
Bansilal Ramnath Agarwal Charitable Trust’s
Vishwakarma Institute of Technology, Pune-37

Department Of Computer Engineering

Tutorial Manual

OPERATING SYSTEM TUTORIAL

COURSE CODE: CS30201

Class:- TE Branch:- Comp/IT

Year:- 2012-13

Prepared By:- Mr.S.N.Shelke Contributors:- Mrs. A.M. Mete.

Examinations:- Practical

Required H/W and S/W: C, Shell, AWK,

 Linux /Win XP with P-IV

 128 MB RAM

1

Contents
Sr. No. Title of experiment Page No.

1 Study of Basic Unix Commands. 3

2
Write a shell script for to check if a given input string is a palindrome or

not.
5

3
Write a program to generate a student result report using AWK

programming.
6

4
Write a program in C to implement the Reader Writer problem using

Threads and semaphores.
8

5
Write a program in C to implement the Reader Writer problem using

Threads and Mutex.
11

6
Write a program in C to implement the Producer Consumer problem

using Threads and Mutex.
13

7
Write a program in C to implement the Producer Consumer problem

using Threads and semaphores.
15

8
Write a program in C to implement the Dining Philosopher’s problem

using Multithreading.
17

9

Write a program in C to simulate following CPU scheduling algorithms:

a) Shortest job first (Non preemptive)

b) Round Robin

19

10 Write a program in C to implement a simulation of Banker’s algorithm 22

11
Write a program in C to implement the following page replacement

algorithms: LRU, FIFO, Optimal.
25

12
Write a program in C to implement the following disk scheduling

algorithms: FCFS, SCAN, C-SCAN, SSTF.
27

2

Experiment Number: 1

TITLE: Study of UNIX Commands

OBJECTIVES:

1. To understand how to use Unix commands.

2. To understand How and Why they are used in Shell Programming

Problems to be solved in the lab:

1. Change your password to a password you would like to use for the remainder of

the semester.

2. Display the system’s date.

3. Count the number of lines in the /etc/passwd file.

4. Find out who else is on the system.

5. Direct the output of the man pages for the date command to a file named mydate.

6. Create a subdirectory called mydir.

7. Move the file mydate into the new subdirectory.

8. Go to the subdirectory mydir and copy the file mydate to a new file called

ourdate

9. List the contents of mydir.

10. Do a long listing on the file ourdate and note the permissions.

11. Display the name of the current directory starting from the root.

12. Move the files in the directory mydir back to the HOME directory.

13. List all the files in your HOME directory.

14. Display the first 5 lines of mydate.

15. Display the last 8 lines of mydate.

16. Remove the directory mydir.

17. Redirect the output of the long listing of files to a file named list.

18. Select any 5 capitals of states in India and enter them in a file named capitals1.

Choose 5 more capitals and enter them in a file named capitals2. Choose 5 more

capitals and enter them in a file named capitals3. Concatenate all 3 files and

redirect the output to a file named capitals.

19. Concatenate the file capitals2 at the end of file capitals.

20. Redirect the file capitals as an input to the command “wc –l”.

3

21. Give read and write permissions to all users for the file capitals.

22. Give read permissions only to the owner of the file capitals. Open the file, make

some changes and try to save it. What happens ?

23. Create an alias to concatenate the 3 files capitals1, capitals2, capitals3 and

redirect the output to a file named capitals. Activate the alias and make it run.

24. What are the environment variables PATH, HOME and TERM set to on your

terminal ?

25. Find out the number of times the string “the” appears in the file mydate.

26. Find out the line numbers on which the string “date” exists in mydate.

27. Print all lines of mydate except those that have the letter “i” in them.

28. List 5 states in north east India in a file mystates. List their corresponding

capitals in a file mycapitals. Use the paste command to join the 2 files.

29. Use the cut command to print the 1st and 3rd columns of the /etc/passwd file for

all students in this class.

30. Count the number of people logged in and also trap the users in a file using the

tee command.

