables with Brows rows each.

1: c← 2w−2

2: s← t
3: for i = 0, 1, . . . ,Btables − 1 do
4: c ← c · Bi,s mod Brows , where an element at the j-th row of the i-th sub-table is

represented by Bi,j
5: s← s/Brows
6: end for
7: if r mod (w − 1) ≥ bce then
8: return 0
9: else

10: return 1
11: end if

In our implementations we target w = 64. For our parameters, we use Btables = 3 and Brows = 32.
The precomputed Bernoulli table B for this case is generated by the Magma script gaussBernoulliSample_
table.magma found in the folder \Supporting_Documentation\Scripts_for_Gaussian_sampler.

The basic idea behind the Gaussian sampler by Ducas et al. [27, Algorithms 10–12] is to
start from a distribution that approximates the desired Gaussian distribution. Namely,
Ducas et al. use a stepwise uniform distribution where the steps have width ξ and height
distributed according to a ξ-scaled binary Gaussian that can be implemented efficiently.
The binary Gaussian sampler, which was introduced by Ducas et al., is a discrete Gaussian
with specific variance σ2 = 1√

2 ln 2
≈ 0.849.

We follow the original Gaussian sampler, which focuses only on the positive half of Dσ2

denoted by D+
σ2

= {x ← Dσ2 : x ≥ 0}. From there, a Gaussian distribution Dσ with
the desired quality is obtained by rejection sampling guided by Bernoulli distributions Bρ
with parameter ρ related to the standard deviation σ of the desired Gaussian distribution.
Ducas et al. implement those Bernoulli distributions by decomposing them into ` certain
base distributions (Bρ0 ,Bρ1 , . . . ,Bρ`−1

) where the ρ constants are precomputed to the de-
sired accuracy, and then sampling from those base distributions to that accuracy. Even
though this Bernoulli decomposition is reportedly quite efficient, its running time highly
depends on the private bits. Besides that, each Bcρ must be sampled to the same precision
as the target distribution, which is why the total amount of entropy needed to obtain one
Gaussian sample is much higher than theoretically necessary, roughly O(`λ) bits rather
than O(λ) for security level λ.

Since qTESLA only needs a basic Gaussian sampler for key generation, it is possible to use
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the much simpler construction explained in [16]. In particular, only one kind of Bernoulli
distribution Bρ is needed in our case, namely, a distribution Bexp(−t/2σ2) where t is an
`-bit integer.2 Hence, we can simplify the sampler by Ducas et al. by just computing the
exponential bias ρ = exp(−t/2σ2) using well-known exponentiation techniques, where ρ is
an approximation of a real number in the interval [0, 1] to the desired precision according
to the security level λ. Specifically, we need to perform one uniform sample y ←$ Z in
{0, . . . , ξ − 1} (lines 3–6 of Algorithm 11), one binary Gaussian sample x ∈ Z according to
D+
σ2

(lines 7–12 of Algorithm 11) and, finally, one uniform sample to the desired precision
based on the bias ρ with t = y(y+2ξx) (Algorithm 12 invoked from line 16 of Algorithm 11).
At the end of this process we have the desired Gaussian sample with σ = ξσ2 = ξ√

2 ln 2
,

and the total entropy consumption is O(λ) bits.

In the accompanying implementations, we implement an optimized version of Algorithm 11
that has been finely tuned for a computer wordsize w = 64. The precomputed tables
that are used can be generated with the scripts provided in the folder \Supporting_

Documentation\Scripts_for_Gaussian_sampler. In order to make the Gaussian sam-
pler constant-time in our implementations, we make sure that basic operations such as
comparisons are not implemented with conditional jumps that depend on secret data,
and that lookup tables are always fully scanned at each pass. These modifications are
straightforward in the case of qTESLA, given the significantly simpler Gaussian sampler
algorithm. As explained in Section 2.4.1, our implementations use cSHAKE as the XOF
function.

2.4.5 Encoding function

In the signature generation we need to map the hash input ([v1]M , ..., [vk]M ,m) to a poly-
nomial c ∈ Hn,h ⊂ Rq (cf. line 9 and 10 of Algorithm 7). In order to obtain smaller signa-
tures (z, c′) ∈ {0, 1}κ ×Rq, we break up this operation into Enc(H([v1]M , ..., [vk]M ,m)) =
Enc(c′) = c, where the encoding function Enc takes the output of the hash function H and
maps it to a vector with entries in {−1, 0, 1} of length n and weight h (i.e., it has h entries
that are either 1 or −1). The vector represents a polynomial of degree n− 1.

We implement Enc as in [1] which in turn follows an algorithm originally proposed in [30,
Section 4.4]; see Algorithm 13. Basically, the algorithm maps the output of the hash
function H to a vector c by using values generated uniformly at random to fix the positions
and signs of the h nonzero entries. The outputs are the two list arrays pos list and sign list,
which contain the positions and signs of the nonzero entries of c, respectively. Accordingly,
the algorithm first requests rateXOF bytes from a XOF, and the output stream is interpreted
as an array of 3-byte packets in little endian format. The lowest two bytes in every packet

2The Gaussian sampler originally designed for the signature scheme BLISS has the additional compli-
cation that Bernoulli distributions with inverse hyperbolic cosine biases B1/ cosh(t/f) are required as well.
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is used to calculate a position pos of a nonzero element in the n-dimension vector c. The
third byte is used to determine its sign as follows. If the (pos)-th element of c is “empty”
(indicated by the value 0), then the sign entry is filled out with 1 (+) if the least significant
bit of the third byte is 0 which is interpreted as a positive element 1 of c. Otherwise, if the
least significant bit of the third byte is 1 then the sign entry is set to −1 (–), which means
that a bit 1 is interpreted as a negative coefficient −1 of c. These procedure is executed
until h nonzero entries are filled out. If the XOF output is exhausted before completing
the task then additional calls are invoked, requesting rateXOF bytes each time. It should
be noted that the first call to the XOF uses the value S = 0 as domain separator. This
value is incremented by one at each subsequent call. As explained in Section 2.4.1, qTESLA
uses cSHAKE128 as the XOF function.

Algorithm 13 Encoding function, Enc

Require: c′ ∈ {0, 1}κ
Ensure: lists pos list ∈ {0, ..., n − 1}h and sign list ∈ {−1, 1}h containing the positions

and signs, resp., of the nonzero elements of c ∈ Hn,h

1: S ← 0, cnt← 0
2: 〈r0〉‖〈r1〉‖ . . . ‖〈rT 〉 ← cSHAKE128(c′, rateXOF, S), where each 〈rt〉 ∈ {0, 1}8
3: i← 0
4: Set all coefficients of c to 0
5: while i < h do
6: pos← (rcnt · 28 + rcnt+1) mod 2n

7: cnt← cnt+ 2
8: if cpos = 0 then
9: if rcnt mod 2 = 1 then

10: cpos ← −1
11: else
12: cpos ← 1
13: end if
14: pos listi ← pos
15: sign listi ← cpos
16: i← i+ 1, cnt← cnt+ 1
17: end if
18: if cnt > (rateXOF − 3) then
19: S ← S + 1, cnt← 0
20: 〈r0〉‖〈r1〉‖ . . . ‖〈rT 〉 ← cSHAKE128(c′, rateXOF, S), where each 〈rt〉 ∈ {0, 1}8
21: end if
22: end while
23: return c
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2.4.6 Sampling of y

The sampling of the polynomial y at line 4 of Algorithm 7 can be simply performed by
generating n (log2B + 1)-bit values uniformly at random, and then correcting each value
to the range [−B,B]. Algorithm 14 depicts the procedure used in the accompanying
implementations based on a XOF. In this case, the value S · 28, for S ∈ Z > 0, is used
as domain separator or nonce. In order to provide proper domain separation, the first
invocation to sample y in Algorithm 7 is done with S initialized at 1, and then each
subsequent invocation increases S by 1. This means that the successive calls to the sampler
use as nonces 28, 2 ·28, 3 ·28, and so on, providing domain separation between the sampling
of y and other uses of the XOF in the signing algorithm. As explained in Section 2.4.1,
our implementations use cSHAKE as the XOF function.

