§

Homespring-2003 Official Language Standard
Jeff Binder

1 Introduction

1.0 Slogan
“Because programming isn’t like a river, but it damn well ought to be.”

1.1 Motivation

One of the problems with current programming languages is that they’re too
abstract. Although they frequently use metaphors to exlain their concepts to
users, these metaphors do not hold up very well in the long run. Enter Home-
spring, or Hatchery Oblivion through Marshy Energy from Snowmelt Powers
Rapids Insulated but Not Great. It is also sometimes referred to as HOtMEf-
SPRIbNG.

1.1.1 Revolution Information

So what we have here is a new programming paradigm: Metaphore Oriented
Programming, or MOP. MOP languages are built around a unified metaphor,
and stick rigorously to its real-world properties and limits. This allows languages
to be created that are both high-level and simple, offering exciting new abstrac-
tions and ideas that are familiar as they are powerful. As such, Homespring
disposes of outmoded concepts such as classes, sequential execution, evaluation,
assignment, binding, variables, numbers, and calculations.

1.1.2 Consequences of Failure to Learn

The Homespring language is the archetype of MOP, and it shows off all aspects
of this revolutionary new concept. Learn it now or be left behind! Your current
favorite language stands no chance! Now it is time to learn HOtMEfSPRIbNG,
your next favorite language!

2 Lexical Structure

Before we get into the wonderful new concepts that you are impatiently awaiting,
we must discuss Homespring’s soon-to-be highly influential lexical structure.

2.1 Tokens
Homespring has exactly one (1) types of tokens: tokens. This simplicity will
be greatly appreciated, once you try it. Tokens consist of zero (0) or a num-
ber greater than zero (; 0) of non-whitespace characters, separated by one (1)
character of whitespace.

2.1.1 Escaping

2.1.1.1 Tirade

Many inferior languages include highly complex escape sequences and quoting
rules. For example, how is one expected to remember that the ‘n’ in

n stands for ‘newline’, when the inept designers who thought of this could just
as well have chosen ‘e’, ‘w’, or any of the other character in that word? Home-
spring’s system is far superior, as well as intellectually stimlating.

2.1.1.2 The Metacharacter

Homespring offers one (1) metacharacter, namely, the period (‘.”). To include a
newline in a token, just use a period. To include a space in a token, just put a

period before it. To include a period in a token, just put a space before it. The
use of tabs is discouraged, as it is not possible in HOtMEfSPRIbNG.

§ 2.1.1.2.1 Paradoz

The sequences ‘. * and ‘. .” are required to cause a causality paradox in all con-
forming implementations. As such, there are no conforming implementations.

Y Y

§ 2.1.2 Example

Although Homespring’s lexical rules are so simple that you don’t need an ex-
ample, one is provided any way as a service to our customers. The following
seqgence:

Hello,. World ..
is interpreted as:

(Hello,) () (World.
)

Note the conviniently easy to add blank token.

§ 2.2 Simplicity
That’s all there is to it, except for the fact that Homespring is helpfully case
insensitive, which is mentioned in this section. But there is one exception: the
token END causes watershed to ignore part of the tree. That’s OK, though.

§ 8 Syntax

Homespring disposes of the outdated notion of syntax, taking the burden of
program design off the shoulders of the programmer, and putting it nowhere in
particular.

§ 4 Innowvations

Now we can finally get to the exciting innovations you’ve been waiting for!

§ 4.1 The River Paradigm

Homespring uses the paradigm of a river to create its astoundingly user-friendly
semantics. Each program is a set of rivers that flows into the watershed (the
screen). Information is carried by water (a priority queue), which flows from the
springs (constants) through the network of rivers (which represents a red-black
binary tree), to the watershed. Information input by the users also comes from
the watershed, in the form of salmon (which represent string values) which swim
upstream, using their sense of smell (represented by a string compare function,
possibly implemented as a hash value of their contents or a precomputed de-
terministic finite automaton) to find their way to their home river (a terminal
node of the tree).

