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1 Preliminaries
1.1 Notations

(i) Du = (ux1
, ux2

.ux3
, · · · , uxn

) is the gradient of u.

(ii) ∆ = Laplacian operator ∆u =
∑n

i=1 uxixi .

(iii) Ck(U) = {u : U → R | u is k-times continuously differentiable}.

(iv) B(x, r) = closed ball with center x and radius r.

(v) ∂U = boundary of U , U = U ∪ ∂U = closure of U .

(vi) α(n) = volume of unit ball B(0, 1) in Rn = π
n
2

Γ(n
2 +1) .

(vii) nα(n) = surface area of unit sphere ∂B(0, 1) in Rn, where Γ is the Gamma
function: Γ(n) =

´∞
0

tn−1e−tdt.

(viii) Averages:

−
ˆ

B(x,r)

fdy =
1

α(n)rn

ˆ
B(x,r)

fdy

= avarage of f over the ball B(x, r)

−
ˆ

∂B(x,r)

fdS =
1

nα(n)rn−1

ˆ
∂B(x,r)

fdS

= average of f over the sphere ∂B(x, r)

(ix) If ∂U ∈ C1, then along ∂U is defined as the outward pointing unit normal
vector field:

ν = (ν1, ν2, · · · , νn)

The unit normal at any point x0 ∈ ∂U is ν(x0) = ν = (ν1, ν2, · · · , νn).

(x) Let u ∈ C1(U). Then the (outward) normal derivative of u along ∂U is
defined as:

∂u

∂ν
:= ν ·Du =

n∑
i=1

νiuxi

1.2 Gauss-Green’s Theorem
Suppose u ∈ C1(U) and U ⊂ Rn is a bounded domain with smooth boundary
∂U . Then ˆ

U

uxi
dx =

ˆ
∂U

uνidS
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1.3 Green’s Formula
Let u, v ∈ C2(U) and U ⊂ Rn be a bounded domain with smooth boundary
∂U . Then

(i)
´
U
∆udx =

´
∂U

∂u
∂ν dS.

(ii)
´
U
Dv ·Dudx =

´
∂U

u ∂v
∂ν dS −

´
U
u∆vdx,

(iii)
´
U
u∆v − v∆udx =

´
∂U

u ∂v
∂ν − v ∂u

∂ν .

1.4 Theorem: Polar Coordinates
(i) Let f : Rn → R be continous and summable. Then

ˆ
Rn

fdx =

ˆ ∞

0

(ˆ
∂B(x0,r)

fdS

)
dr

for each point x0 ∈ Rn.

(ii) In particular,
d

dr

(ˆ
B(x0,r)

fdx

)
=

ˆ
∂B(x0,r)

fdS

for each r > 0.

1.5 Transport equation: initial value problem
Consider the following initial value problem:{

ut + b ·Du = 0 in Rn × (0,∞),

u = g on Rn × {t = 0}.

The solution is
u(x, t) = g(x− bt) (x ∈ Rn, t ≥ 0) (1)

1.6 Transport equation: nonhomogeneous problem
Consider the following nonhomogeneous problem:{

ut + b ·Du = f(x, t) in Rn × (0,∞),

u = g on Rn × {t = 0}.
(2)

The solution is

u(x, t) = g(x− tb) +

ˆ t

0

f(x+ (s− t)b, s)ds (x ∈ Rn, t ≥ 0) (3)
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2 Solution by spherical means
We consider the initial-value problem for the wave equation in n dimensions,{

utt − c2∆u = 0 in Rn × (0,∞),

u = g, ut = h on Rn × {t = 0}.
(4)

2.1 Solution for n = 1, d’Alembert’s formula
For the one dimensional wave equation in all of R:{

utt − uxx = 0 in R× (0,∞),

u = g, ut = h on R× {t = 0}.
(5)

where g, h are given functions. We desire to derive a formula for u in terms of
g, h. we desire to derive a formula for u in terms of g, h. We use the method of
spherical means. We notice that (5) could be ”factored” as:(

∂

∂t
+

∂

∂x

)(
∂

∂t
− ∂

∂x

)
u = utt − uxx = 0 (6)

We could write

v(x, t) :=

(
∂

∂t
− ∂

∂x

)
u(x, t) = ut(x, t)− ux(x, t) (7)

Then, we have

vt = utt − uxt

vx = utx − uxx

We could sum them to get

vt(x, t) + vx(x, t) = 0 (x ∈ R, t > 0) (8)

Whereas, (8) is a transport equation with constant coefficients b = 1 and n = 1.
We apply (1) and get

v(x, t) = a(x− t) (9)

with a(x) := v(x, 0) = ut(x, 0)− ux(x, 0). Combining now (7) and (9), we get

ut(x, t)− ux(x, t) = a(x− t) in R× (0,∞) (10)

We notice that (10) is a nonhomogeneous transport equation, so (3) with n =
1,b = −1, f(x, t) = a(x− t) implies

u(x, t) = b(x+ t) +

ˆ t

0

a(x+ (t− s)− s)ds =
1

2

ˆ x+t

x−t

a(y)dy + b(x+ t) (11)
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where b(x) := u(x, 0). Lastly, we invoke the initial conditions in (5) to compute
a and b. For the first intial condition, We set t = 0 in (11), then we get

u(x, 0) = b(x) = g(x) (x ∈ R) (12)

For the second initial condition, we differentiate (11) with respect to t

ut(x, t) =
1

2
[a(x+ t) + a(x− t)] + b′(x+ t) (x ∈ R, t ≥ 0)

Then, let t = 0

ut(x, 0) =
1

2
[a(x)+a(x)]+b′(x) = a(x)+b′(x) = h(x) =⇒ a(x) = h(x)−b′(x) (x ∈ R)

By (12),
a(x) = h(x)− g′(x) (x ∈ R)

We subtitude this into (11)

u(x, t) =
1

2

ˆ x+t

x−t

[h(y)− g′(y)]dy + g(x+ t) (x ∈ R, t ≥ 0)

Then using the fundamental theorem of calculus, we get

u(x, t) =
1

2

ˆ x+t

x−t

h(y)dy +
1

2
[g(x+ t) + g(x− t)] (x ∈ R, t ≥ 0) (13)

This is d’Alembert’s formula for the one dimensional wave equation. We could
assume u is sufficiently smooth and check that this is really a solution of (5).