Algorithm 14 receives as input a seed rand which is the result of hashing seedy, a random
value r and the message m, as can be seen at line 3 of Algorithm 7.

Algorithm 14 Sampling y, ySampler

Require: seed rand ∈ {0, 1}κ and nonce S ∈ Z>0. Set b = d(log2B + 1)/8e
Ensure: y ∈ Rq,[B]

1: pos← 0
2: 〈y0〉‖〈y1〉‖ . . . ‖〈yT 〉 ← XOF(rand, b · n, S · 28), where each 〈yt〉 ∈ {0, 1}8b
3: for i = 0, 1, . . . , n− 1 do
4: yi ← yi mod 2dlog2 Be+1

5: yi ← yi −B
6: pos← pos+ b
7: end for
8: return y = (y0, y1, . . . , yn−1) ∈ Rq,[B]

2.4.7 Hash H

The hash H required by the signing and verification algorithms takes as inputs k polyno-
mials v1, . . . , vk ∈ Rq and computes [v1]M , ..., [vk]M . The result is hashed together with a
message m to a string c′ that is κ bits long. The procedure is depicted in Algorithm 15. Let
each polynomial vi be interpreted as a vector of coefficients (vi,0, vi,1, . . . , vi,n−1). We first
compute [vi,j ]L for each coefficient vi,j ∈ (−q/2, q/2] following the details from Section 2.2:
each coefficient is reduced modulo 2d if it is greater than 2d−1. This guarantees a result
in the range (−2d−1, 2d−1], as required by the definition of [·]L. Next, we compute [vi,j ]M
as (vi,j − [vi,j ]L)/2d and store it as a byte, which in the end makes up a full string of k · n
bytes. Finally, SHAKE is used to hash the resulting string concatenated with the message
m to the κ-bit string c′.
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Algorithm 15 Hash H

Require: polynomials v1, . . . , vk ∈ Rq, where vi,j ∈ (−q/2, q/2], for i = 1, . . . , k and j = 0, . . . , n−
1, and a message m of length mlen bytes.

Ensure: c′ ∈ {0, 1}κ

1: for i = 1, 2, . . . , k do
2: for j = 0, 1, . . . , n− 1 do
3: val← vi,j mod 2d

4: if val > 2d−1 then
5: val← val− 2d

6: end if
7: w(i−1)·n+j ← (vi,j − val)/2d

8: end for
9: end for

10: for i = 0, 1, . . . ,mlen− 1 do
11: wk·n+i ← mi, where m is interpreted as the byte array 〈m0〉‖〈m1〉‖ . . . ‖〈mmlen−1〉
12: end for
13: c′ ← SHAKE(w, κ/8), where w is the byte array 〈w0〉‖〈w1〉‖ . . . ‖〈wk·n+mlen−1〉
14: return c′ ∈ {0, 1}κ

2.4.8 Polynomial multiplication and the number theoretic transform

Polynomial multiplication over a finite field is one of the fundamental operations in R-LWE
based schemes such as qTESLA. In this setting, this operation can be efficiently carried out
by satisfying the condition q ≡ 1 (mod 2n) and, thus, enabling the use of the Number
Theoretic Transform (NTT).

Since qTESLA specifies the generation of the polynomials a1, . . . , ak directly in the NTT
domain for efficiency purposes (see Section 2.4.3), we need to define polynomials in such
a domain. Let ω be a primitive n-th root of unity in Zq, i.e., ωn ≡ 1 mod q, and let
φ be a primitive 2n-th root of unity in Zq such that φ2 = ω. Then, given a polynomial
a =

∑n−1
i=0 aix

i the forward transform is defined as

NTT : Zq[x]/〈xn + 1〉 → Znq , a 7→ ã =
n−1∑
i=0

n−1∑
j=0

ajφ
jωij

xi,

where ã = NTT(a) is said to be in NTT domain. Similarly, the inverse transformation of
a polynomial ã in NTT domain is defined as

NTT−1 : Znq → Zq[x]/〈xn + 1〉, ã 7→ a =
n−1∑
i=0

n−1φ−i
n−1∑
j=0

ãjω
−ij

xi.

It then holds that NTT−1(NTT(a)) = a for all polynomials a ∈ Rq = Zq[x]/〈xn − 1〉. The
polynomial multiplication of a and b ∈ Rq can be performed as a · b = NTT−1(NTT(a) ◦
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NTT(b)), where · is the polynomial multiplication in Rq and ◦ is the coefficient wise mul-
tiplication in Znq .

In the accompanying implementations, we adopt butterfly algorithms to compute the NTT
that efficiently merge the powers of φ and φ−1 with the powers of ω, and that at the
same time avoid the need of a so-called bit-reversal operation which is required by some
implementations [10, 51, 52]. Specifically, we use an algorithm that computes the forward
NTT based on the Cooley-Tukey butterfly that absorbs the products of the root powers
in bit-reversed ordering. This algorithm receives the inputs of a polynomial a in standard
ordering and produces a result in bit-reversed ordering. Similarly, for the inverse NTT
we use an algorithm based on the Gentleman-Sande butterfly that absorbs the inverses of
the products of the root powers in the bit-reversed ordering. The algorithm receives the
inputs of a polynomial ã in the bit-reversed ordering and produces an output in standard
ordering. Efficient versions of these algorithms, which we follow for our implementations,
can be found in [54, Algorithms 1 and 2].

Sparse multiplication. In our implementations, standard polynomial multiplications
are carried out using the NTT as explained above. However, qTESLA also requires spe-
cialized multiplications with the polynomial c which by definition only contains h nonzero
coefficients (cf. lines 11 and 17 in Algorithm 7, and line 4 in Algorithm 8). These sparse
multiplications can be realized efficiently with the specialized polynomial algorithm de-
picted in Algorithm 16.

Algorithm 16 Sparse Polynomial Multiplication

Require: a =
∑n−1

i=0 aix
i ∈ Rq with ai ∈ Zq, and list arrays pos list ∈ {0, ..., n− 1}h and

sign list ∈ {−1, 1}h containing the positions and signs, resp., of the nonzero elements
of a polynomial c ∈ Hn,h

Ensure: f = a · c ∈ Rq
1: Set all coefficients of f to 0
2: for i = 0, ..., h− 1 do
3: pos← pos listi
4: for j = 0, ..., pos− 1 do
5: fj ← fj − sign listi · aj+n−pos
6: end for
7: for j = pos, ..., n− 1 do
8: fj ← fj + sign listi · aj−pos
9: end for

10: end for
11: return f
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2.5 System parameters and parameter selection

In this section, we describe qTESLA’s system parameters and our explicit choice of parameter
sets.

Parameter sets. Herein, we propose five parameter sets which were derived according to
two different approaches (i) following a “heuristic” parameter generation, and (ii) following
a “provably-secure” parameter generation according to a security reduction. The proposed
parameter sets are displayed in Table 1 together with their targeted security category, as
defined by NIST in [56].