§ 4.1 Spawning

Once salmon reach the terminal nodes, they spawn, creating new salmon. All
of the salmon then travel back to the watershed, appearing as user output.

§ 4.2 Program structure

§ 4.2.1 Inferiority of Other Approaches
In a bold and dynamic move, Homespring has ony a single structure which
is used by all programs. In the traditional languages which you are now free
from and will never have to use again, you would waste most of your valuable

time creating a structure for your program which does what you want it to do.
HOtME{SPRIbNG liberates you from this, allowing you to spend your time in
a few mega-productive fits of work, and the get back to slacking off. You see,
with Homespring you simply use the language’s built-in structure, and come up
with a way to force it to do what you want. The superiority of the approach is
so obvious that it need not be mentioned.

§ 4.2.2 The Ideal Approach

The tokens of a Homespring program are automatically formed into the ideal
program struture, a network of rivers. To simplify things only ‘nodes’, points
where two rivers come together, are considered. The tokens are therefore inter-
preted as a tree, with the first token as the root, and the rest added one branch
at a time. Blank tokens are used to jump up in the tree. So by these simple
rules, the program

abc de fg hi
Is obviously parsed into this tree:

7a7
’b)
,C,
)d)
)e)
)f)
)g)
‘h?
’i’

Remember that the outmoded concept of indentation is not present in Home-
spring, since two spaces does not have the same meaning as one space. This al-
lows you to avoid worrying about program style and focus on what programmng
is really about, the reproductive behavior of salmon.

A program with no tokens obviously can’t be treated normally. Such a program
will, as expected, print the message:

In Homespring, the null program is not a quine.

and exit.

§ 4.3 Superior Simplicity
That’s the basic structure of Homespring. One final advantage that must be
mention in this standard, so that it can serve as a full specification of the
language, is that it is very easy for an implementation of HOtMEfSPRIbNG to
provide perfect errors, because, basically, every string of characters is a valid
Homespring program.

§ 5 Reference

The concepts of Homespring are so easy to handle, all that is needed is a feature-
by-feature reference and a few examples of real-world programs, such as sim-
ple implmentation of the important GNU hello program, which prints ‘Hello,
World?’.

§ 5.1 Reference
This is a reference of all the features that can be located on rivers. Each token
represents a different feature. Here are all of the features, presented in the order
of their inception.

§

§

§

§

§

§

§

5.1.1 None of the below

Tokens that are not equal to any of the features described below are ‘constants’,
or springs. Springs can occur at junctions and at the beginnings of tributaries.
Springs are the homes of salmon. Salmon always swim to their home springs,
springs with the same text as the salmon. If the Salmon has no home spring or
cannot reach its home spring, it takes the path closest to the top of the program.

Once a salmon reaches a spring, a new, young, identical salmon is created, and
both swim back out to the watershed. The newly created salmon carries the text
of the spring, and is first in the list of fish. The list switches order everytime the
fish move. When looking for a spring, salmon will only swim upstream. Salmon
become mature when they spawn.

5.2.2 hatchery

Hatcheries create mature salmon with the text ’homeless’, which immidiately
swim upstream along he leftmost path until they reach a spring. They only
operate when supplied with electricity.

5.2.8 hydro. power

Creates electricity as long as water is flowing through it. If it is hit by a
snowmelt, it is destroyed. Electricity is supplied to everything downstream.

5.2.4 snowmelt

Sends out a powerful flow that can destroy some functions once it hits them.
Snowmelts are processed first, then water, then electricity, then salmon. Then
it starts back with snowelts.

5.2.5 shallows
Mature salmon take two turns to pass through.

5.2.6 rapids
The inverse of shallows.

5.2.7 append down

Appends all salmon from the bottom branch to the end of each salmon coming
from the top. Salmon from the bottom do not pass through.

5.2.8 bear

Eats mature salmon.