Theorem 2.1. (Solution of wave equation, n = 1) Assume g ∈ C2(R), h ∈
C1(R) and define u by d’Alembert’s formula (13).

u(x, t) =
1

2

ˆ x+t

x−t

h(y)dy +
1

2
[g(x+ t) + g(x− t)] (x ∈ R, t ≥ 0)

Then,

(i) u ∈ C2(R× [0,∞)),

(ii) utt − uxx = 0 in R× (0,∞),

(iii) lim(x,t)→(x0,0+) u(x, t) = g(x0), lim(x,t)→(x0,0+) ut(x, t) = h(x0) for each
point x0 ∈ R.

Proof. We assume g ∈ C2(R), h ∈ C1(R) and define u by d’Alembert’s formula
(13). Then, u is clearly C2 in R × (0,∞). We now check that u satisfies the
wave equation. We differentiate u with respect to t and x.

ut(x, t) =
1

2
[h(x+ t) + h(x− t)] +

1

2
[g′(x+ t)− g′(x− t)]

ux(x, t) =
1

2
[h(x+ t)− h(x− t)] +

1

2
[g′(x+ t) + g′(x− t)]
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Then, we compute utt and uxx.

utt(x, t) =
1

2
[h′(x+ t)− h′(x− t)] +

1

2
[g′′(x+ t) + g′′(x− t)]

uxx(x, t) =
1

2
[h′(x+ t) + h′(x− t)] +

1

2
[g′′(x+ t) + g′′(x− t)]

It is clear that utt−uxx = 0 in R×(0,∞). Lastly, we check the initial conditions.
We first check that lim(x,t)→(x0,0) u(x, t) = g(x0) for each x0 ∈ R. We fix x0 ∈ R
and let (x, t) → (x0, 0). Then, x− t → x0 and x+ t → x0. Thus, by continuity
of g,

lim
(x,t)→(x0,0+)

u(x, t) =
1

2

ˆ x0

x0

h(y)dy +
1

2
[g(x0) + g(x0)] = g(x0)

Next, we check that lim(x,t)→(x0,0) ut(x, t) = h(x0) for each x0 ∈ R. We fix
x0 ∈ R and let (x, t) → (x0, 0). Then, x − t → x0 and x + t → x0. Thus, by
continuity of h,

lim
(x,t)→(x0,0+)

ut(x, t) =
1

2
[h(x0) + h(x0)] +

1

2
[g′(x0)− g′(x0)] = h(x0)

Remark 2.1. (i) Observing (13), we see that the solution u has the form

u(x, t) = F (x+ t) +G(x− t)

for some function F and G. Conversely, and function of this form solves
the wave equation utt−uxx = 0 in R×(0,∞). Also, F (x+t) is the general
solution of ut−ux = 0 and G(x− t) is the general solution of ut+ux = 0.
Hence, the general solution of the one-dimentional wave equation is the
sum of the general solution of ut − ux = 0 and the general solution of
ut + ux = 0. This is the consequence of the factorization in (6).

(ii) We see that from 13, if g ∈ Ck and h ∈ Ck−1, then u ∈ Ck(R × [0,∞))
but is not general smoother. Thus, the wave equation does not couse
instantaneous smoothing of the initial data.

2.1.1 A reflection method

To illustrate a further application of d’Alembert’s formula, we consider this
initial/boundary value problem for the wave equation on the half-line R+ =
(0,∞): 

utt − uxx = 0 in R+ × (0,∞)

u(x, 0) = g(x), ut(x, 0) = h(x) on R+ × {t = 0}
u(0, t) = 0 on {x = 0} × (0,∞)

(14)
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where g, h are given with g(0) = h(0) = 0. We can solve this problem by
extending u, g, h to the whole line R by odd reflection. That is, we define

ũ(x, t) :=

{
u(x, t) (x ≥ 0, t ≥ 0)

−u(−x, t) (x ≤ 0, t ≥ 0)

g̃(x) :=

{
g(x) (x ≥ 0)

−g(−x) (x ≤ 0)

h̃(x) :=

{
h(x) (x ≥ 0)

−h(−x) (x ≤ 0)

We could differentiate ũ with respect to x and t and obtain

ũx(x, t) :=

{
ux(x, t) (x ≥ 0, t ≥ 0)

ux(−x, t) (x ≤ 0, t ≥ 0)

ũt(x, t) :=

{
ut(x, t) (x ≥ 0, t ≥ 0)

−ut(−x, t) (x ≤ 0, t ≥ 0)

Differentiating ũx with respect to x and ũt with respect to t gives

ũxx(x, t) :=

{
uxx(x, t) (x ≥ 0, t ≥ 0)

−uxx(−x, t) (x ≤ 0, t ≥ 0)

ũtt(x, t) :=

{
utt(x, t) (x ≥ 0, t ≥ 0)

−utt(−x, t) (x ≤ 0, t ≥ 0)

Then, by 14, we have{
ũtt − ũxx = 0 in R× (0,∞)

ũ(x, 0) = g̃(x), ũt(x, 0) = h̃(x) on R× {t = 0}

This is the wave equation on the whole line R with initial data g̃, h̃. By
d’Alembert’s formula, the solution is