Table 1: Parameter sets and their targeted security.

Heuristic Provably-secure Security category

qTESLA-I qTESLA-p-I NIST’s category 1

qTESLA-III-speed, qTESLA-III-size qTESLA-p-III NIST’s category 3

The proposed provably-secure parameter sets, namely qTESLA-p-I and qTESLA-p-III,
were chosen according to the security reduction provided in Theorem 6, Section 5.1. This
implies the following: by virtue of our security reduction, these parameters strictly corre-
spond to an instance of the R-LWE problem. That is, the reduction provably guarantees
that our scheme has the selected security level as long as the corresponding R-LWE instance
is intractable. In other words, hardness statements for R-LWE instances have a provable
consequence for the security levels of our scheme. Moreover, since the presented reduction
is tight, the tightness gap of our reduction is equal to 1 for our choice of parameters and,
hence, the concrete bit security of our signature scheme is essentially the same as the bit
hardness of the underlying R-LWE instance.

Choosing parameters following the security statements, as described above, implies to
follow specific security requirements and to take a reduction loss into account. This affects
the performance and signature/key sizes of the scheme. In order to offer a more efficient
approach, we also propose three parameter sets, namely qTESLA-I, qTESLA-III-speed, and
qTESLA-III-size, which are chosen heuristically. In this case, we assume that the security
level of an instantiation of the scheme by a certain parameter set directly corresponds to
the hardness level of the instance of the underlying lattice problem that corresponds to
those parameters, without taking into account the security reduction. The assumption is
that Theorem 6 still holds for these concrete parameter sets.

The sage script that was used to generate the various parameters is included in the
submission package (see the file parameterchoice.sage found in the submission folder
\Supporting_Documentation\Script_to_choose_parameters).
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Table 2: Description and bounds of all the system parameters.

Param. Description Requirement

λ security parameter -
qh, qs number of hash and sign queries -
n dimension (n− 1 is the poly. degree) power-of-two

σ, ξ standard deviation of centered discrete Gaussian distribu-
tion

σ = ξ√
2 ln 2

k #R-LWE samples -
q modulus q ≡ 1 mod 2n, q > 4B

For provably secure parameters:
qnk ≥ |∆S| · |∆L| · |∆H|,
qnk ≥ 24λ+nkd4q3

s(qs + qh)2

h # of nonzero entries of output elements of Enc 2h ·
(
n
h

)
≥ 22λ

κ output length of hash function H and input length of GenA,
PRF1, PRF2, Enc and ySampler

κ ≥ λ

LE , ηE bound in checkE ηE · h · σ
LS , ηS bound in checkS ηS · h · σ
B determines interval the randomness is chosen from during

signing
B ≥

k·n√M+2LS−1

2(1− k·n√M)
, near a power-of-two

d number of rounded bits
(

1− 2·LE+1
2d

)k·n
≥ 0.3, d > log2(B)

bGenA number of blocks requested to SHAKE128 for GenA bGenA ∈ Z>0

|∆H|
see definition in the text

∑h
j=0

∑h−j
i=0

(
kn
2i

)
22i
(
kn−2i
j

)
2j

|∆S| (4(B − LS) + 1)n

|∆L| (2d + 1)nk

δz acceptance probability of z in line 12 during signing experimentally
δw acceptance probability of w in line 18 during signing experimentally
δkeygen acceptance probability of key pairs during key generation experimentally

sig size theoretical size of signature [byte] κ+ n(dlog2(B − LS)e+ 1)
pk size theoretical size of public key [byte] kn(dlog2(q)e) + κ
sk size theoretical size of secret key [byte] n(k + 1)(dlog2(t · σ + 1)e) + 2κ

with t = 11.6 or 15

System parameters. Table 2 summarizes all the system parameters, including all rel-
evant bounds. Concrete parameter values for each of the proposed parameter sets are
compiled in Table 3.

Let λ be the security parameter, i.e., the targeted bit security of a given instantiation.
Let n ∈ Z>0 be the dimension, such that n − 1 is the polynomial degree. In the targeted
R-LWE setting with Rq = Zq[x]/〈xn + 1〉, the polynomial degree is set to a power of two,
i.e., n = 2l for l ∈ N. Let σ be the standard deviation of the centered discrete Gaussian
distribution that is used to sample the coefficients of the secret and error polynomials.
To use the fast Gaussian sampler described in Section 2.4.4, we choose σ = ξ√

2 ln 2
for

some ξ ∈ Z>0. Let k ∈ Z>0 be the number of ring learning with errors samples. For
our heuristic parameter sets qTESLA-I, qTESLA-III-speed, and qTESLA-III-size, we fix
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Table 3: Parameters for each of the proposed heuristic and provably-secure parameter sets
with qh = 2128 and qs = 264; we choose M = 0.3.

Param. qTESLA-I qTESLA-III-speed qTESLA-III-size qTESLA-p-I qTESLA-p-III

λ 95 160 160 95 160

κ 256 256 256 256 256

n 512 1 024 1 024 1 024 2 048

σ, ξ 23.78, 27.9988 10.2, 12 8.49, 9.9962 8.5, 10 8.5, 10

k 1 1 1 4 5

q 4 205 569 8 404 993 4 206 593 485 978 113 1 129 725 953
≈ 222 ≈ 223 ≈ 222 ≈ 229 ≈ 230

h 30 48 48 25 40

LE , ηE 1 586, 2.223 1 147, 2.34 910, 2.23 554, 2.61 901, 2.65
LS , ηS 1 586, 2.223 1 233, 2.52 910, 2.23 554, 2.61 901, 2.65

B 220 − 1 221 − 1 220 − 1 221 − 1 223 − 1

d 21 22 21 22 24

bGenA 19 38 38 108 180

|∆H| - - - ≈ 2435.8 ≈ 2750.9

|∆S| - - - ≈ 223551.6 ≈ 251199.7

|∆L| - - - ≈ 294208.0 ≈ 2256000.0

δw 0.31 0.38 0.25 0.33 0.34
δz 0.44 0.56 0.37 0.78 0.81
δsign 0.14 0.21 0.09 0.26 0.28
δkeygen 0.45 0.60 0.39 0.59 0.44

sig size 1 376 2 848 2 720 2 848 6 176
pk size 1 504 3 104 2 976 14 880 39 712
sk size 1 216 2 112 2 112 4 576 12 320

classical bit hardness 104 178 188 132 247
quantum bit hardness 97 164 169 123 270

k = 1, whereas for our provably-secure parameter sets qTESLA-p-I and qTESLA-p-III, we
choose k > 1. The latter choice allows us to reduce the size of the modulus q, as explained
later. Depending on the specific function, the parameter κ defines the outputs or inputs of
the hash function and pseudorandom functions described in Section 2.4.1. The parameter
h defines the number of nonzero elements in the output of the encoding function described
in Section 2.4.5.