APPLICATIONS: To enable the user to communicate with the kernel through the command
interpreter.
Useful in Shell Programming

 FAQS

1. What is a pipe?

2. What is a filter?

3. What is the purpose of the grep command?

4. How does input output redirection take place?

5. What is an alias?

4

Experiment Number: 2

TITLE: Shell Programming

OBJECTIVES:

1. To understand how to perform Shell programming in Unix/Linux.

2. To explain the purpose of shell programs

3. Design and write shell programs of moderate complexity using variables, special

variables, flow control mechanisms, operators, arithmetic and functions.

ALGORITHMS

For Palindrome checking:

1. Start.

2. Accept the string from user.

3. Find the actual length of string as len.

4. Initialize a pointer to character in string to 1 and also flag to true.

5. Take the character pointed to by the pointer and the character pointed to by len

6. If the characters are not found, make the flag as false and go to step 9.

7. Decrement variable len by 1 and increment pointer by 1.

8. If the value of len is less than or equal to 1 then repeat from step 5.

9. If the flag is true, display the message that ‘String is a palindrome’ else display ‘String is not

palindrome.’

10. Stop.

Test Condition:

• String should not be NULL.

APPLICATIONS
1. Useful for integrating our existing applications.

2. Useful for System Administrator.

FAQS
1. What are different control structures used in shell programming?

2. What do you mean by positional parameters & enlist them?

3. What do you mean by shell?

5

Experiment Number: 3

TITLE: AWK Programming

OBJECTIVES:

 To understand how to design & develop AWK Programs in Unix/Linux.

THEORY:

The AWK command makes entry into the UNIX system in 1977 to augment the total kit with a

suitable report formatting capability. It is named after its authors Aho, Weinberg & Kernighan.

AWK is a pattern scanning and processing language. It is well suited for small projects

involving text processing or formatting and has some useful features for small database

applications. Its features for pattern description are derived from those of the grep family of

standard Unix tools.

Syntax:

 awk option ‘address {action}’ file(s)

The action and address together constitutes an ‘awk’ program. These programs can be one

line long or several lines long depending on the application.

A typical and complete ‘awk’ command specifies an address and an action.

Example

$ awk ‘/director/ {print }’ emp.lst

 Output: neha|director|production

 pranav|director|sales

ALGORITHM
1. Start.

2. Input the records in the record file.

3. Start from the first record in the file.

4. Calculate the total marks of the student by adding the values of last 3 columns.

5. Calculate the percentage with total marks.

6. If the percentage is les than 40, give result as fails. If it is between 60 to 65 give result as

First Class, Above 66 as Distinction else give result as pass.

7. Repeat steps 3 to 5 for all the records in the record file processed.

8. Stop.

6

APPLICATIONS

• It is useful for report generation.

FAQS
1. For what purpose is AWK programming used?

2. Why is AWK more useful compared to shell programming when dealing with database

files?

3. What do you mean by $1, $2,$3..etc in AWK programming?

4. What are the different built in variables?

7

Experiment Number: 4

TITLE: Reader Writer Problem using thread and semaphore

OBJECTIVES:

1. To understand the solution to the problems of mutual exclusion.

2. To grasp techniques and to develop the skills in the use of the tools: semaphores,

threads, mutex in concurrent programming.

THEORY: The problem consists of readers and writers that share a data resource. The readers only

want to read from the resource, the writers want to write to it. Obviously, there is no problem if two

or more readers access the resource simultaneously. However, if a writer and a reader or two writers

access the resource simultaneously, the result becomes indeterminable. Therefore the writers must

have exclusive access to the resource.

 A data object is to be shared among several concurrent processes. Some of these processes

may only want to read content of the shared object, whereas others may want to update the shared

object.

We distinguish between these two types of processes by referring to those processes that are

interested in only reading as readers and to rest as writers. Obviously, if two readers access the

shared data object simultaneously, no adverse effect will result.

1. The first readers-writers problem: Requires that no reader will be kept waiting unless a

writer has already obtained permission to use the shared object.