ũ(x, t) =
1

2
[g̃(x+ t) + g̃(x− t)] +

1

2

ˆ x+t

x−t

h̃(y)dy

Recalling the definitions of ũ, g̃, h̃ above, since x ≥ 0, then x + t ≥ 0 but it is
uncertain whether x− t ≥ 0. If x− t ≥ 0, then g̃(x− t) = g(x− t). If x− t < 0,
then g̃(x− t) = −g(t−x). Thus, the solution ũ can be written as for x ≥ 0 and
t ≥ 0:

u(x, t) =

{
1
2 [g(x+ t)− g(x− t)] + 1

2

´ x+t

x−t
h(y)dy if x ≥ t ≥ 0

1
2 [g(x+ t)− g(t− x)] + 1

2

´ x+t

−x+t
h(y)dy if 0 ≤ x ≤ t

(15)

Note that this solution does not belong to C2, unless g′′(0) = 0.
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2.2 Spherical means
When c = 1, we suppose n ≥ 2, m ≥ 2, and u ∈ Cm(Rn × [0,∞)) solves this
initial evalue problem:{

utt −∆u = 0 in Rn × (0,∞)

u(x, 0) = g(x), ut(x, 0) = h(x) on Rn × {t = 0}
(16)

We try to find an explicit formula of u in terms of g and h. We consider the
avarage of u over certain spheres. These avarages are called spherical means as
functions of the time t and the radius r. It turns out that to solve the Euler-
Poisson-Darboux equation, which is a PDE we can for odd n to convert it into
an ordinary one-dimensional wave equation. Thus, we can apply d’Alembert’s
formula leading a formula for the solution. We introduce some notations firstly:

(i) Let x ∈ Rn, r > 0. The ball average of f at x and radius r is defined as:

U(x; r, t) := −
ˆ

∂B(x,r)

u(y, t)dS(y) (17)

the average of u(y, t) over the sphere ∂B(x, r).

(ii) Similarity, for intial condition g and h, we define{
G(x, r) := −́

∂B(x,r)
g(y)dS(y)

H(x, r) := −́
∂B(x,r)

h(y)dS(y)

Then, we have the following lemma:

Lemma 2.1. (Euler-Poisson-Darbous equation). Fix x ∈ Rn, and let u satisfy
16. Then U ∈ Cm

(
R+ × [0,∞)

)
and{

Utt − Urr − n−1
r Ur = 0 in R+ × (0,∞)

U(r, 0) = G(r), Ut(r, 0) = H(r) on R+ × {t = 0}
(18)

The partial differential equation (18) is called the Euler-Poisson-Darboux
equation. (Note that the term Urr +

n−1
r Ur is the ratial part of the Laplacian

∆ in polar coordinates.) We prove this lemma as follows:

Proof. 1. We first prove that U ∈ Cm
(
R+ × [0,∞)

)
. We fix t ≥ 0 and r ≥ 0.

Let x ∈ Rn and r > 0. We write U(x; r, t) as:

U(x; t, r) = −
ˆ

∂B(x,r)

u(y, t)dS(y)
y=x+rz

= −
ˆ

∂B(0,1)

u(x+ rz, t)dS(z)

We differentiate this with respect to r:

Ur = −
ˆ

∂B(0,1)

Du(x+ rz, t) · zdS(z)
z= y−x

r= −
ˆ

∂B(x,r)

Du(y, t) · y − x

r
dS(y)
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Consequently, by Green’s formula, we have:

Ur(x; r, t) = −
ˆ

∂B(x,r)

Du(y, t) · y − x

r
dS(y)

= −
ˆ

∂B(x,r)

∂u(y, t)

∂ν
dS(y)

=
r

n
−
ˆ

B(x,r)

∆u(y, t)dy

From this equality, we deduce that limr→0+ Ur(x; r, t) = 0. We then dif-
ferentiate Ur with respect to r again, we use some trick to do this: By the
definition of avarage of u over the sphere, we have:

rn−1Ur(x; r, t) =
1

nα(n)

ˆ
B(x,r)

∆u(y, t)dy

We differentiate both sides with respect to r:

rn−1Urr(x; r, t) + (n− 1)rn−2Ur(x; r, t) =
1

nα(n)

ˆ
∂B(x,r)

∆u(y, t)dS(y)

Then, we have the following equality:

Urr(x; r, t) = −
ˆ

∂B(x,r)

∆u(y, t)dS(y)+

(
1

n
− 1

)
−
ˆ

B(x,r)

∆u(y, t)dy (19)

Therefore, limr→0+ Urr(x; r, t) =
1
n∆u(x, t). We use (19), we could com-

pute Urrr(x; r, t), etc. Therefore, we could verify that U ∈ Cm
(
R+ × [0,∞)

)
.

2. By the equation in (16), we have:

Ur =
r

n
−
ˆ

B(x,r)

∆u(y, t)dy =
r

n
−
ˆ

B(x,r)

uttdy =
1

nα(n)

1

rn−1

ˆ
B(x,r)

uttdy

Thus, we have:
rn−1Ur =

1

nα(n)

ˆ
B(x,r)

uttdy

We differentiate both sides with respect to r:

(n− 1)rn−2Ur + rn−1Urr =
1

nα(n)

ˆ
∂B(x,r)

uttdS(y)

= rn−1−
ˆ

∂B(x,r)

uttdS(y) = rn−1Utt

Then, we could substitute this into (16), we have:

Utt = Urr +
n− 1

r
Ur ⇒ Utt − Urr −

n− 1

r
Ur = 0 (20)
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2.3 Solution for n = 3,2, Kirchhoff’s and Poisson’s formu-
las

2.3.1 Solution for n = 3

We now consider the case n = 3. Therefore, the equation (16) becomes:{
utt −∆u = 0 in R3 × (0,∞)

u = g, ut = h on Rn × {t = 0}
(21)