The values LE and LS are used to bound the coefficients in the error and secret polynomi-
als in the evaluation functions checkE and checkS, respectively. Bounding the size of those
polynomials restricts the size of the key space; accordingly we compensate the security
loss by choosing a larger bit hardness. Both bounds, LE and LS , impact the rejection
probability during the signature generation as follows. If one increases the values of LE
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and LS , the acceptance probability during key generation increases (lines 6 and 10 in Algo-
rithm 4), while the acceptance probability during signature generation decreases (lines 12
and 18 in Algorithm 7). We determine the best trade-off between these two acceptance
probabilities experimentally. We start choosing LE = ηE · h · σ (resp., LS = ηS · h · σ)
with ηE = ηS = 2.8 and try different values for ηE , ηS ∈ [2.0, 3.0]. Let M = 0.3 be a value
of our choosing that determines (together with LS and B) the acceptance probability of
the rejection sampling in line 12 of Algorithm 7. The parameter B defines the interval of
the random polynomial y (cf. line 4 of Algorithm 7) and it is determined by M and the
parameter LS as follows:(

2B − 2LS + 1

2B + 1

)k·n
≥M ⇔ B ≥

k·n√M + 2LS − 1

2(1− k·n√M)
.

We select the rounding value d to be larger than log2(B) and such that the acceptance
probability of the check ‖[w]L‖∞ ≥ 2d−1−LE in line 18 of Algorithm 7 is upper bounded by
0.7 when using the sage script to choose parameters. Changing the value LE as described
above, impacts the rejection probability of w as well. Experimentally, we determine the
acceptance probability δz of z and δw of w during signing and the acceptance probability
of key pairs δkeygen. The results are summarized in Table 3.

Finally, bGenA ∈ Z>0 represents the number of blocks requested to cSHAKE128 in a first
call during the generation of the public polynomials a1, . . . , ak (cf. Algorithm 10). The
values of bGenA for the different parameter sets were chosen as to allow the generation of
(slightly) more bytes than are necessary to fill out all the coefficients of the polynomials
a1, . . . , ak.

The modulus q. The parameter q is the modulus in the R-LWE instance. Depending
on whether parameters are chosen heuristically or according to our security reduction in
Theorem 6, q is chosen to fulfill several bounds and assumptions that are motivated by
the security reduction or efficient implementation requirements. To be able to use fast
polynomial multiplication we choose q to be a prime integer such that q mod 2n = 1.
To choose parameter sets according to the security reduction, it is first convenient to
simplify our security statement. To this end we ensure that qnk ≥ |∆S| · |∆L| · |∆H|
with the following definition of sets: S is the set of polynomials z ∈ Rq,[B−U ] and ∆S =
{z − z′ : z, z′ ∈ S}, H is the set of polynomials c ∈ Rq,[1] with exactly h nonzero coefficients
and ∆H = {c− c′ : c, c′ ∈ H}, and ∆L = {x − x′ : x, x′ ∈ R and [x]M = [x′]M}. Then,
the following equation (cf. Theorem 6) has to hold:

23λ+nkd · 4 · q3
s(qs + qh)2

qnk
≤ 2−λ ⇔ q ≥

(
24λ+nkd · 4 · q3

s(qs + qh)2
)1/nk

.

Following the NIST’s call for proposals [56, Section 4.A.4], we choose the number of classical
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queries to the sign oracle to be qs = 264 for all our parameter sets. Moreover, we choose
the number of queries of a hash function to be qh = 2128.

Key and signature sizes We are now in position to determine the key and signa-
ture sizes. The theoretical bit length of the signatures and public keys are given by
κ+ n · (dlog2(B − LS)e+ 1) bits and k · n · (dlog2(q)e) + κ bits, respectively. To determine
the size of the secret key we note that for t > 0 it holds that Prx←σZ [|x| > tσ] ≤ 2e−t

2/2.
For example, for t = 11.6 and t = 15, the probability Prx←σZ [|x| > tσ] is less or equal to
2−95 and 2−160, respectively. Therefore, the theoretical size of the secret key is given by
n(k + 1)(dlog2(t · σ + 1)e) + 2κ bits with t = 11.6 for qTESLA-I and qTESLA-p-I, and with
t = 15 for qTESLA-III-speed, qTESLA-III-size and qTESLA-p-III. Table 3 details the
key and signature sizes according to these theoretical estimates.

3 Performance analysis

3.1 Associated implementations

This document comes accompanied by simple yet efficient reference implementations writ-
ten exclusively in portable C.

An important feature of qTESLA is that it enables very efficient implementations that can
work for different security levels with minor changes. For example, our implementations of
the heuristic qTESLA parameter sets qTESLA-I, qTESLA-III-speed and qTESLA-III-size

share most of their codebase, and only differ in some packing functions and system con-
stants that can be instantiated at compilation time. This feature is also shared be-
tween our implementations for the provably-secure qTESLA parameter sets qTESLA-p-I

and qTESLA-p-III. This highlights the simplicity and scalability of software based on
qTESLA.

Furthermore, since provably-secure qTESLA uses a generalization of the scheme with k >
1, it is possible to merge all the implementations into one. For our current implementations,
we separate both approaches in order to maximize the efficiency of heuristic qTESLA.
However, we envision applications in which this feature could be exploited with a relatively
small performance overhead.

All our implementations avoid the use of secret address accesses and secret branches and,
hence, are protected against timing and cache side-channel attacks.
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3.2 Performance on x64 Intel

To evaluate the performance of the provided implementations, we ran our benchmarking
suite on two machines powered by: (i) a 3.40 GHz Intel Core i7-6700 (Skylake) processor
and (ii) a 3.40 GHz Intel Core i7-4770 (Haswell) processor, both running Ubuntu 16.04.3
LTS. As is standard practice, TurboBoost was disabled during the tests. For compilation we
used gcc version 7.2.0 with the command gcc -O3 -march=native -fomit-frame-pointer.

Scheme keygen sign verify
total

(sign + verify)

qTESLA-I
1, 582.8 467.4 98.8 566.2

(1, 727.3) (626.4) (99.3) (725.7)

qTESLA-III-speed
3, 575.5 662.5 201.7 864.2

(3, 873.1) (865.6) (202.0) (1, 067.6)

qTESLA-III-size
6, 056.5 1, 236.2 204.1 1, 440.3

(6, 284.4) (1, 714.3) (204.5) (1, 918.8)

qTESLA-p-I
6, 678.3 1, 258.6 504.6 1, 763.2

(6, 880.1) (1, 590.2) (505.2) (2, 095.4)

qTESLA-p-III
30, 597.2 5, 056.8 2, 556.3 7, 613.1

(32, 572.8) (6, 241.5) (2, 555.9) (8, 797.4)

Table 4: Performance (in thousands of cycles) of the reference implementation of qTESLA
on a 3.40 GHz Intel Core i7-6700 (Skylake) processor. Results for the median and average
(in parenthesis) are rounded to the nearest 102 cycles. Signing is performed on a message
of 59 bytes.

The results in Table 4 showcase the high performance of heuristic qTESLA: the (median)
time of signing and verification on the Intel Skylake platform is of approximately 166.5,
254.2 and 423.6 microseconds for qTESLA-I, qTESLA-III-speed and qTESLA-III-size,
respectively. Likewise, provably-secure qTESLA computes the same operations in ap-
proximately 0.52 and 2.24 milliseconds with qTESLA-p-I and qTESLA-p-III, respectively.
This demonstrates that the speed of provably-secure qTESLA, although slower, is still
practical for many applications. Similar results were observed in our tests on the Intel
Haswell platform (see Table 5).