2. The second readers – writers problem: Requires that, once a writer is ready, that writer

performs its write as soon as possible. At given time, there is only one writer and any

number of readers. When a writer is writing, the readers cannot enter into the database .The

readers need to wait until the writer finishes to write to the database. Once a reader succeeds

in reading the database, subsequent readers can enter into the critical section without waiting

for the precedent reader finish to read. On the other hand, a writer who arrives later than the

reader who is reading currently is required to wait till the last reader finishes read. Only

when the last reader finishes reading, can the writer enter into the critical section and is able

to write to the database.

8

SEMAPHORE:
It can be used to restrict access to the database under certain conditions. Semaphore

allows a sleep and wakeup mutual exclusion policy to be implemented. Basically, a

semaphore is a new type of variable. A semaphore can have a value of 0(meaning no

wakeups are saved) or a positive integer value, indicating the number of sleeping

processes. Two different operations can be performed on a semaphore, down and up,

corresponding to Sleep and Wakeup.

ALGORITHMS

Using semaphore and thread :

1. Start.

2. Create two threads associated with processes writer and reader.

3. Initialize two semaphore variables pread to 0 and pwrite to 1.

4. Join two threads. Initiate processes writer and reader.

5. Destroy semaphores pread, pwrite using sem_destroy function.

6. Stop.

Reader ()

1. Check whether the value of semaphore pread is 1.

2. If yes, decrement the value of the semaphore to 0.

3. Read the value of seconds, minutes, hours.

4. Display the values of variables hours, minutes, seconds.

5. Increment the value of the semaphore pwrite to 1.

6. Stop.

 Writer ()

1. Check whether the value of semaphore pwrite is 1.

2. If yes, decrement the value of the semaphore to 0.

3. Update the value of seconds, minutes, hours.

4. Increment the value of the semaphore pread to 1.

5. Stop.

9

APPLICATIONS

◦ Applicable in all applications where synchronization is used such as all

Operating systems.

FAQS

1. What is difference between thread and process?

2. What mean by is semaphore?

3. What is mean by critical section?

4. How will you change the solution for n readers and n writers?

10

Experiment Number: 5

TITLE: Reader Writer Problem using thread and mutex.

OBJECTIVES:

1. To understand the solution to the problems of mutual exclusion.

2. To grasp techniques and to develop the skills in the use of the tools: semaphores,

threads, mutex in concurrent programming.

THEORY:

The problem consists of readers and writers that share a data resource. The readers only want to

read from the resource, the writers want to write to it. Obviously, there is no problem if two or more

readers access the resource simultaneously. However, if a writer and a reader or two writers access

the resource simultaneously, the result becomes indeterminable. Therefore the writers must have

exclusive access to the resource.

 A data object is to be shared among several concurrent processes. Some of these processes

may only want to read content of the shared object, whereas others may want to update the shared

object.

We distinguish between these two types of processes by referring to those processes that are

interested in only reading as readers and to rest as writers. Obviously, if two readers access the

shared data object simultaneously, no adverse effect will result.

The first readers-writers problem: Requires that no reader will be kept waiting unless a writer has

already obtained permission to use the shared object.

The second readers – writers problem: Requires that, once a writer is ready, that writer performs its

write as soon as possible. At given time, there is only one writer and any number of readers. When a

writer is writing, the readers cannot enter into the database .The readers need to wait until the writer

finishes to write to the database. Once a reader succeeds in reading the database, subsequent readers

can enter into the critical section without waiting for the precedent reader finish to read. On the

other hand, a writer who arrives later than the reader who is reading currently is required to wait till

the last reader finishes read. Only when the last reader finishes reading, can the writer enter into the

critical section and is able to write to the database.

11

MUTEX:

A mutex is mutual exclusion lock. Only one thread can hold the lock. Mutexes are used to

protect data or other resources from concurrent access. A mutex has attributes, which specify

the characteristics of the mutex.