The plan is to transfer the Euler-Poisson-Darbous equation into the usual one-
dimensional wave equation. We first consider the case n = 3. We suppose that
u ∈ C2(R3 × [0,∞)) is a solution of the initial value problem (16). We set:

Ũ := rU G̃ := rG and H̃ := rH (22)

We now verify that Ũ solves the following initial value problem:
Ũtt − Ũrr = 0 in R3 × (0,∞)

Ũ = G, Ũt = H̃ on R+ × {t = 0}
Ũ = 0 on {r = 0} × (0,∞)

(23)

Indeed, we have

Ũtt = rUtt

= r[Urr +
2

r
Ur] by (20), with n = 3

= 2Urr + 2Ur

= (U + rUr)r

= Ũrr by (22)

It is easy to verify that G̃rr(0) = 0. Therefore, we could apply (15) to (23), for
0 ≤ r ≤ t, we have:

Ũ(x; r, t) =
1

2

[
G̃(t+ r) + G̃(t− r)

]
+

ˆ t+r

t−r

H̃(y)dy (24)

By the definition of the average ball and surface, we have:

u(x, t) = lim
r→0+

U(x; r, t).
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Therefore, we could conclude that from (22) and (24):

u(x, t) = lim
r→0+

Ũ(x; r, t)r

r

= lim
r→0+

Ũ(x; r, t)r

r

= lim
r→0+

1

2r

[
G̃(t+ r) + G̃(t− r)

]
+

ˆ t+r

t−r

H̃(y)dy

= lim
r→0+

[
G̃(t+ r)− G̃(t− r)

2r
+

1

2r

ˆ t+r

t−r

H̃(ydy)

]
= G̃′(t) + H̃(t)

Now
G̃(x; r) = rG(x; r) = r−

ˆ
∂B(x,r)

g(y)dS(y)

implies,
G̃(x; t) = tG(x; t) = t−

ˆ
∂B(x,t)

g(y)dS(y)

Similarly,
H̃(x; t) = rH(x; t) = t−

ˆ
∂B(x,t)

h(y)dS(y)

Therefore, the solution of wave eqaution in R3 is given by:

u(x, t) =
∂

∂t

(
t−
ˆ

∂B(x,t)

g(y)dS(y)

)
+ t−
ˆ

∂B(x,t)

h(y)dS(y) (25)

If g is smooth, then the solution could simplifed further. In particular, for g is
enough, we have:

∂

∂t

(
t−
ˆ

∂B(x,t)

g(y)dS(y)

)
=

∂

∂t

(
t−
ˆ

∂B(0,1)

g(x+ tz)dS(z)

)

= −
ˆ

∂B(0,1)

g(x+ tz)dS(z) + t−
ˆ

∂B(0,1)

Dg(x+ tz) · zdS(z)

= −
ˆ

∂B(x,t)

g(y)dS(y) + t−
ˆ

∂B(x,t)

Dg(y) ·
(
y − x

t

)
dS(y)

= −
ˆ

∂B(x,t)

g(y)dS(y) +−
ˆ

∂B(x,t)

Dg(y) · (y − x)dS(y)

And
H̃(x; t) = tH(x; t) = t−

ˆ
∂B(x,t)

h(y)dS(y)

11



Therefore, substitute these into (25), we have:

u(x, t) = −
ˆ

∂B(x,t)

[th(y) + g(y) +Dg(y) · (y − x)]dS(y) (26)

Further, we note that in R3,

u(x, t) =
1

4πt2
−
ˆ

∂B(x,t)

[th(y) + tg(y) + tDg(y) · (y − x)]dS(y) (27)

This is know as the Kirchhoff’s formula for the solution for the initial value
problem of the wave equation in R3.

Remark 2.2. Above we found the solution for the wave equation in R3 in the
case where c = 1. In fact, when c ̸= 1, we could use the change of variable to
apply the formula above. In particular, consider the initial value problem:

utt − c2∆u = 0, in R3 × (0,∞)

u(x, 0) = g(x), in R3

ut(x, 0) = h(x), in R3

(28)

We suppose that v is a solution of (28). Then, we define u(x, t) = v(x, 1
c t).

Then,
utt −∆u =

1

c2
vtt −∆v = 0

It implies that u is a solution of
utt −∆u = 0 x ∈ R3 × (0,∞)

u(x, 0) = g(x)

ut(x, 0) =
1
ch(x)

Therefore, u is given by the Kirchhoff’s formula. Now, by making the change of
variables ot = 1

c t, we see that

v(x, t) = u(x, ct) =
1

4πc2t2
−
ˆ

∂B(x,ct)

[th(y) + g(y) +Dg(y) · (y − x)]dS(y)

2.3.2 Solution for n = 2

There is no transformation like (22) working to convert the Euler-Poisson-
Darboux equation into one-demensional wave equation when n = 2. Instead,
we take the initial value problem for n = 2:

utt −∆u = 0, in R2 × (0,∞)

u(x, 0) = g(x), in R2

ut(x, 0) = h(x), in R2

(29)

12



and simply regard it as a problem for n = 3, in which the third spartial variable
is set to be zero. Suppose u ∈ C2(R2 × [0,∞) is a solution of (29). We define

u(x1, x2, x3, t) := u(x1, x2, t) (30)

Then, (16) implies that u is a solution of{
utt −∆u = 0, in R3 × (0,∞)

u = g, ut = h, on R3 × {t = 0},
(31)

for
g(x1, x2, x3) := g(x1, x2), h(x1, x2, x3) := h(x1, x2)