We highlight that these results are only obtained with generic C implementations. Fu-
ture work includes the development of optimized implementations exploiting assembly and
vector instructions to get further performance improvements.
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Scheme keygen sign verify
total

(sign + verify)

qTESLA-I
1, 656.7 512.9 106.3 619.2

(1, 851.2) (714.2) (106.7) (820.9)

qTESLA-III-speed
3, 706.8 804.3 238.0 1, 042.3

(4, 120.4) (1, 109.8) (241.2) (1, 351.0)

qTESLA-III-size
6, 161.8 1, 402.2 221.1 1, 623.3

(6, 553.7) (1, 992.9) (226.7) (2, 219.6)

qTESLA-p-I
6, 857.1 1, 348.4 544.2 1, 892.6

(7, 193.6) (1, 704.5) (544.8) (2, 249.3)

qTESLA-p-III
31, 903.5 5, 488.1 2, 715.4 8, 203.5

(34, 488.4) (7, 127.2) (2, 783.9) (9, 911.1)

Table 5: Performance (in thousands of cycles) of the reference implementation of qTESLA
on a 3.40 GHz Intel Core i7-4770 (Haswell) processor. Results for the median and average
(in parenthesis) are rounded to the nearest 102 cycles. Signing is performed on a message
of 59 bytes.

4 Known answer values

The submission includes KAT values with tuples that contain message size (mlen), message
(msg), public key (pk), secret key (sk), signature size (smlen) and signature (sm) values
for all the proposed parameter sets.

The KAT files can be found in the media folder:

• qTESLA-I: \KAT\PQCsignKAT_qTesla-I.rsp,

• qTESLA-III-speed: \KAT\PQCsignKAT_qTesla-III-speed.rsp,

• qTESLA-III-size: \KAT\PQCsignKAT_qTesla-III-size.rsp,

• qTESLA-p-I: \KAT\PQCsignKAT_qTesla-p-I.rsp, and

• qTESLA-p-III: \KAT\PQCsignKAT_qTesla-p-III.rsp.

5 Expected security strength

It this section we discuss the expected security strength of and possible attacks against
qTESLA. This includes two statements about the theoretical security and the parameter
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choices depending on them. To this end we first define the hardness assumptions qTESLA is
based on. This includes the ring short integer solution (R-SIS) problem and the decisional
ring learning with errors (decisional R-LWE) problem.

Definition 2 (Ring short integer solution problem R-SISn,k,q,β). Let a1, ..., ak ←$ Rq.
The ring short integer solution problem R−SISn,k,q,β is to find solutions u1, ..., uk+1 ∈ Rq,
where ui 6= 0 for at least one i, such that (a1, ..., ak, 1) · (u1, ..., uk+1)T = a1u1 + ...+akuk +
uk+1 = 0 mod q and ‖u1‖, ..., ‖uk+1‖ ≤ β.

Definition 3 (Learning with Errors Distribution). Let n, q > 0 be integers, s ∈ R,
and χ be a distribution over R. We define by Ds,χ the LWE distribution which outputs
(a, 〈a, s〉+ e) ∈ Rq ×Rq, where a←$ Rq and e← χ.

Definition 4 (Decisional Ring Learning with Errors Problem R-LWEn,k,q,χ). Let n, q > 0
be integers and χ be a distribution over R. Moreover, let s ← χ and Ds,χ be the learning
with errors distribution. Given k tuples (a1, t1), ..., (ak, tk), the decisional ring learning with
errors problem R-LWEn,k,q,χ is to distinguish whether (ai, ti) ← U(Rq ×Rq) or (ai, ti) ←
Ds,χ for all i.

5.1 Provable security in the (quantum) random oracle model

The security of qTESLA instantiated with the provably-secure parameters sets (see Sec-
tion 2.5) is supported by two statements reducing the hardness of lattice-based assumptions
to the security of our proposed signature scheme in the (quantum) random oracle model.
In this subsection, we describe these two statements. Note that formal security proofs are
not included in this document because these are very close to the original results. The
interested reader is referred to [9, 14] for more details.

The first reduction (cf. Theorem 5), which follows closely the approach proposed by Bai
and Galbraith [14], gives a non-tight reduction from R-LWE and R-SIS to the existentially
unforgeability under chosen-message attack (EUF-CMA) of qTESLA in the random oracle
model.

Theorem 5. Let 2n ·
(
n
h

)
≥ 2λ, (2R + 1)k+1 ≥ kqn2κ, and q > 4B. If there exists an

adversary A that forges a signature of the signature scheme qTESLA described in Section 2.2
in time tΣ and with success probability εΣ, then there exists a reduction R that solves either

• the R−LWEn,k,q,σ problem in time tLWE ≈ tΣ with εLWE ≥ εΣ/2, or

• the R−SISn,k,q,β problem with β = max{k2d−1, 2(B−LE)}+2hR in time tSIS ≈ 2tΣ

with εSIS ≥ 1
2(εΣ − 1

2κ )
(

(εΣ− 1
2κ

)

qh
− 1

2κ

)
+ εΣ/2 with our choice of parameters.
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The second security reduction (cf. Theorem 6) gives a tight reduction in the quantum
random oracle model from R-LWE to EUF-CMA of qTESLA. In our opinion, this second
theorem is much stronger since it guarantees security against adversaries that have quan-
tum access to a quantum random oracle. Accordingly, we always refer to Theorem 6 when
discussing the security of the scheme. We emphasize that Theorem 6 gives a reduction from
the decisional R-LWE problem only, while in Theorem 5 the decisional R-SIS problem is
additionally used. Currently, Theorem 6 holds assuming a conjecture, as explained below.

Theorem 6. Let the parameters be as in Table 2. Furthermore, assume that Conjec-
ture 7 holds. If there exists an adversary A that forges a signature of the signature scheme
qTESLA described in Section 2.2 in time tΣ and with success probability εΣ, then there
exists a reduction R that solves the R−LWEn,k,q,σ problem in time tLWE ≈ tΣ with

εΣ ≤ 23λ+nkd ·4·q3
s(qs+qh)2

qnk
+ 2qh+5

2λ
+ εLWE with parameters as in Table 2.

The proof follows the approach proposed in [9] except for the computation of the two
probabilities coll(a, e) and nwr(a, e) that we explain in the following. For simplicity we
assume that the randomness is sampled uniformly random in Rq,[B] as in Algorithm 2.
We define ∆L to be the set {x − x′ : x, x′ ∈ R and [x]M = [x′]M}. Furthermore, we
call a polynomial w well-rounded if w is in Rq,[bq/2c−LE ] and [w]L ∈ Rq,[(2d−1−LE)]. We
define the following quantities for keys (a1, ..., ak, t1, ..., tk), (s, e1, ..., ek), where we denote
−→a = (a1, ..., ak) and −→e = (e1, ..., ek):

nwr(−→a ,−→e )
def
= Pr

(y,c)∈Y×H
[aiy − eic not well-rounded for at least one i ∈ {1, ..., k}] (7)

coll(−→a ,−→e )
def
= max

(w1,...,wk)∈Wk

{
Pr

(y,c)∈Y×H
[[a1y − e1c]M = w1, ..., [aky − ekc]M = wk]

}
. (8)

Informally speaking nwr(−→a ,−→e ) refers to the probability over random (y, c) that aiy − eic
is not well-rounded for some i. This quantity varies as a function of a1, ..., ak, e1, ..., ek.
In contrast to [9], we cannot upper bound this in general in the ring setting. Hence, we
first assume that nwr(−→a ,−→e ) < 3/4 and afterwards check experimentally that this holds
true. As our acceptance probability of wi in line 18 of Algorithm 7 (signature generation)
is at least 1/4 for all parameter sets (cf. δw in Table 2), the bound nwr(−→a ,−→e ) < 3/4
holds.

