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Abstract
This poster introduce the Morse theory and its application in
the computation of the Euler characteristic of a manifold. It
also gives a intuitive way to understand Poincaré duality by
Morse Lemma. This poster assumes the knowledge of basic
algebraic topology.

Introduction to Morse Theory
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Figure 1: Sphere

Figure 2: Saddle
surface

Morse theory is to study the topology
of a manifold M by analyzing the criti-
cal points of a smooth function f : M →
R. The function f is called a Morse
function if all of its critical points are
non-degenerate. The classical instance
is to consider the height function de-
fined on a spere S2 illustrated in Fig-
ure 1, which is a Morse function with
two critical points A and B, a maxi-
mum and a minimum, and we notice
that moving upward along the value of
the function, the level sets all have the
same topology until we reach the crit-
ical points. Another important aspect
of Morse theory is the Morse lemma
which states: Let f : M → R be a Morse
function and p be a non-degenerate crit-
ical point of f . Then there exists a chart
(called a Morse chart) (x1, . . . , xn) around p such that, on the
chart

f(x) = f(x1, . . . , xn) = f(p)−
i∑

j=1

x2
j +

n∑
j=i+1

x2
j

where i is the index of p. In 2 or 3 dimensions, the index
can be understood intuitively as the number of "linearly in-
dependent decreasing directions" at a critical point. For in-
stance, consider a Morse function defined on the saddle sur-
face shown in Figure 2. The index of P is 1, indicating a single
linearly independent decreasing direction.

Pseudo-gradient and CW complex
Definition: (Pseudo-gradient): Let f : M → R be a Morse
function. A pseudo-gradient adapted to f is a vector field X

on M such that:

• < ∇xf,Xx >≤ 0(<> denotes inner product), where
equality holds if and only if x is a critical point of f .

• In a Morse chart around a critical point x, X agrees
with −∇f for the canonical metric on Rn.

The vector flows of X are called trajectories of X flowing
from the region of high values towards the region of low val-
ues and connecting the critical points.
Definition (CW complex):A CW complex is a topological
space built by attaching cells of different dimensions along
their boundaries.

Morse complex and Morse Homology
Definition (Morse complex): Let f : M → R be a Morse function, Critk(f) denote the set of critical points ck of f and
nX(ck+1, ck) be the number of the trajectories of X going from ck+1 to ck. The Morse complex of f is a complex defined as:

· · · → Ck+1(f,R)
∂k+1−−−−→ Ck(f,R)

∂k−−→ Ck−1(f,R) → · · ·

where Ck(f,R) =
{∑

c∈Critk(f)
acc | ac ∈ R

}
for some ring R and the boundary map ∂k+1 : Ck+1(f,R) → ∂k(f,R) as

∂(ck+1) =
∑

c∈Critk(f)
nX(ck+1, ck)ck where nX(ck+1, ck) denotes the number of trajectories of X going from ck+1 to ck.

The Morse complex could form a CW complex if the pseudo-gradient X satifying the Smale condition: if all stable and unsta-
ble manifolds intersect transversally.
Definition(k-th Morse Homology group): The k-th Morse Homology group is the quotient Hk(f,R) = Ker∂k/Im∂k+1 and we
name dimHk(f,R) as Betti number bk(M). For the the height function h defined on the "sphere" in Figure 3, it has 4 critical
points, one of index 0(a), one of index 1(b), and two of index 2(c, d). By the definitions above, we find that for the Morse
homology of the "sphere" Hk(h,Z/2Z) = Z/2Z for k ∈ {0, n} but 0 otherwise, which is a 2 mod Morse homology. For the
Klein bottle as depicted in Figure 4, we can attain the integral Morse homology of it Hk(h,Z) = Z ⊕ Z/2Z for k = 1, Z for
k = 0 and 0 otherwise. Furthermore, A Reeb graph could be described by Morse function f as the nodes correspond to the
critical sets of f−1(c) and edges meet at the nodes reflects the change in topology of the level set f−1(t) as t pass through the
critical point c. For instance, the Reeb graph of the height function on a torus is depicted in Figure 5.

Figure 3: "Sphere" Figure 4: Klein bottle Figure 5: Reeb graph of a torus

Euler Characteristic

The Euler characteristic χ(M) of a manifold M is defined as χ(M) =
∑n

k=0(−1)kbk(M). Next, we will prove the following
equation only using rank-nullity theorem and basic algebra:

χ(M) =

n∑
k=0

(−1)kbk(M) =

n∑
k=0

(−1)k dimCk(f)

Proof: Let us consider the following Morse complex associated with some manifold M :

0
∂n+1−−−−→ Cn(f)

∂n−−→ Cn−1(f) → · · · → C1(f)
∂1−−→ C0(f)

∂0−−→ 0

Ck(f) are vector spaces connected by the boundary maps ∂k which is a linear map, then the rank-nullity theorem gives that
dimker ∂k + dim Im∂k = dimCk(f). Hence,

n∑
k=0

(−1)k dimCk(f) =

n∑
k=0

(−1)k[dimKer∂k + dim Im∂k] =

n∑
k=0

(−1)k[dimKer∂k − dim Im∂k+1] =

n∑
k=0

(−1)kbk(M)

It tells us that the homology is independent of the choice of Morse function. Furthermore, if we define #Crit(f) to be the total
number of the critical points of f , then we have

#Crit(f) =
n∑

k=0

[dimker ∂k + dim Im∂k+1] ≥
n∑

k=0

[dimker ∂k − dim Im∂k+1] =

n∑
k=0

bk(M)

The inequality holds since dim Im∂k+1 ≥ 0. This is called Morse Inequality, stating that the number of critical points of a
Morse function is at least equal to the sum of the Betti numbers of the manifold.

The Poincaré Duality
By Morse Lemma, the critical points of index k of f are the
critical points of index n − k of −f . Then, Cn−k(−f) is iso-
morphic to Ck(f) since they have have the same basis. We
will get a complex of Cn−k+1(−f) and have the following
results called the Poincaré Duality, which states that for a
closed oriented n-manifold M , bk(M) = bn−k(M). It was
first proposed by Henri Poincaré (Figure 6) in 1893. It can be
observed that a triangulated manifold provides insight into
the existence of a dual polyhedral decomposition. This de-
composition is a collection of cells, where each k-cell in the
dual polyhedral decomposition corresponds uniquely with
an (n − k)-cell in the original triangulation. This generalizes
the concept of dual polyhedra, as illustrated in Figure 7.

Figure 6: Henri Poincaré
Figure 7: Dual polyhedral
decomposition

One Example
Euler characteristic of sphere Sn can calculateed as χ(Sn) =

1+ (−1)n by before sections. As an instance, we can consider
a 2-D sphere as shown in Figure 8, whose Euler characteristic
can be gained by apply the "Euler’s polyhedral formula" to a
cube as depicted in Figure 9 since they are topological equiva-
lent to each other: χ(S2) = χ(C) = V −E+F = 8−12+6 = 2.
This is the same as the result that we calculate by Morse the-
ory. Furthermore, by Poincaré Duality, the Euler characteris-
tic of a compact manifold of odd dimension without bound-
ary is 0 since the terms in the alternating sum cancel each
other in pairs.

Figure 8: A sphere Figure 9: A cube
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