ALGORITHMS

Using mutex and threads:

1. Start.

2. Create two threads associated with processes update and display.

3. Declare mutex variable timer_lock and initialize to 0 using pthread_mutex_init function.

4. Join two threads. Initiate processes update and display.

Update ()

1. Lock access to critical sections using mutex timer_lock.

2. Update the values of variables seconds, minutes, and hours.

3. Unlock the access to critical sections using mutex.

 Display()

Lock the access to critical sections using mutex timer_lock.

Display the values of variables hours, minutes, seconds.

Unlock the access to critical sections using mutex timer_lock.

APPLICATIONS

◦ Applicable in all applications where synchronization is used such as all

Operating systems.

FAQS

1. What mean by is mutex?

2. What is mean by critical section?

3. How will you change the solution for n readers and n writers?

12

Experiment Number: 6

TITLE: Producer Consumer Problem using thread and mutex

OBJECTIVES:

1. To understand problems of mutual exclusion and Producer Consumer Problem.

2. To grasp techniques and to develop the skills in the use of the tools: threads and

mutex in concurrent programming.

THEORY:

The producer-consumer problem illustrates the need for synchronization in systems where many

processes share a resource. In this problem, two processes share a fixed size buffer. One process

produces information and puts it in the buffer, while the other process consumes information from

the buffer. These processes do not take turns accessing the buffer, they both work concurrently.

ALGORITHMS

Using Mutex and Thread

1. Start.

2. Declare two thread variables of pthread_t structure.

3. Create two threads associated with producer and consumer processes using pthread_create

function.

4. Declare one mutex variable of pthread_mutex_t structure mutex.

5. Initialize the mutex variable using pthread_mutex_init function.

6. Join two threads using pthread_join function.

7. Initiate two processes.

8. Stop.

Producer ()

1. Producer locks the mutex variable mutex using pthread_mutex_lock function.

2. Producer executes the critical section.

3. Then after producing the string, the producer unlocks the mutex using the

pthread_mutex_unlock function and makes it available for the consumer.

13

Consumer ()

1. Consumer will wait for mutex variable.

2. Consumer locks the mutex variable mutex using pthread_mutex_lock function.

3. Consumer executes the critical section.

4. Then after consuming the string, consumer unlocks the mutex using

pthread_mutex_unlock function and makes it available for the producer.

Test Conditions: Maximum string length should not be exceeded.

APPLICATIONS

◦ Applicable in all applications where synchronization is used such as all

Operating systems.

FAQS

1. How will you change the solution for n producers and n consumers?

2. What do you mean by mutual Exclusion condition?

14

Experiment Number: 7

TITLE: Producer Consumer Problem using thread and semaphore

OBJECTIVES:

 1. To understand problems of mutual exclusion and Producer Consumer Problem.

2. To grasp techniques and to develop the skills in the use of the tools: threads and

semaphore in concurrent programming.

THEORY:

The producer-consumer problem illustrates the need for synchronization in systems where many

processes share a resource. In this problem, two processes share a fixed size buffer. One process

produces information and puts it in the buffer, while the other process consumes information from

the buffer. These processes do not take turns accessing the buffer, they both work concurrently.

ALGORITHMS

Using semaphore and thread:

1. Declare two thread variables of pthread_t structure.

2. Create two threads associated with producer and consumer processes using

pthread_create function.

3. Declare two semaphore variables of sem_t structure bfull and bempty.

4. Initialize the semaphore variable empty to 0 and full to 1 using sem_init function.

5. Join two threads using pthread_join function.

6. Initiate two processes.

7. Destroy both the semaphore variables using sem_destroy function.

8. Stop.

Producer ()

1. If semaphore variable bfull is 1, then the producer will wait on empty using the

sem_wait function.

2. Else the producer will produce the string and execute the critical section. Then signal

the bfull semaphore variable using the sem_post function on full and unblock the

consumer thread.

15

Consumer ()

1. If there is no data to consume, then the thread waits on the semaphore variable

bfull using the sem_wait function.