Secondly, we need to bound the probability coll(−→a ,−→e ). In [9, Lemma 4] the corresponding
probability coll(A,E) for standard lattices is upper bounded. Unfortunately, we were
not able to transfer the proof to the ring setting for the following reason. In the proof
of [9, Lemma 4], it is used that if the randomness y is not equal to 0 the vector Ay
is uniformly random distributed over Zq and hence also Ay − Ec is uniformly random
distributed over Zq. This does not necessarily hold if the polynomial y is chosen uniformly
in Rq,[B]. Moreover, in Equation (99) in [9], ψ denotes the probability that a random vector
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x ∈ Zmq is in ∆L:

ψ
def
= Pr

x∈Zmq
[x ∈ ∆L] ≤

(
2d + 1

q

)m
. (9)

The quantity ψ is a function of the TESLA parameters q,m, d, and it is negligibly small.

We cannot prove a similar statement for the signature scheme qTESLA over ideals. Instead,
we need to conjecture the following.

Conjecture 7. Let I be a nonzero ideal in Rq and let r ∈ Rq be a fixed choice of ring
elements. Then, it holds that the probability that x + r ∈ ∆L for a uniformly distributed
element x←$ I is negligibly small.

The intuition behind our conjecture is as follows. Let ψI denote the probability that a
random element from the ideal I lands in ∆L. We know that ψI is small when the ideal
I = Rq, i.e., a negligibly small fraction of elements from Rq are in ∆L. Furthermore, the
set ∆L appears to have no relationship with the ideal structure of the ring, so it seems
reasonable to view each ideal as a “random” subset of Rq in the following sense: no larger
or smaller portion of elements in the ideal I is in ∆L than that portion of elements of Rq
that is in ∆L.

Hence, the corresponding statement described above and needed in [9, Lemma 4] translates
for qTESLA to the following. If y 6= 0 then aiy is a uniformly random element of some non-
zero ideal I for all i. The polynomial c is fixed and the polynomials e1, ..., ek are independent
of the polynomials a1, ..., ak, and y. Hence, by our conjecture (with x = aiy and r = eic)
it holds that the probability of Equation (107) in [9] is negligibly small. Thus, assuming
that our conjecture holds true, [9, Lemma 4] and hence the security reduction in [9] holds
for qTESLA as well.

5.2 Bit security of our proposed parameter sets

In the following, we describe how we estimate the concrete security of the proposed pa-
rameters described in Section 2.5. To this end, we first describe how the security of our
scheme depends on the hardness of R-LWE and afterwards we describe how we derive the
bit hardness of the underlying R-LWE instance.

5.2.1 Correspondence between security and hardness

The security reduction given by Theorem 6, in Section 5.1, provides a reduction from
the hardness of the decisional ring learning with errors problem and bounds explicitly the
forging probability with the success probability of the reduction. More formally, let εΣ and
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tΣ denote the success probability and the runtime (resp.) of a forger against our signature
scheme, and let εLWE and tLWE denote analogous quantities for the reduction presented
in the proof of Theorem 6. We say that R-LWE is η-bit hard if tLWE/εLWE ≥ 2η; and we
say that the signature scheme is λ-bit secure if tΣ/εΣ ≥ 2λ.

For our provably-secure parameter sets qTESLA-p-I and qTESLA-p-III, we choose param-
eters such that εLWE ≈ εΣ and tΣ ≈ tLWE , that is, the bit hardness of the R-LWE instance
is theoretically the same as the bit security of our signature scheme. Hence, the security
reduction provably guarantees that our scheme instantiated with the two provably-secure
parameter sets has the selected security level as long as the corresponding R-LWE instance
is intractable.

For our heuristic parameter sets qTESLA-I, qTESLA-III-speed, and qTESLA-III-size, we
assume that the bit security of our scheme instantiated with these three parameter sets is
theoretically the same as the bit hardness of the corresponding R-LWE instance. So far no
attack that exploits this heuristic is known. However, this is a somewhat less trustworthy
approach that trades provable security assurance for performance.

Remark 8. In practical instantiations of qTESLA, the bit security does not exactly match
the bit hardness of R-LWE (see Table 3). This is because the bit security does not only
depend on the bit hardness of R-LWE (as explained above), but also on the probability of
rejected/accepted key pairs and on the security of other building blocks such as the encoding
function Enc. First, in all our parameter sets, heuristic and provably-secure, the key space
is reduced by the rejection of polynomials s, e1, ..., ek with large coefficients via checkE and
checkS. We compensate this security loss by choosing an R-LWE instance of larger bit
hardness. Moreover, we instantiate the encoding function Enc such that it is λ-bit secure;
cf. Section 2.5.

5.2.2 Estimation of the R-LWE hardness

Since the introduction of the learning with errors problem over rings [49], it has remained
an open question to determine whether the R-LWE problem is as hard as the LWE problem.
Several results exist that exploit the structure of some ideal lattices [22,25,33,35]. However,
up to now, these results do not seem to apply to R-LWE instances that are typically
used in signature schemes and, therefore, do not apply to the proposed qTESLA instances.
Consequently, we assume that the R-LWE problem is as hard as the LWE problem, and
estimate the hardness of R-LWE using state-of-the-art attacks against LWE.

Albrecht, Player, and Scott [8] presented the LWE-Estimator, a software to estimate the
hardness of LWE given the matrix dimension n, the modulus q, the relative error rate

α =
√

2πσ
q , and the number of given LWE samples. The LWE-Estimator estimates the
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hardness against the fastest LWE solvers currently known, i.e., it outputs an upper (con-
servative) bound on the number of operations an attack needs to break a given LWE
instance. In particular, the following attacks are considered in the LWE-Estimator: the
meet-in-the-middle exhaustive search, the coded Blum-Kalai-Wassermann algorithm [40],
the dual lattice attacks recently published in [3], the enumeration approach by Linder
and Peikert [46], the primal attack described in [6, 15], the Arora-Ge algorithm [11] using
Gröbner bases [4], and the latest analysis to compute the block sizes used in the lattice ba-
sis reduction BKZ recently published by Albrecht et al. [2]. Moreover, quantum speed-ups
for the sieving algorithm used in BKZ [44,45] are also considered.

We note that another recent quantum attack, called quantum hybrid attack, by Göpfert,
van Vredendaal, and Wunderer [38] is not considered in our analysis and the LWE-Estimator.
This hybrid attack is most efficient on the learning with errors problem with very small
secret and error, e.g., binary or ternary. Since the coefficients of the secret and error of
qTESLA are chosen Gaussian distributed, the attack is not efficient for our instances.

The LWE-Estimator is the result of many different contributions and contributors. It is
open source and hence easily checked and maintained by the community. Hence, we find
the LWE-Estimator to be a suitable tool to estimate the hardness of our chosen LWE
instances. We integrated the LWE-Estimator with commit-id 9302d42 on 2017-09-27 in
our sage script.

In the following we describe very briefly the most efficient LWE solvers for our instances, i.e.,
the decoding attack and the embedding approach, following closely the description of [18].
The Blum-Kalai-Wasserman algorithm [5, 43] is omitted since it requires exponentially
many samples.

The embedding attack. The standard embedding attack solves LWE via reduction to
the unique shortest vector problem (uSVP). During the reduction an (m+ 1)-dimensional
lattice that contains the error vector e is created. Since e is very short for typical LWE
instances, this results in a uSVP instance that is usually solved by applying basis reduc-
tion.