5.2.9 force. field

Blocks all water, icemelts, and, well, everything when electricity is supplied.
Does not kill salmon, just keeps them from passing through.

5.2.10 sense
Blocks the flow of electricity when mature fish are present.

5.2.11 clone

Creates a copy of all fish that pass through, and sends them downstream. The
copies are young.

5.2.12 young. bear

Eats every other mature fish. Young fish are moved to the beginning of the list,
because they don’t have to take the time to evade the bear.

5.2.13 bird
Eats young salmon.

5.2.14 upstream. killing. device
Kills everything in the node upstream towards the bottom when electrified.

5.2.15 waterfall
Blocks upstream salmon.

5.2.16 universe

Everything that exists. Can be destroyed by a snowmelt.

5.2.17 powers
Always generates power.

5.2.18 marshy
Slows down snowmelts like rapids do for young salmon.

5.2.19 insulated
Blocks power.

5.2.20 upstream sense

Like sense, but only works for upstream fish.

5.2.21 downstream sense
Like sense, but only works for downstream fish.

5.2.22 evaporates

Blocks water and snowment when powered.

5.2.28 youth fountain
Makes all fish young.

5.2.24 oblivion
Changes fish to null fish when powered. Destroyable by snowmelt.

5.2.25 pump
Fish can only enter this node when it is powered.

5.2.26 range sense
Blocks electricity when any fish is here or upstream.

5.2.27 fear
Doesn’t allow fish to enter when powered.

5.2.28 reverse up
Send fish coming down from the down direction up the up direction.

5.2.29 reverse down
Send fish coming down from the up direction up the down direction.

5.2.30 time
Opposite of youth fountain.

5.2.81 lock

Keeps downstream salmon from entering when powered.

5.2.82 inverse lock

Keeps downstream salmon from entering when not powered.

5.2.33 young sense
Sense but for young salmon.

5.2.84 switch
Requires mature salmon to let electricity through.

5.2.35 young switch
Requires young salmon to let electricity through.

5.2.86 narrows

Only one salmon can be present.

5.2.37 append up

Appends all salmon from the bottom to the end of salmon coming from the top.
Salmon from the bottom do not pass through.

5.2.38 young range sense
Range sense but for young salmon.

5.2.39 net
Only young salmon can enter.

5.2.40 force down

Like reverse down, except upstream salmon can’t go down.

5.2.41 force up
Like reverse up, except upstream salmon can’t go up.

5.2.42 spawn
Makes all fish upstream spawn when supplied with electricity.

5.2.48 power invert
Supplies electricity when no electricity is supplied. Can be smashed.

5.2.44 current

Only mature salmon can enter.

5.2.45 bridge
Becomes blockage once destroyed by snowmelt.

5.2.46 split
Splits a salmon into its individual character salmon.

§ 5.2.47 range switch
Like a switch, but also like a range sense.

§ 5.2.48 young range switch
Like a range switch, but for young salmon.

§ 5.2.49 (null)

Nothing. These tokens can only be created when spaces can not move the
current position up the tree any more. They are also autmatically created to
balance the tree. Salmon will not enter these when swimming upstream unless
they have a specific destination.

§ 6 Examples
The first example program is the simplest useful Homespring program:

This program is similar to the cat utility, but it doesn’t print the newlines like
cat irrationally does. Here is a version of the inferior old cat utility:

Here are several possible implementations of the important and useful UNIX
utility ‘hello’. This is the simplest possible one:

Universe bear hatchery Hello. World!.
yPowers marshy marshy, snowmelt

This is the same program written in professional style, with a more cohesive
sentence structure:

Universe of bear hatchery says Hello. World!.
ultuuupowersyuuutheymarshy things;
the power of jthe snowmelt overrides.

Here’s the alternative, more complicated and less efficient perferred method:

Universe of marshy force. Field sense
shallows_the hatchery saying Hello, . World!.
yHydro. Power springsometimes; snowmelt
Luuuuupowerssnowmelt always.