If we write x = (x1, x2) ∈ R2 and x = (x1, x2, 0) ∈ R3, then (31) and Kirchoff’s
formula (25) imply that

u(x, t) = u(x, t) =
∂

∂t

(
t−
ˆ

∂B(x,t)

gdS

)
+ t−
ˆ

∂B(x,t)

hdS (32)

where B(x, t) is the ball in R3 centered at x with radius t > 0, and dS denotes
two-dimensional surface measure on ∂B(x, t). We can rewrite (32) by observing
that

−
ˆ

∂B(x,t)

gdS =
1

4πt2

ˆ
∂B(x,t)

g(y)dS(y) =
2

4πt2

ˆ
B(x,t)

g(y)(1 + |Dγ(y)|2)1/2dy

where γ(y) = (t2−|y−x|2) 1
2 for y ∈ B(x, t). There is a “2” in the denominator

since ∂B(x, t) is the union of two hemispheres. Since γ(y) = (t2 − |y − x|2) 1
2

for y ∈ B(x, t), we have

Dγ(y) = − y − x

(t2 − |y − x|2) 1
2

which impies that

(1 + |Dγ(y)|2)1/2 =
t

(t2 − |y − x|2) 1
2

We substitute this into the above equation and obtain

−
ˆ

∂B(x,t)

gdS =
1

2πt

ˆ
B(x,t)

g(y)

(t2 − |y − x|2) 1
2

dy

=
α(2)t2

2πt
−
ˆ

B(x,t)

g(y)

(t2 − |y − x|2) 1
2

dy

=
t

2
−
ˆ

B(x,t)

g(y)

(t2 − |y − x|2) 1
2

dy

13



Similarly,

−
ˆ

∂B(x,t)

hdS =
t

2
−
ˆ

B(x,t)

h(y)

(t2 − |y − x|2) 1
2

dy

Consequently, (32) becomes

u(x, t) =
1

2

∂

∂t

(
t2−
ˆ

B(x,t)

g(y)

(t2 − |y − x|2) 1
2

dy

)
+

t2

2
−
ˆ

B(x,t)

h(y)

(t2 − |y − x|2) 1
2

dy

Since
t2−
ˆ

B(x,t)

g(y)

(t2 − |y − x|2) 1
2

dy
y=x+tz

= t−
ˆ

B(0,1)

g(x+ tz)

(1− |z|2) 1
2

dz

so

∂

∂t

(
t2−
ˆ

B(x,t)

g(y)

(t2 − |y − x|2) 1
2

)

=
∂

∂t

(
t−
ˆ

B(0,1)

g(x+ tz)

(1− |z|2) 1
2

dz

)

= −
ˆ

B(0,1)

g(x+ tz)

(1− |z|2) 1
2

dz+ t−
ˆ

B(0,1)

Dg(x+ tz) · z
(1− |z|2) 1

2

dz

= −
ˆ

B(x,t)

g(y)

(t2 − |y − x|2) 1
2

dz+ t−
ˆ

B(x,t)

Dg(y) · (y − x)

(t2 − |y − x|2) 1
2

dz

Therefore, we could rewrite the solution as

u(x, t) =
1

2
−
ˆ

B(x,t)

tg(y) + t2h(y) + tDg(y) · (y − x)

(t2 − |y − x|2) 1
2

dy (33)

for x ∈ R2, t > 0. This is the Poisson formula for the solution of the inital value
problem (16) in two dimensions. Again, by making a change of variables, we
could see that the solution of the wave equaiton in two dimensions is given by

u(x, t) =
1

2c2
−
ˆ

B(x,t)

ctg(y) + ct2h(y) + ctDg(y) · (y − x)

(c2t2 − |y − x|2) 1
2

dy

This trick of solving the problem for n = 3 first and then dropping to n = 2 is
called method of descent. It is generally used to find the solution of the wave
equation in even dimensions, using the solution of the wave equation in the next
higher odd dimensions.
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2.3.3 Solution for odd n

Assume now

n is an odd integer, n ≥ 3.

We first record some identities that will be useful in the following discussion.

Lemma 2.2. Let ϕ : R → R ∈ Ck+1. Then, for k = 1, 2, · · · :

(i)
(

d2

dr2

) (
1
r

d
dr

)k−1
(r2k−1ϕ(r)) =

(
1
r

d
dr

)k (
r2k dϕ

dr (r)
)

,

(ii)
(
1
r

d
dr

)k−1
(r2k−1ϕ(r)) =

∑k−1
j=0 β

k
j r

j+1 djϕ
drj , where the constant βk

j (j =
0, 1, . . . , k − 1) are independent of ϕ.

(iii) βk
0 = 1 · 3 · 5 · · · · · ·(2k − 1).

Proof. We prove these by induction:

(i) For k = 1, we have

d

d2r
(rϕ(r)) =

d

dr

(
d

dr
(rϕ(r))

)
=

d

dr

(
ϕ(r) + r

dϕ

dr
(r)

)
= 2

dϕ

dr
(r) + r

d2ϕ

dr2
(r)

=
1

r

(
2r

dϕ

dr
(r) + r2

d2ϕ

dr
(r)

)
=

1

r

d

dr

(
r2

dϕ

dr
(r)

)
Now, assume that the result holds for k − 1,

d2

dr2

(
1

r

d

dr

)k−2

(r2k−3ϕ(r)) =

(
1

r

d

dr

)k−1(
r2k−2 dϕ

dr
(r)

)
then for k, we have

LHS =
d2

dr2

(
1

r

d

dr

)k−1

(r2k−1ϕ(r)) =
d2

dr2

(
1

r

d

dr

)k−2(
(2k − 1)r2k−3ϕ(r) + r2k−2 dϕ

dr
(r)

)
RHS =

(
1

r

d

dr

)k (
r2k

dϕ

dr
(r)

)
=

(
1

r

d

dr

)k−1(
(2k)r2k−2 dϕ

dr
(r) + r2k−1 d

2ϕ

dr2
(r)