2. Else the consumer executes the critical section and consumes the data. Then the

consumer signals the bempty variable using sem_post function and unblocks the

producer thread

Test Conditions: Maximum string length should not be exceeded.

APPLICATIONS

1. Applicable in all applications where synchronization is used such as all

 Operating systems.

FAQS

 1. How will you change the solution for n producers and n consumers?

 2. What do you mean by mutual Exclusion condition?

16

Experiment Number: 8

TITLE: Dining Philosopher Problem

OBJECTIVES:

Solve the synchronization problem using multithreading

THEORY:

The Dining Philosopher problem is stated as follows:

Five philosophers are seated around a table. Each philosopher has a plate of spaghetti. A

philosopher must eat the spaghetti with two chopsticks. Between every two plates there is a

chopstick. The life of a philosopher consists of alternate periods of eating and thinking. When a

philosopher gets hungry, he tries to acquire his left and right chopsticks, one at time, in either order.

If successful in acquiring two chopsticks, he eats for a while, then puts down the chopsticks and

continues to think. The key question is: can you write a program for each philosopher that does

what it is supposed to do and never gets stuck?

The dining philosophers problem is useful for modeling processes that are competing for

exclusive access to a limited number of resources, such as tape drives or other I/O devices.

ALGORITHMS

 Using Threads and Semaphores :

1. Declare an array of semaphores. Each element in array is associated with each philosopher.

2. Declare one thread for each of the five philosopher processes.

3. Associate every thread with each philosopher procedure.

Procedure Philosopher:

1. Decrement the value of the associated semaphore with the philosopher.

2. Check the state of philosopher. If the state is thinking, his state is changed to

hungry.

3. If state is hungry, the states of left and right philosophers are checked. If both of them are

not eating, the philosopher can eat. Else, the philosopher is still hungry.

4. If philosopher is eating, his state is again changed to thinking.

5. The value of semaphore is increased by one.

17

Test conditions:

• Philosophers placed alternately can eat simultaneously.

• Each philosopher is allowed to eat for a maximum of 3 seconds, so as to avoid

starvation.

APPLICATIONS

◦ Applicable in all applications where synchronization is used such as all

Operating systems.

FAQS

1. What do you mean by multithreading?

2. What is the Dining Philosopher’s problem?

3. If there are n philosophers, what is the maximum number of philosophers that can

eat at a time?

18

Experiment Number: 9

TITLE: CPU Scheduling

OBJECTIVES:
To study different process scheduling algorithms.

THEORY:

Scheduling decisions may take place when a process switches from:

• Running to waiting.

• Running to ready.

• Waiting to ready.

• Running to terminate.

Non-preemptive scheduling:

The current process keeps the CPU until it releases the CPU by either terminating or by switching

to a waiting state.

Non-preemptive scheduling occurs only under situations 1 and 4, it does not require special

hardware (timer).

Preemptive scheduling:

 The currently running process may be interrupted and moved to the ready state by the operating

system. It requires special hardware (timer), mechanisms to coordinate access to shared data.

Definitions:

• Throughput Number of processes/time unit.

• Turnaround Time it take to execute a process from start to finish.

• Waiting Time Total time spent in the ready queue.

• Response time Amount of time it takes to start responding (average, variance).

19

ALGORITHMS

First Come First Serve (FCFS):

1. Accept burst time and arrival time for every process entered by user.

2. Compare the arrival time of all processes.

3. Sort processes in ascending order with respect to their arrival time.

4. Execute all processes in sorted order.

5. Calculate the finish time of each process using the formula.

FT = start time + burst time.