This is the somewhat less common but still often useful, “Hi. What’s your
name? Hi, xxx!” program.

Universe marshy now. The marshy stuff evaporates downstream. Sense rapids
upstream. Killing. Device downstream. Sense shallows and say Hi,.

uuuThat powers the uuforce. Field senseshallows hatchery power.

Hi,. . What’s. your. name?.

uuHydro. Power springwhen snowmelt then,uuuupowers
puuuinsulated, bear hatcheryy!.

uPowers felt; ,uuuuuupowersfeel,uusnowmelt themselves.

This program tests whether the user knows what six times four is, and get this:
the program knows what six times four is!

Universeyaliveywithyouth. Fountain bear Marshy
evaporates downstream. Sense rapids

upstream. Killing. Device_downstream. Sense_ shallows you. lie!.
yPowers,force. Field sense shallows the hatchery but
what’s. six._ times._ four?.

uuHydro. Powerspring , with snowmelt_which has
Luuuuuupowersenough.
uuuuuuuuItypowersyusnowmelt jat least.
uuuuuuuMarshy lock, upstream. Sense bear now.

24, powers_drive snowmelt away.
uuuInsulated bear hatchery time, rightyo!.

UHYDRO. Power spring with snowmelt_ first.

This extremely powerful program can actually add two arbitrary digits together,
in only twenty seconds or so on a fast machine!:

Universeis marshy but evaporates downstream. Sense the rapids reverse. Down
bridge,is now marsh:

Marshy, marshy, marshy marshy marshy, marshy marshy, marshy marshy, marshy now.
A11, ,evaporates downstream. Sense

the rapids now:

Rapids rapids rapids rapids_ rapids rapids rapids rapids sensed.
Ugh, +.

uTakeupowerSufromnnnnunnnnuunnunnnnSnowmeltuutherefOre;

LuuLLLLLLLLLLLULUUUTBheyyucurrent timeisyof yyouth. Fountain,is young. Bear ,cannot
reverse. Down inverse. Lock_ young. Switch_young. Range. Switch clone to the
switchitself. Now_ inverse. Lock narrows down:

vuuuPowers

uuuuuuutoyuuappend. Upugoyall jyoung. Bear time evaporates

then. Therefore:

Spawn power. Invert evaporates,it. Down force. Down reverse. Down net._ The
unet reverses force.

Now try:

Add, ,add,add, ,add, ,add add add, now.

It isynot possible; now,count:

©O© 00N O WN = O

=
= O -

12.

13.

14.

15.

16.

17.

18+.

HHHHHHHHHHHHHHHHHHHHHuHHHHHHHHHHHHHHYouuuucanuuunowuuupump
ingreverse. Downglock goes; narrows lock down:

Inverse. Lock, young. Range. Sense On,1n,2n,3n,4n.,5n,6n,7n,8n,9n
vuuuuuuuuuPowersyuuuuuuuulock time now.

Inverse. Lock,young. Range. Sense On,1n,2n,3n,4n.,5n,6n,7n,8n,9n

vuuuuuuuuuPower spuuLuLLLLLLULSnOWme 1ty now .

uuuuPowers

Luuuuw@ll:

Bear hatchery n

upowers

HHHHHHHHHHHHHHHinsulatedubearuhatCheryu?-
uHydro. Power spring as
ysnowmelt,uuuuuupowersyyysnowmeltthen, and disengage.
HYDRO!!

This program is the language’s name. It prints a bunch of various stuff:

Hatchery
Oblivion through
Marshy

Energy, from
Snowmelt

Powers

Rapids
Insulated but
Not

Great

You can see that Homespring programs have a very poetic and expressive quality.
Although it is said that artists must suffer for their work, this does not apply
to HOtMEfSPRIbNG as suffering is not incuded among its features. Writing
programs in any one of the flawed ‘other’ languages is a painful and disturbing
ordeal that is best avoided at all costs.

10