)
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By the induction hypothesis, the first term of RHS could be merged with
the first term of LHS. Therefore, we have

LHS −RHS

= − d2

dr2

(
1

r

d

dr

)k−2(
r2k−3

(
ϕ(r)− r

dϕ

dr
(r)

))
−
(
1

r

d

dr

)k−1(
r2k−1 d

2ϕ

dr2
(r)

)
=

d2

dr2

(
1

r

d

dr

)k−2(
r2k−3

(
r
dϕ

dr
(r)− ϕ(r)

))
−
(
1

r

d

dr

)k−1(
r2k−1 d

2ϕ

dr2
(r)

)

Use the induction hypothesis again with
(
r dϕ
dr (r)− ϕ

)
to replace ϕ, we

have
d2

dr2

(
1

r

d

dr

)k−2(
r2k−3

(
r
dϕ

dr
(r)− ϕ(r)

))
=

(
1

r

d

dr

)k−1(
r2k−2 d

dr

(
r
dϕ

dr
(r)− ϕ(r)

))
Therefore,

LHS −RHS =

(
1

r

d

dr

)k−1(
r2k−2 d

dr

(
r
dϕ

dr
(r)− ϕ(r)

)
− r2k−1 d

2ϕ

dr2
(r)

)
=

(
1

r

d

dr

)k−1(
r2k−1 d

2ϕ

dr2
(r)− r2k−1 d

2ϕ

dr2
(r)

)
= 0

(ii) For k = 1, we have
rϕ(r) = β0

0rϕ(r)

By (iii), we have β0
0 = 1. Now, assume that the result holds for k − 1,(

1

r

d

dr

)k−2

(r2k−3ϕ(r)) =

k−2∑
j=0

βk−1
j rj+1 d

jϕ

drj

then for k, we have

LHS =

(
1

r

d

dr

)k−1

(r2k−1ϕ(r)) =

(
1

r

d

dr

)k−2(
(2k − 1)r2k−3ϕ(r) + r2k−2 dϕ

dr
(r)

)
RHS =

k−1∑
j=0

βk
j r

j+1 d
jϕ

drj
=

k−2∑
j=0

βk
j r

j+1 d
jϕ

drj
+ βk

k−1r
k d

k−1ϕ

drk−1

By the induction hypothesis, the first term of RHS could be merged with
the first term of LHS. Therefore, we have

LHS −RHS =

(
1

r

d

dr

)k−2

r2k−2 dϕ

dr
(r)− βk

k−1r
k d

k−1ϕ

drk−1
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(iii) If we set ϕ(r) = 1 and apply (ii), then we have the value of βk
0 for all k.

Now we set
n = 2k + 1 (k ≥ 1).

If we suppose u ∈ Ck+1(Rn× [0,∞)) solves the intial value problem (16). Then
the function U defined by 17 is in Ck+1(Rn × [0,∞)). Next, we introduce the
new notations:

Ũ(r, t) :=
(
1
r

∂
∂r

)k−1
(r2k−1U(x; r, t))

G̃(r, t) :=
(
1
r

∂
∂r

)k−1
(r2k−1G(x; r, t))

H̃(r, t) :=
(
1
r

∂
∂r

)k−1
(r2k−1H(x; r, t))

(r > 0, t ≥ 0) (34)

Then,
Ũ(r, 0) = G̃(r), Ũt(r, 0) = H̃(r) (35)

We combine Lemma 2.1 and the identities provided by Lemma 2.2 to demon-
strate the transformation (34) of U into Ũ in effect converts the Euler-Poisson-
Darboux equation (16) into wave equation:
Lemma 2.3. (Ũ solves the one-dimesional wave equation) We have:

Ũtt − Ũrr = 0 in R+ × (0,∞)

Ũ(r, 0) = G̃(r), Ũt(r, 0) = H̃(r) on R+ × {t = 0}
Ũ = 0 on {r = 0} × (0,∞)

Proof. If r > 0, then by (i) of Lemma 2.2, we have

Ũrr =

(
∂2

∂r2

)(
1

r

∂

∂r

)
(r2k−1U)

=

(
1

r

∂

∂r

)k

(r2kUr)

=

(
1

r

∂

∂r

)k−1(
1

r

∂

∂r

)
(r2kUr)

=

(
1

r

∂

∂r

)k−1

[r2k−1Urr + 2kr2k−2Ur]

=

(
1

r

∂

∂r

)k−1 [
r2k−1

(
Urr +

n− 1

r
Ur

)]
(n = 2k + 1)

=

(
1

r

∂

∂r

)k−1

(r2k−1Utt) by (18)

= Ũtt

It is clear that the next 3 equations holds according ro 18. By (ii) of Lemma
2.2, we have Ũ = 0 on {r = 0}. Therefore, Ũ solves the one-dimensional wave
equation.
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Since Ũ is a solution of the on-demensional wave equation on the half line,
we can apply the d’Alembert formula (15) to obtain the following representation
of Ũ :

Ũ(r, t) =
1

2

[
G̃(r + t)− G̃(t− r)

]
+

1

2

ˆ r+t

r−t

H̃(s)ds (36)

for all r ∈ R, t > 0. Recall:

u(x, t) = lim
r→0

U(x; r, t)

Futhermore, by (ii) in Lemma 2.2, we have

Ũ(r, t) =

(
1

r

∂

∂r

)k−1

(r2k−1U(x; r, t))

=

k−1∑
j=0

βk
j r

j+1 ∂j

∂rj
U(x; r, t)

= βk
0 rU(x; r, t) +

k−1∑
j=1

βk
j r

j+1 ∂j

∂rj
U(x; r, t)

Therefore,

βk
0 rU(x; r, t) = Ũ(r, t)−

k−1∑
j=1

βk
j r

j+1 ∂j

∂rj
U(x; r, t)

which implies

U(x; r, t) =
1

βk
0 r

Ũ(r, t)− 1

βk
0 r

k−1∑
j=1

βk
j r

j+1 ∂j

∂rj
U(x; r, t)

Therefore, we have

u(x, t) = lim
r→0

U(x; r, t) = lim
r→0

1

βk
0 r

Ũ(r, t).

