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Problem 1

Part I: For any integer n > 0 define

1 1
I+(n)5/0 e¥ sin(nmy)dy, I,(n)z/o e Ysin(nmy)dy.

(i) Calculate these two integrals explicitly.

(ii) Use the result of part (i) to find the Fourier sine series of both sinhy and cosh
y over the interval [0,1] (you should use ideas from the ”Calculus and Applications”
course).

Part II: Consider the electric circuit shown in the Figure where the vertical edges
have conductance ¢ and the horizontal edges have conductance d. Node 2 N + 1 is set
to unit voltage, while nodes 0 and N + 1 to 2 N are grounded (set to zero voltage).
Kirchhoff’s current law holds at nodes 1 to N. Let X denote the voltages at nodes 1 to
N. The nodes should be ordered as follows: 1,2,...,2 N—1,2 N, 0,2 N+ 1.

(a) Show that the conductance-weighted Laplacian matrix is

CKN + dIN —dIN —cP
K= —dI N dI N 0 )
—cPT 0 cl>

where I; denotes the j-by- j identity matrix and Ky is the N-by- N matrix familiar
from lectures. You should find the N-by-2 matrix P.
(b) Let {®;|j=1,...,N}and {}\; | j =1,..., N} denote the orthonormal eigen-

vectors and corresponding eigenvalues of K. By writing

y=17

y=0—

(c) Show that the n-th element of X can also be written as
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A ()™ — A ()"
A ()N = A ()N

for suitable choices of the parameters Ay ().

n=1,...,N,

(d) The uniqueness theorem for harmonic potentials discussed in lectures has an
analogous version when the conductances are not all equal. Use this fact to establish
a discrete identity involving your answers to parts (b) and (c).

(e) Now pick p to be given by

1
F= vy
and introduce the new variable
B n
TN

Find the limit of both left- and right-hand sides of the discrete identity you found
in part (d) as N — oo with y taken to be fixed.

Solution.

Part I: (i)

1
I+(n):/0 e¥ sin(nmy)dy

1

:/ sin(nmwy)d(e?)
0

1

= sin(nmy)e?

1
- mr/ e¥ cos(nmy)dy
0

0

1
= —nﬂ/ e cos(nmy)dy
0

1
= fmr/ cos(nmy)d(e?)
0
1 1
fn27r2/ e sin(nmy)dy
0

= —nm cos(nmy)e?

0
= —nm(cos(nm)e — 1) — n*x21, (n)

(n?r? + 1)1 (n) = nr(1 — (=1)"e)

~ nm(l—(—1)")

n?r? 41

I (n)= /0 o sin(nmy)dy

- /01 sin(nmy)d(e™ ")

1
= —e Ysin(nmy)| + mr/ e Y cos(nmy)dy
0

0

- —nm /01 cos(nmy)d(e™?)
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1

= —nmcos(nmy)e Y

1
n27r2/ e Ysin(nmy)dy
0 0

= —nn(cos(nm)e ! — 1) — n?*7%I_(n)
I_(’fl) + 7’L27T2[— (n) — ’/7,7T(1 — (—1)”671)
~nm(l—(=1)"e™ )
nr? 41

As conclusion, we have

_ nn(l—(—1)")

Li(n) = n?m? +1
nr(l — (—=1)"e 1)
I-(n) = n?m? 41

(ii) As sinhy is an odd function, we have a,, = 0 for all n. Therefore, at the interval
[0, 1], we have

Loy _ ey
by, = 2/ % sin(nmy)dy
0

:/ey sin(mry)dy—/o e Ysin(nry)dy
=1Ii(n) —1-(n)

Hence, the Fourier sine series of sinhy is

n27r+1

oo [e'e] oo 1 n(,—1 _
sinhy = Z by, sin(nwy) = Z Iy (n)—I_(n))sin(nry) = Z )"(e ) sin(nmy)

n=1

For coshy, it is an even function. We can do the odd extension of coshy to get

the Fourier sine series of coshy. Hence,

L ey -y
b, = 2/ % sin(nmy)dy
0

1 1
= / e¥ sin(nmy)dy + / e Ysin(nmy)dy
0 0

=I,(n)+1_(n)

Hence, the Fourier sine series of coshy is

oo oo n 9 _1)n 1
coshy = Z by, sin(nmy) = Z(I+(n)+1_ (n)) sin(nmy) = Z n n2)7r f 1 +e) sin(nmy)
n=1 n=1 n=1
As conclusion, we have
,1 - 6)
sinhy = Z n27r 1 sin(nmy)
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n