Let (A, c = As+ e mod q) and t be the distance dist(c, L(A)) = ‖c− x‖ where x ∈ L(A),
such that ‖c − x‖ is minimized. Then the lattice L(A) can be embedded in the lattice

L(A′), with A′ =

(
A c
0 t

)
. If t < λ1(L(A))

2γ , the higher-dimensional lattice L(A′) has a

unique shortest vector c′ = (−e, t) ∈ Zm+1
q with length ‖c′‖ =

√
mα2q2/(2π) + |t|2 [26,48].

In the LWE-Estimator t = 1 is used. Therefore, e can be extracted from c′, the value As
is known, and s can be solved for. Based on Albrecht et al. [7], Göpfert shows [37, Section
3.1.3] that the standard embedding attack succeeds with non-negligible probability if δ0 ≤
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(
q1− n

m

√
1
e

ταq

) 1
m

, where m is the number of LWE samples. The value τ is experimentally

determined to be τ ≤ 0.4 for a success probability of ε = 0.1 [7].

The efficiency of the embedding attack highly depends on the number of samples. In
the case of LWE instances with limited number of samples, the lattice Λ⊥q (Ao) = {v ∈
Zm+n+1|Ao · v = 0 mod q} with Ao =[A|I|b] can be used as the embedding lattice.

The decoding attack. The decoding attack treats an LWE instance as an instance
of the bounded distance decoding problem (BDD). The attack can be divided into two
phases: basis reduction and finding the closest vector to the target vector. In the first
phase, basis reduction algorithms like BKZ [53] are applied. Afterwards, in the second
phase, the nearest plane algorithm [13] (or its variants) is applied to find the closest vector
to As and thereby eliminate the error vector e of the LWE instance. The secret can then
be accessed, as the closest vector equals the value As of an LWE instance.

5.3 Resistance to implementation attacks

Besides the theoretical security against computational attacks, such as lattice reduction,
it is important for a cryptographic scheme to be secure against implementation attacks.
These attacks come in two flavors: side-channel and fault analysis attacks.

5.3.1 Side-channel analysis

These attacks exploit physical information such as timing or power consumption, electro-
magnetic emanation, etc., that is correlated to some secret information during the execution
of a cryptographic scheme. Simple and differential side-channel attacks that rely on power
and electromagnetic emanations are very powerful but typically require physical access (or
close proximity) to the targeted device. Protecting lattice-based schemes against this class
of attacks is a very active area of research.

In contrast, attacks that exploit timing leakage, such as timing and cache attacks, are
easier to carry out remotely. Hence, these attacks represent a more immediate danger for
most applications and, consequently, it has become a minimum security requirement for
a cryptographic implementation to be secure against this class of attacks. One effective
approach to provide such a protection is by guarantying so-called constant-time execution.
In practice, this means that an implementation should avoid the use of secret address
accesses and conditional branches based on secret information.

37



One of the main advantages of qTESLA is that the Gaussian sampler, arguably the most
complex part of the scheme, is restricted to key generation. This reduces drastically the
attack surface to carry out a timing and cache attack against qTESLA. Still, we remark
that qTESLA’s Gaussian sampler is relatively simple and can be implemented securely in a
constant-time manner, as can be observed in the accompanying implementations. Other
functions of qTESLA, such as polynomial arithmetic operations, are easy to implement in
constant-time.

We note that, recently, the scheme ring-TESLA [1] was analyzed with respect to cache
side channels with the software tool CacheAudit [20]. It was the first time that a post-
quantum scheme was analyzed with program analysis. The authors found potential cache
side channels, proposed countermeasures, and showed the effectiveness of their mitigations
with CacheAudit. In our implementations, we apply similar techniques to those proposed
in [20] with some additional optimizations. For example, our implementation of the rejec-
tion sampling in the signing algorithm (line 12 of Algorithm 7) protects the sign of each
coefficient of z by doing a masked conversion to obtain its absolute value before checking
against a unique positive bound. The function leaks, however, the position of the coefficient
that fails the test, but this information is independent of the secret data.

Notably, qTESLA has implicitly an additional line of defense, thanks to its non-deterministic
nature. To generate the polynomial y, qTESLA hashes together fresh randomness, a value
seedy passed through the secret key and the message m. The use of seedy makes qTESLA

resilient to a catastrophic failure of the RNG during generation of the fresh randomness
(e.g., a similar failure of ECDSA signatures was demonstrated in [23]). The randomness
guarantees the use of a fresh y at each signing operation, which makes a timing attack
(or even more generally, any side-channel attack) more difficult to carry out. More impor-
tantly, this implicitly protects against some powerful and easy-to-carry out fault attacks,
as explained next.

5.3.2 Fault analysis

Recently, some studies have exposed the vulnerability of lattice-based schemes to fault
attacks. We describe a simple yet powerful attack that falls in this category of at-
tacks [21].

Assume that line 3 of Algorithm 7 is computed without the random value r, i.e., as
rand ← PRF2(seedy,m). Assume that a signature (z, c) is generated for a given mes-
sage m. Afterwards, a signature is requested again for the same message m, but this time,
a fault is injected on the computation of the hash value c yielding the value cfaulted. This
second signature is (zfaulted, cfaulted). Computing z−zfaulted = sc−scfaulted = s(c−cfaulted),
reveals the secret s since c − cfaulted is known to the attacker. As stated in [50], this at-
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tack has broad implications since it is generically applicable to deterministic Schnorr-like
signatures.

It is easy to see that, to prevent this (and other similar) fault attacks, every signing
operation should be injected with fresh randomness, as precisely specified in line 3 of
Algorithm 7. This makes qTESLA implicitly resilient to this line of attacks.

Remark 9. In an earlier description of qTESLA, the scheme was specified as a deterministic
signature scheme and, hence, was susceptible to the fault attacks described in [21].

6 Advantages and limitations

In this section, we summarize some advantages and limitations of the proposed signature
scheme qTESLA. In addition, we compare our scheme with other post-quantum and classical
signatures.

Security of our signature scheme. qTESLA comes accompanied by a tight security
proof (cf. Theorem 6) in the quantum random oracle model, i.e., a quantum adversary is
allowed to ask the random oracle in superposition. This reduction is based on a variant of
our scheme over standard lattices [9]. To port the reduction given in [9], we use a heuristic
argument as explained in Section 5.1. The tightness in the proof enables the use of smaller
parameters and, thus, better performance when choosing parameters according to security
reductions.

Our signature scheme instantiated with provably-secure parameters is provably EUF-CMA
secure by virtue of the provided security reduction from the hardness of the decisional
R-LWE problem to EUF-CMA security. Moreover, since our security reduction is explicit,
we can explicitly give the relation between the success probabilities of solving the R-LWE
problem and forging qTESLA signatures. This provides a high-level of security assurance to
the proposed signature scheme.

Flexible choice of parameters. We offer two approaches to instantiate qTESLA: using
“heuristic” parameters and using “provably-secure” parameters that follow existing security
reductions.

The heuristic approach identifies the security level of an instantiation of a scheme by a cer-
tain parameter set with the hardness level of the instance of the underlying lattice problem
that corresponds to these parameters, regardless of the tightness gap of the provided se-
curity reduction. This approach supports implementations that achieve very high-speed
execution while requiring relatively compact keys and signatures.
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The parameter choice according to a reduction can be considered as providing a stronger
security argument since it provably guarantees that the scheme has the selected security
level as long as the corresponding R-LWE instance is intractable. This approach sup-
ports implementations that are slower and require larger public keys, but that can still be
considered practical for many high-security applications.

