Abstract

This poster introduce the Morse theory and its application in
the computation of the Euler characteristic of a manifold. It
also gives a intuitive way to understand Poincaré duality by
Morse Lemma. This poster assumes the knowledge of basic
algebraic topology.

Introduction to Morse Theory

Morse theory is to study the topology
of a manifold M by analyzing the criti-
cal points of a smooth function f : M —
R. The function f is called a Morse
function if all of its critical points are
non-degenerate. The classical instance
is to consider the height function de-
fined on a spere S# illustrated in Fig-
ure 1, which is a Morse function with
two critical points A and B, a maxi-
mum and a minimum, and we notice
that moving upward along the value of
the function, the level sets all have the
same topology until we reach the crit-
ical points. Another important aspect
of Morse theory is the Morse lemma
which states: Let f : M — R be a Morse
function and p be a non-degenerate crit-
ical point of f. Then there exists a chart
(called a Morse chart) (z1,...,x,) around p such that, on the
chart
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where 7 is the index of p. In 2 or 3 dimensions, the index
can be understood intuitively as the number of "linearly in-
dependent decreasing directions” at a critical point. For in-
stance, consider a Morse function defined on the saddle sur-
face shown in Figure 2. The index of P is 1, indicating a single
linearly independent decreasing direction.

Pseudo-gradient and CW complex

Definition: (Pseudo-gradient): Let f : M — R be a Morse
function. A pseudo-gradient adapted to f is a vector field X
on M such that:

° < V.f, Xz >< 0(<> denotes inner product), where
equality holds if and only if = is a critical point of f.

* In a Morse chart around a critical point x, X agrees
with —V f for the canonical metric on R™.

The vector flows of X are called trajectories of X flowing
from the region of high values towards the region of low val-
ues and connecting the critical points.

Definition (CW complex):A CW complex is a topological
space built by attaching cells of different dimensions along
their boundaries.
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Morse complex and Morse Homology

Definition (Morse complex): Let f : M — R be a Morse function, Crity(f) denote the set of critical points ¢, of f and
nx (ck+1, cr) be the number of the trajectories of X going from cy 1 to cx. The Morse complex of f is a complex defined as:
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where Ci(f,R) = {Zcecﬂtk(f) acc | ac € R} for some ring R and the boundary map 0x11 : Cry1(f, R) — Ox(f, R) as

O(cpr1) = Zcécﬂtk(f) nx (ck+1,ck)ckr where nx (cx11,cr) denotes the number of trajectories of X going from ciy1 to ck.

The Morse complex could form a CW complex if the pseudo-gradient X satifying the Smale condition: if all stable and unsta-
ble manifolds intersect transversally.

Definition(k-th Morse Homology group): The k-th Morse Homology group is the quotient Hy (f, R) = Kerdy /Imdy1 and we
name dim Hg (f, R) as Betti number b, (M ). For the the height function h defined on the "sphere"” in Figure 3, it has 4 critical
points, one of index 0(a), one of index 1(b), and two of index 2(¢,d). By the definitions above, we find that for the Morse
homology of the "sphere" Hy(h,Z/2Z) = Z/2Z for k € {0,n} but 0 otherwise, which is a 2 mod Morse homology. For the
Klein bottle as depicted in Figure 4, we can attain the integral Morse homology of it Hy(h,Z) = Z & Z/27Z for k = 1, Z for
k = 0 and 0 otherwise. Furthermore, A Reeb graph could be described by Morse function f as the nodes correspond to the
critical sets of f~!(c) and edges meet at the nodes reflects the change in topology of the level set f~1(¢) as ¢ pass through the
critical point c. For instance, the Reeb graph of the height function on a torus is depicted in Figure 5.

Figure 3: "Sphere" Figure 4: Klein bottle Figure 5: Reeb graph of a torus

Euler Characteristic

The Euler characteristic x(M) of a manifold M is defined as x(M) = > 7'_,(—1)*b,(M). Next, we will prove the following
equation only using rank-nullity theorem and basic algebra:

X(M) =D (=1)Fb(M) =D (—1)" dim Cr ()
k=0 k=0

Proof: Let us consider the following Morse complex associated with some manifold M:

0 = Co(f) 22 Cua(£) = -+ = CLF) 25 Co(f) 25 0

C'(f) are vector spaces connected by the boundary maps 0, which is a linear map, then the rank-nullity theorem gives that
dim ker 0, + dim Imd,, = dim C(f). Hence,

n n

> (—1)*[dim Kerdy, 4+ dimImd,] = » (—1)*[dimKerd, — dimImdy41] = » (1) bp (M)
k=0 k=0 k=0

> (=1)F dim Cy(f) =
k=0

It tells us that the homology is independent of the choice of Morse function. Furthermore, if we define #Crit(f) to be the total
number of the critical points of f, then we have

n

#Crit(f) = Z[dim ker O + dim Imoy 1] > Z[dim ker 0 — dimImoy, 1] = Z br. (M)
k=0 k=0 k=0

The inequality holds since dim Imdy1 > 0. This is called Morse Inequality, stating that the number of critical points of a
Morse function is at least equal to the sum of the Betti numbers of the manifold.
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The Poincare Duality

By Morse Lemma, the critical points of index k of f are the
critical points of index n — k of —f. Then, C,,_x(—f) is iso-
morphic to Ci(f) since they have have the same basis. We
will get a complex of C,,_x11(—f) and have the following
results called the Poincaré Duality, which states that for a
closed oriented n-manifold M, b, (M) = b,,_(M). It was
first proposed by Henri Poincaré (Figure 6) in 1893. It can be
observed that a triangulated manifold provides insight into
the existence of a dual polyhedral decomposition. This de-
composition is a collection of cells, where each k-cell in the
dual polyhedral decomposition corresponds uniquely with
an (n — k)-cell in the original triangulation. This generalizes
the concept of dual polyhedra, as illustrated in Figure 7.

Figure 7: Dual polyhedral
Figure 6: Henri Poincaré decomposition

One Example

Euler characteristic of sphere S™ can calculateed as x(S™) =
1+ (—1)™ by before sections. As an instance, we can consider
a 2-D sphere as shown in Figure 8, whose Euler characteristic
can be gained by apply the "Euler’s polyhedral formula" to a
cube as depicted in Figure 9 since they are topological equiva-
lent to each other: x(S?) = x(C) =V —-E+F =8—-12+6 = 2.
This is the same as the result that we calculate by Morse the-
ory. Furthermore, by Poincaré Duality, the Euler characteris-
tic of a compact manifold of odd dimension without bound-
ary is 0 since the terms in the alternating sum cancel each
other in pairs.

Figure 8: A sphere Figure 9: A cube
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