Thus, (36) implies

u(x, t) = lim
r→0

1

βk
0 r

[
1

2

[
G̃(r + t)− G̃(t− r)

]
+

1

2

ˆ r+t

r−t

H̃(s)ds

]
= lim

r→0

1

βk
0

[(
G̃(r + t)− G̃(t− r)

2r

)
+

1

2r

ˆ r+t

r−t

H̃(s)

r
ds

]

=
1

βk
0

[G̃′(t) + H̃(t)]

We recall that

G̃(x, r) =

(
1

r

∂

∂r

)k−1

(r2k−1G(x; r))
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Now since n = 2k + 1, it implies that k = n−1
2 . Therefore, we have

G̃(x, t) =

(
1

t

∂

∂t

)n−3
2

(tn−2G(x; r))

By the definition of G(x; r), we have

G̃(x, t) =

(
1

t

∂

∂t

)n−3
2

(
tn−2−
ˆ

∂B(x,t)

g(y)dS(y)

)
Similarly,

H̃(x, t) =

(
1

t

∂

∂t

)n−3
2

(
tn−2−
ˆ

∂B(x,t)

h(y)dS(y)

)
Therefore, we have this representation of u(x, t):

u(x, t) = 1
γn

(
∂
∂t

) (
1
t

∂
∂t

)n−3
2

(
tn−2−́

∂B(x,t)
g(y)dS(y)

)
+ 1

γn

(
1
t

∂
∂t

)n−3
2

(
tn−2−́

∂B(x,t)
h(y)dS(y)

)
where n is odd and γn = 1 · 3 · 5 · · · · · (n− 2)

(37)

for x ∈ Rn, t > 0. We notice that γ3 = 1, so the representation of u(x, t) in (37)
agrees with n = 3 with (27). We still need to check the formula (37) really gives
us a solution of (4).

Theorem 2.2. (Solution of wave equation in odd dimensions) Assume now n
is an odd integer, n ≥ 3, and suppose also g ∈ Cm+1Rn, h ∈ Cm(Rn), for
m = n+1

2 . Define u(x, t) by (37). Then

(i) u ∈ C2(Rn × [0,∞)),

(ii) utt −∆u = 0 in Rn × (0,∞),

(iii) lim(x,t)→(x0,0+) = g(x0), lim(x,t)→(x0,0+) = h(x0) for each point x0 ∈ Rn.

Proof. 1. We suppose g ≡ 0, so

u(x, t) =
1

γn

(
1

t

∂

∂t

)n−3
2 (

tn−2H(x; t)
)

(38)

By (i) in Lemma 2.2, we could compute utt:

utt =
1

γn

(
1

t

∂

∂t

)n−1
2 (

tn−1Ht(x; t)
)

(39)

We use the same trick as before,

Ht(x; t) =
t

n
−
ˆ

B(x,t)

∆h(y)dy
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Therefore, by the definition of average ball integral, we have

utt =
1

nα(n)γn

(
1

t

∂

∂t

)n−1
2

(ˆ
B(x,t)

∆h(y)dy

)

=
1

nα(n)γn

(
1

t

∂

∂t

)n−3
2

(
1

t

ˆ
∂B(x,t)

∆h(y)dS(y)

)

On the other hand,

∆u(x, t) =
1

γn

(
1

t

∂

∂t

)n−3
2

(tn−2∆H(x : t))

=
1

γn

(
1

t

∂

∂t

)n−3
2

[
tn−2∆x

(
−
ˆ

∂B(x,t)

h(y)dS(y)

)]

=
1

γn

(
1

t

∂

∂t

)n−3
2

[
tn−2−
ˆ

∂B(x,t)

∆h(y)dS(y)

]

Then, by the definition of average ball integral, we have

∆u =
1

nα(n)γn

(
1

t

∂

∂t

)n−3
2

(
1

t

ˆ
∂B(x,t)

∆h(y)dS(y)

)
= utt

A similar calculation can be done when h ≡ 0.

2. If we choose the correct intial conditions g and h, then we can show that
u is a solution of (4).

Remark 2.3. (i) Observing the formula, we need only have information of
g, h and their derivatives on the sphere ∂B(x, t), not in the whole ball
B(x, t).

(ii) Comparing the formula (37) with (13), we notice that d’Alembert’s formula
does not the the derivative of g. This suggests that for n > 1, a solution
of the wave equation neets not to be as smooth as the initial value g.

2.3.4 Solution for even n

Assume now

n is an even integer, n ≥ 4,
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Suppose u is a Cm solution of (4) in Rn × (0,∞), where m = n+2
2 . The trick is

the similar as the case when n = 2, which is called the method of descent. We
define

u(x1, · · · , xn, xn+1, t) := u(x1, · · · , xn, t) (40)
solves the wave equation in Rn+1 × (0,∞), with initial conditions

u = g, ut = h on Rn+1 × {t = 0}

where {
g(x1, · · · , xn, xn+1) := g(x1, · · · , xn)

h(x1, · · · , xn, xn+1) := h(x1, · · · , xn)
(41)

Since n+1 is odd, we may apply (37)(with n+1 to replace n) to u to obtain a
representation formula for u in terms of g, h. To carry out the details, let us fix
x ∈ Rn, t > 0, and write x = (x, 0)i.e. x = (x1, · · · , xn, 0) ∈ Rn+1. Then (37)
gives with n+ 1 to replace n:

u(x, t) =
1

γn+1

[
∂

∂t

(
1

t

∂

∂t

)n−2
2

(
tn−1−
ˆ

∂B̄(x̄,t)