In summary, the choice between both options represent a trade-off between provably se-
curity assurance (provided by the provably-secure parameter sets) and greater efficiency
(provided by the heuristic parameter sets).

The bit-security of the proposed parameters was estimated against known state-of-the-art
classical and quantum algorithms that solve the learning with errors problem. The proposed
parameters, especially in the case of provably-secure qTESLA, provide a comfortable
margin between the targeted and the estimated bit security in order to deal with future or
unknown LWE solvers as well.

Finally, the parameter generation of qTESLA is easy to audit: the choice of parameters and
their relation are clearly explained; and the generation procedure is simple and easy to
follow. In order to facilitate the generation of new parameters (if needed), and also for
transparency, we make our sage script for parameter generation available3.

Ease of implementation and scalability. qTESLA has a very compact structure con-
sisting of a few, easy-to-implement functions. The Gaussian sampler, arguably the most
complex function in qTESLA, is only required during key generation. Therefore, even if the
fast Gaussian sampler included in this document is not used, most applications will not be
impacted by the use of a slower Gaussian sampler.

qTESLA exhibits great scalability to support different security levels with a unique, efficient
implementation. The simplicity of qTESLA makes it easy to support any of the proposed
security levels with a common codebase. For example, our implementations for qTESLA-I,
qTESLA-III-speed and qTESLA-III-size share about 325 lines of C code, differing in
only about 100 lines of C code corresponding to easy-to-implement packing functions, and
a few NTT constants and system parameters which are instantiated at compilation time.
Furthermore, the packing functions can be optionally implemented in a more generic way,
which would virtually eliminate any differences in the C code (beside the NTT constants
and system parameters). This also highlights the compactness of realizations of qTESLA;
for example, our reference implementations of heuristic qTESLA require about 430 lines
of C code 4, which is significantly shorter than other schemes based on ideal lattices.

3The parameter generation script can be found at \Supporting_Documentation\Script_to_choose_

parameters\parameterchoice.sage.
4This count excludes header files, the NTT constants and the code for the additional symmetric primi-

tives.
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High-speed and key compactness. Despite the compactness of the scheme, qTESLA
(especially with “heuristic” parameters) supports high-speed implementations with rela-
tively compact keys and signatures. The superb performance of heuristic qTESLA is
specifically achieved in the computation of signing and verification, and is obtained at the
expense of a relatively more expensive key generation. This approach suits perfectly most
scenarios in which key generation is executed less frequently or is done offline.

qTESLA signatures are also relatively compact, making them ideal for applications in which
signature size is prioritized over public key size. We note that the combined size of signature
and public key for heuristic qTESLA is still competitive with other efficient schemes based
on ideal lattices.

As previously stated, provably-secure qTESLA implementations are slower and require
larger public keys, but they are still practical for many applications and come with provably
secure guarantees that other signature schemes do not provide.

Security against implementation attacks. qTESLA’s simplicity and compactness fa-
cilitates its implementation in constant-time and, arguably, its protection against more
powerful attacks such as differential power analysis. As stated before, Gaussian sampling
is only required during key generation, which reduces significantly the attack surface over
this function. Moreover, qTESLA requires a simpler Gaussian sampler which further eases
implementation and protection against side-channel attacks.

qTESLA comes equipped with built-in measures that protect against some side-channel and
fault attacks. Since qTESLA generates a fresh y per signing operation, some simple side-
channel attacks are more difficult to mount against the scheme. More importantly, this
feature immediately renders some powerful and easy-to-carry out fault attacks unfeasible.
At the same time, qTESLA is resilient to a catastrophic failure of the RNG during generation
of the fresh randomness that is required to generate y.

Comparison with selected state-of-the-art signature schemes. In this subsection
we compare qTESLA with other post-quantum and classical signature schemes.

Table 6 summarizes the most relevant features of selected signature schemes, including
the underlying computational assumption, the bit security against classical and quantum
attacks, and key and signature sizes.

As can be seen, qTESLA is among the most compact post-quantum schemes with regard to
signature size. In particular, the signature size of qTESLA is several magnitudes smaller than
hash-based and multivariate alternatives. Among post-quantum lattice based schemes,
heuristic qTESLA offers the smallest signatures, and represents a very competitive option
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when the combined size of public keys and signatures is taken into account. The lattice-
based signature scheme BLISS has noticeably smaller signatures, but the bit security is not
estimated against quantum adversaries. Likewise, if one takes into account the provided
security reduction, provably-secure qTESLA offers very competitive key and signature
sizes, and is quantum-resistant.

We note, however, that classical schemes such as RSA and ECDSA feature significantly
smaller signature and public key sizes than all the available post-quantum alternatives.
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Table 6: Overview of selected post-quantum and classical signature schemes; signature and
key sizes are given in bytes; we write “–” if no corresponding data is available

Software/
Scheme

Comp.
Assum.

Bit
Security

Key Size
(bytes)

Sig. Size
(bytes)

S
e
le

c
te

d
la

tt
ic

e
-b

a
se

d
si

g
n

a
tu

re
s

qTESLA-I

(this document)
R-LWE 95b

pk: 1 504
sk: 1 216

1 376

qTESLA-III-speed

(this document)
R-LWE 160b

pk: 3 104
sk: 2 112

2 848

qTESLA-III-size

(this document)
R-LWE 160b

pk: 2 976
sk: 2 112

2 720

qTESLA-p-I

(this document)
R-LWEa 95b

pk: 14 880
sk: 4 576

2 848

qTESLA-p-III

(this document)
R-LWEa 160b

pk: 39 712
sk: 12 320

6 176

Dilithium-II (medium)
[28]

module SIS
module LWE

91b
pk: 1 184

sk: –
2 044

Dilithium-II (recommended)
[28]

module SIS
module LWE

125b
pk: 1 472

sk: –
2 700

Dilithium-III (very high)
[28]

module SIS
module LWE

158b
pk: 1 760

sk: –
3 366

GPV-poly
[32,36]

R-SISa 96c
pk: 55 705
sk: 26 316

32 972

BLISS-B-IV
[29,57]

R-SIS,
NTRU

182c
pk: 896
sk: 384

812

O
th

e
r
se

le
c
te

d
p
o
st
-q

u
a
n
tu

m
si
g
n
a
tu

re
s

gravity-SPHINCS
[12]

Hash collisions,
2nd preimage

128b
pk: 32
sk: 64

22 304

SPHINCS-256
[17]

Hash collisions,
2nd preimage

128b
pk: 1 056
sk: 1 088

41 000

MQDSS-31-64
[24]

Multivariate
Quadratic system

128b
pk: 72
sk: 64

40 952

S
e
le
c
te

d
c
la
ss
ic
a
l

si
g
n
a
tu

re
s RSA-3072

[55]
Integer

Factorization
128d

pk: 384
sk: 1 728

384

ECDSA (P-256)
[41]

Elliptic Curve
Discrete Logarithm

128d
pk: 64
sk: 96

64

aParameters are chosen according to given security reduction in the quantum random oracle model.
bBit security analyzed against classical and quantum adversaries.
cBit security analyzed against classical adversaries.
dBroken by quantum computers (bit security analyzed against classical adversaries).
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[25] Ronald Cramer, Léo Ducas, Chris Peikert, and Oded Regev. Recovering short gen-
erators of principal ideals in cyclotomic rings. In Marc Fischlin and Jean-Sébastien
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[41] James Howe, Thomas Pöppelmann, Máire O’neill, Elizabeth O’sullivan, and Tim
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