6. Calculate the turnaround and waiting time for all processes.

7. Display finish time, turnaround time, waiting time, Gantt chart.

8. Stop.

Shortest Job First (SJF):

1. Accept the number of processes from the user.

2. Accept arrival time and burst times for each process.

3. Start with arrival time.

4. For every arrival time, check which jobs are available.

5. Select job with shortest burst time.

6. Complete the selected process.

7. Continue steps 4 & 6 until all processes are complete.

8. Display finish time, turnaround time, waiting time with Gantt chart.

9. Stop.

Round Robin:

1. Accept the number of processes from the user.

2. Accept arrival time and burst times for each process.

3. Start with arrival time

4. Execute all processes present at arrival time for one time slot.

5. Increment arrival time.

6. Continue steps 3 to 4 until all the processes are complete.

7. Display finish time, turnaround time, waiting time, Gantt chart.

8. Stop.

20

Preemptive SJF:

1. Accept the number of processes from the user.

2. Accept arrival time and burst times for each process.

3. Sort all the processes according to the arrival time.

4. Start with the first process

5. After the first time slice of the process, if any other process has less arrival time then

execute that.

6. Continue this process till all the processes are completed.

7. Display finish time, turnaround time, waiting time with Gantt chart.

8. Stop.

APPLICATIONS

Operating system use scheduling algorithms in order to provide good response to users.

FAQS
Why is scheduling used?

What is the difference between preemptive & non- preemptive scheduling?

Which algorithm is more useful & why?

What do you mean by time quantum?

21

Experiment Number: 10

TITLE: Banker’s Deadlock Avoidance Algorithm

OBJECTIVES:

1. To simulate deadlock avoidance.

2. To check if state is safe or not.

THEORY:

Deadlock: In operating systems or databases, a situation in which two or more processes are

prevented from continuing while each waits for resources to be freed by the continuation of the

other.

Deadlock Characterization: Deadlock can arise if four conditions hold simultaneously. (All four

must hold)

1. Mutual exclusion: Only one process at a time can use a resource

2. Hold and Wait: A process holding at least one resource is waiting to acquire

 additional resources held by other processes.

3. No preemption: A resource can be released only voluntarily by the process holding

 it, after that process has completed its task.

4. Circular Wait: There exists a set {P0, P1,….Pn} of waiting processes such that P0 is

 waiting for a resource that is held by P1,P1 is waiting for a resource that is held by

 P2..Pn-1 is waiting for a resource that is held by Pn ,and Pn is waiting for a resource

 that is held by P0.

Deadlock Prevention: Restrain the ways that processes can make resource requests:

Mutual Exclusion- not required for sharable resources; must hold for non-sharable resources

Hold and wait-

• must guarantee that whenever a process requests a resource, it does not hold any other

resources.

• Require process to request and be allocated all its resources before it begins execution, or

allow process to request resources only when the process has none.

22

• Low resource utilization;

• starvation possible

No Preemption-

• If a process that is holding some resources requests another resource that cannot be

immediately allocated to it, then all resources currently being held are released.

• Preempted resources are added to the list of resources for which the process is

waiting.

• Process will be restarted only when it can regain its old resources, as well as the new

ones that it is requesting.

Circular wait-

• Impose a total ordering of all resources types and require that each process request resources

in a increasing order of enumeration.

Deadlock Avoidance:

Requires that the system has additional information in advance.

• Simplest and most useful model requires that each process declare the maximum

 number of resources of each type that it may need

• The deadlock –avoidance algorithm dynamically examines the resource allocation

state to ensure that there can never be a circular-wait condition.

• Resource-allocation state is defined by the number of available and allocated

resources, and the maximum demands of the processes.

ALGORITHMS

1. Start.

2. Calculate the current need for each process, for each resource from the data entered by

user.

3. For a process, check if current available resources satisfy all current needs.

4. If all are satisfied completes the process and adds all its current allocations to available

resources.

5. If all are not satisfied, check for next process.

6. Repeat from step 3, for as many times as there are processes.

23

7. If all processes have been completed, system is in safe state and display safe sequence.

Else system is not in safe state.

8. Stop.

Test Condition: Safe sequence is not unique. A different safe sequence may also be possible.

APPLICATIONS

Can be used in a system where prior information regarding usage of resources for different

processes is known in advance.

FAQS

What do you mean by deadlock?