ḡdS̄

)

+

(
1

t

∂

∂t

)n−2
2

(
tn−1−
ˆ

∂B̄(x̄,t)

h̄dS̄

)]
where γn+1 = 1 · 3 · · · (n− 1) and B(x, t) denoting the ball in Rn+1 with center
x and radius t, and dS denoting the n-dimensional surface measure on ∂B(x, t).
Now, we observe that

−
ˆ

∂B(x,t)

g(y)dS(y) =
1

(n+ 1)α(n+ 1)tn

ˆ
∂B(x,t)

g(y)dS(y) (42)

Notice that ∂B(x, t) ∩ {yn+1 ≥ 0} is the graph of the function γ(y) = (t2 −
|y−x|2) 1

2 . Similarly, ∂B(x, t)∩{yn+1 ≤ 0} is the graph of the function −γ(y).
Thus, (42) implies:

−
ˆ

∂B(x,t)

g(y)dS(y) =
2

(n+ 1)α(n+ 1)tn

ˆ
B(x,t)

g(y)(1 + |Dγ(y)|2) 1
2 dy (43)

There is a “2” in the denominator because ∂B(x, t) consists of two hemisphere.
Now,

(1 + |Dγ(y)|2) 1
2 =

t

(t2 − |y − x|2) 1
2

We substitute this into (43) to obtain

−
ˆ

∂B(x,t)

g(y)dS(y) =
2

(n+ 1)α(n+ 1)tn

ˆ
B(x,t)

g(y)t

(t2 − |y − x|2) 1
2

dy

=
2tα(n)

(n+ 1)α(n+ 1)
−
ˆ

B(x,t)

g(y)

(t2 − |y − x|2) 1
2

dy
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Similarly, for h, we have

−
ˆ

∂B(x,t)

h(y)dS(y) =
2tα(n)

(n+ 1)α(n+ 1)
−
ˆ

B(x,t)

h(y)

(t2 − |y − x|2) 1
2

dy

We substitute these into the representation formula for u to obtain

u(x, t) =

1

γn+1

2α(n)

(n+ 1)α(n+ 1)

[
∂

∂t

(
1

t

∂

∂t

)n−2
2

(
tn−
ˆ

B(x,t)

g(y)

(t2 − |y − x|2)1/2
dy

)

+

(
1

t

∂

∂t

)n−2
2

(
tn−
ˆ

B(x,t)

h(y)

(t2 − |y − x|2)1/2
dy

)]
.

Since γn+1 = 1 · 3 · · · (n− 1) and

α(n) =
π

n
2

Γ(n2 + 1)

where Γ is the Gamma function,

Γ(n) =

ˆ ∞

0

xn−1e−xdx

Therefore,

1

γn+1

2α(n)

(n+ 1)α(n+ 1)
=

1

1 · 3 · · · (n− 1)

2 π
n
2

Γ(n+2
2 )

(n+ 1) π
n+1
2

Γ(n+3
2 )

=
1

1 · 3 · · · (n+ 1)

1

π
1
2

Γ(n+3
2 )

Γ(n+2
2 )

Using the property of Gamma function,

Γ(m+ 1) = mΓ(m)

and
Γ

(
1

2

)
=

√
π

We could conclude that

Γ

(
n+ 3

2

)
=

(
n+ 1

2

)(
n− 1

2

)
· · · 1

2
Γ

(
1

2

)
and

Γ

(
n+ 2

2

)
=
(n
2

)(n− 2

2

)
· · ·
(
2

2

)
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Therefore,
1

γn+1

2α(n)

(n+ 1)α(n+ 1)
=

1

2 · 4 · · · (n− 2) · n
We substitute this into the representation formula for u to obtain the fomula
for even dimensions:

u(y, t) =
1

γn

[(
∂

∂t

)(
1

t

∂

∂t

)n−2
2

(
tn−
ˆ

B(x,t)

g(y)

(t2 − |y − x|2)1/2
dy

)

+

(
1

t

∂

∂t

)n−2
2

(
tn−
ˆ

B(x,t)

h(y)

(t2 − |y − x|2)1/2
dx

)] (44)

where γn = 2 · 4 · · · (n − 2) · n for x ∈ Rn, t > 0 and even n ≥ 2. Since γ2 = 2,
it agress with Poisson’s formula (33) if n = 2. Hence, we got the following
theorem:

Theorem 2.3. (Solution of wave equation in even dimensions) Assume n is
an even integer, n ≥ 2, and suppose also g ∈ Cm+1 (Rn) , h ∈ Cm (Rn), for
m = n+2

2 . Define u by (38). Then

(i) u ∈ C2 (Rn × [0,∞)),

(ii) utt −∆u = 0 in Rn × (0,∞),

(iii) lim(x,t)→(x0,0)
x∈Rn,t>0

u(x, t) = g
(
x0
)
, lim(x,t)→(x0,0)

x∈Rn,t>0

ut(x, t) = h
(
x0
)

This follows from the Theorem 2.2.

Remark 2.4. (i) To compute u(x, t) for even n, we need information on
u = g, ut = h on all of B(x, t), and not just on ∂B(x, t).

(ii) Huggen’s principle: Comparing (37) and (44), we observe that if n is
odd and n ≥ 3, then the intial conditions g, h at a given point x ∈ Rn

affect the solution u only on the boundary {(y, t) | t > 0, |x − y| = t} of
the cone C(x) = {(y, t) | t > 0, |x − y| < t}, On the other hand, if n is
even the initial condtion g, h affect the solution u on the whole cone C(x).
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