What are 4 conditions necessary for deadlock existence?

What are time complexities of deadlock avoidance and deadlock detection algorithm?

24

Experiment Number: 11

TITLE: Page Replacement Algorithms

OBJECTIVES:

To study different Page Replacement algorithms

THEORY:

Page: One of numerous equally sized chunks of memory.

Page Replacement: This policy determines which page should be removed from main memory so

that page from secondary memory replaces it.

ALGORITHMS

First In First Out (FIFO):

1. Start.

2. Accept the sequence of requirement of pages.

3. Initialize a pointer to the first page.

4. Check if the page is already present in the main memory.

5. If present, repeat from step 4, for next page.

6. If the page is not present, remove the page, which has entered the main memory first and

put this page.

7. Increment the pointer to page to be replaced to next page.

8. Repeat from step 4 till all pages in sequence are over.

9. Stop.

Least Recently Used (LRU):

1. Start.

2. Accept the sequence of requirement of pages.

3. Initialize a count for each page in main memory to zero.

4. Check if the page is already present in the main memory.

5. If the page is not present, find the page in memory with maximum

6. count, which is the least recently used and replace it.

7. Set it’s count to zero and increment others count.

8. If found, set its count to zero and increment others count.

25

9. Repeat from step 4 till all pages in sequence are over.

10. Stop.

Optimal:

1. Start.

2. Accept the sequence of requirement of pages.

3. Initialize a count for each page in main memory to zero.

4. Check if the page is already present in the main memory.

5. If the page is not present, find the page which will not be used for longest period.

6. Repeat steps 4 till all pages in sequence are over.

7. Stop.

APPLICATIONS

 Used in memory management in Operating Systems.

FAQS
What do you mean by virtual memory?

What is segmentation?

What is a translation look aside buffer?

What is thrashing?

What is Belady’s anomaly?

26

Experiment Number: 12

TITLE: Disk Scheduling Algorithm

OBJECTIVES:
To study different disk scheduling algorithms

THEORY:

In multiprogramming systems several different processes may want to use the system's

resources simultaneously. For example, processes will contend to access an auxiliary storage

device such as a disk. The disk drive needs some mechanism to resolve this contention,

sharing the resource between the processes fairly and efficiently.

First Come First Serve (FCFS)

The disk controller processes the I/O requests in the order in which they arrive, thus moving

backwards and forwards across the surface of the disk to get to the next requested location

each time. Since no reordering of request takes place the head may move almost randomly

across the surface of the disk. This policy aims to minimize response time with little regard

for throughput.

Shortest Seek Time First (SSTF)

Each time an I/O request has been completed the disk controller selects the waiting request

whose sector location is closest to the current position of the head. The movement across the

surface of the disk is still apparently random but the time spent in movement is minimized.

This policy will have better throughput than FCFS but a request may be delayed for a long

period if many closely located requests arrive just after it.

SCAN

The drive head sweeps across the entire surface of the disk, visiting the outermost cylinders

before changing direction and sweeping back to the innermost cylinders. It selects the next

waiting requests whose location it will reach on its path backwards and forwards across the

disk. Thus, the movement time should be less than FCFS but the policy is clearly fairer than

SSTF.

27

Circular SCAN (C-SCAN)

C-SCAN is similar to SCAN but I/O requests are only satisfied when the drive head is

traveling in one direction across the surface of the disk. The head sweeps from the innermost

cylinder to the outermost cylinder satisfying the waiting requests in order of their locations.

When it reaches the outermost cylinder it sweeps back to the innermost cylinder without

satisfying any requests and then starts again

ALGORITHMS
First Come First Serve (FCFS):

1. Start.

2. Accept the number of tracks n.

3. Accept the requested tracks and store it in the track [].

4. Consider the first value of track[] as starting track.

5. Process the track values in given order to calculate difference as

 trackdiff [i] = track[i] - track[i+1] .

6. Calculate totaldiff = totaldiff + trackdiff[i].

7. Calculate average seek time.

8. Display the value of average seek time.

9. Stop.

Shortest Service Time First (SSTF):

1. Start.

2. Accept the number of tracks n.

3. Accept the requested tracks and store it in track[].

4. Consider the first value of track[] as starting track .

5. First process all the tracks which are having value less than starting track in decreasing

order of tracks as trackdiff[i] = track[i]-track[i+1] .

6. Then process all the tracks which are having value greater than starting in increasing

order of track as trackdiff[i] = track[i] – track[i+1].

7. Calculate totaldiff = totaldiff + trackdiff[i]

8. Calculate average seek time.

9. Display the value of average seeks time.

10. Stop.

28

SCAN:

1. Start.

2. Accept the number of tracks n.

3. Accept the requested tracks and store it in track[]

4. Consider the first value of track[] as starting track .

5. First process all the tracks which are having value greater than starting track in

increasing order of track as trackdiff[i] = track[i] - track[i+1]

6. then process all the tracks which are having value less than starting track in

decreasing order of track as trackdiff[i] = track[i] - track[i+1]

7. Calculate totaldiff = totaldiff + trackdiff[i]

8. Calculate average seek time.

9. Display the value of average seek time.

10. Stop

C-SCAN:

1. Start.

2. Accept the number of tracks n.

3. Accept the requested tracks and store it in track[]

4. Consider the first value of track[] as starting track .

5. First process all the tracks which are having value greater than starting track in

increasing order of track as trackdiff[i]= track[i] - track[i+1]

6. Then process all the tracks which are having value less than starting track in

increasing order of track(Wrap around to starting track) as trackdiff[i] = track[i] -

track[i+1]

7. Calculate totaldiff = totaldiff + trackdiff[i]

8. Calculate average seek time.

9. Display the value of average seek time.

10. Stop

29

APPLICATIONS

 Applicable in Multimedia application to reduce disk access.

FAQS
What do you mean by seek time?

What is difference between SCAN & C-SCAN method?

Give an analysis of comparison of 4 algorithms.

30

	OPERATING SYSTEM TUTORIAL
	COURSE CODE: CS30201
	Class:- TE Branch:- Comp/IT
	Examinations:- Practical
	Required H/W and S/W: C, Shell, AWK,
	 Linux /Win XP with P-IV
	 128 MB RAM
	Contents
	Experiment Number: 1
	TITLE: Study of UNIX Commands
	 FAQs

	Experiment Number: 2
	TITLE: Shell Programming
	ALGORITHMS
	For Palindrome checking:

	FAQs

	Experiment Number: 3
	TITLE: AWK Programming
	ALGORITHM
	FAQs

	Experiment Number: 4
	TITLE: Reader Writer Problem using thread and semaphore

	SEMAPHORE:
	ALGORITHMS
	FAQs
	Experiment Number: 5
	TITLE: Reader Writer Problem using thread and mutex.
	ALGORITHMS

	 Display()
	FAQs
	Experiment Number: 6
	TITLE: Producer Consumer Problem using thread and mutex
	ALGORITHMS
	APPLICATIONS
	FAQs

	Experiment Number: 7
	TITLE: Producer Consumer Problem using thread and semaphore
	ALGORITHMS
	APPLICATIONS
	FAQs

	Experiment Number: 8
	TITLE: Dining Philosopher Problem
	ALGORITHMS
	FAQs

	Experiment Number: 9
	TITLE: CPU Scheduling
	ALGORITHMS
	FAQs

	Experiment Number: 10
	TITLE: Banker’s Deadlock Avoidance Algorithm
	ALGORITHMS
	FAQs

	Experiment Number: 11
	TITLE: Page Replacement Algorithms
	ALGORITHMS
	FAQs

	Experiment Number: 12
	TITLE: Disk Scheduling Algorithm

	First Come First Serve (FCFS)
	Shortest Seek Time First (SSTF)
	SCAN
	Circular SCAN (C-SCAN)
	ALGORITHMS
	APPLICATIONS
	FAQs