2nm(—1)"(e L +e) .
coshy = Z ( n2)7r (Jr I ) sin(nmy)

n=1

Part II: (a) By the order given, The conductance-weighted Laplacian matrix of the graph is

given by
[2c+d —c 0 0 0 —d 0 0 :i—-c 0]
—¢  2+d —c 0 0 0 0 0:0 0
0 - 2+d 0 0 0 0 0:i0 0
0 0 0 2+d —c {0 —-d 00 0
K_ |0 0 0 —c  2+4di 0 0 —di 0 —c
T 0 0 0 0 id 0 0io0 0
0 0 0 —d 0 {0 d 0i0 0
0 0 0 0 -d i0 0 dio o0
“e 0 0 0 0 {0 0 0ic 0
| 0 0 0 0 — 10 0 0:i0 c

which is equal to
cKy +dIy —dIy —cP
K= —dIn dly o |,
—cPT 0 cls

where I; denotes the j-by- j identity matrix and Ky is the N-by- N matrix

familiar from lectures and the N-by-N matrix P is given by

0
0
0

(b) For this electric circuit, we have:

KX=f (1)
cKy +dIy —dIy —cP| |x 0
—dI N dl N 0 0| = |Cerr (2)
—cPT 0 cIy é f

where X is the vector of the voltages at the nodes 1 to N. Since the nodes at
N +1 to 2N are grounded, the voltages there are all 0 and € is the vector of the
voltages at the voltage source 2N + 1 and 0, Ceg is the vector of the effective

conductance, and f is the vector of the applied voltages. As KCL holds at nodes
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1 to N, the flux of nodes 1 to N are all zero. In ditails, we have

gl

The linear system (2) is equivalent to

cKyx +dIyx —dIn0O—cPé =0 (3)
dIy% — dINO = Cog (4)
—cPTe=f (5)

Let’s consider equation (3), it impies that

cKyx + dIyx = cPé (6)
0
0

cKyx+dx =cPé= | (7)
&

Let us solve equation (7) using the eigenvectors of Ky, which we learnt in the

lecture.
Ky®, =\®,, j=1,2,--- N (8)
where
sin Aﬂl
5 sin J\zﬂfl
P.o= 4] = . =1,....N
7 N + 1 ’ J ) )

: njm
Sin <N+1>

which has corresponding eigenvalue

T .
)\]‘:2_2005(]\7—'_1)7 ]:177N

This orthonormal set of vectors can be used as a basis of the solution space. As

al d
x= a;(W®;, p= p

Jj=

—

for some set of coefficients {a;(p) | 7 =1,..., N} to be determined. The equation
(7) now tells us that

N
Ky +d% = cKn(>_a;j(n)®;)) (9)

Jj=1
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N N
= ey aj(mA®;+dY ] a;(n)@; (10)
j=1 j=1
0
N 0
= (ca;(p)A; + da;(p))®; = ZaJ Yehj+d)®; = | | (11)
j=1 :
C

The orthonormality of the eigenvectors can be exploited to find the coefficients
a;(u). To see this, note that on multiplying (11) by @T it follows that

0 2 Nmm
Za] )eNj +d)@L®; = oL :CUN s1n(N+1)

By the orthonormality of the eigenvectors, we have

P, =5,

m

where 4,,; is the Kronecker delta. Therefore, we have

2 . Nmm
am (1) (cAm + d) :C\/ N +1 SIH(N+ 1)

NT)’LTI')
N+1 N+1

cAm +d

sin(

c
am (1) =
As p = 2, we have

/ sin %T;r / sin %T;‘)
N+1 Ap+p N+1 (2 —2cos( ]]\\7,’1?))4—#

Therefore, we have the coefficients {a;(u)|j =1,..., N} as

[z s
a5 () = N+1(2—2cos(555)) + 1

+

(¢) As KCL holds at nodes 1 to N and node 2N + 1 is set to unit voltage and node
0 is grounded, we have

Cﬂ():]., ,.762N+1:1

Forn=1,2,.... N

(Tpt1 — Tp) = day + c(Tp—1 — Xp)

e (@ng1+ 1)
—(xn Ly
2c+d +1 1

Ty =
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_ Znt1 + Tn—1
w+2

where p = %. Therefore, we have
(2+lj/)$n = Tn-1 +.'L'n+]_, n= 1727"'>N

We get such a recrussion relation and it is linear, then we can solve it like this.

We can transfer the relation into a characteristic equation,

(24 p)A™ = A" At (12)
AL (24 AT AT =0 (13)
AT = 24+ A +1) =0 (14)

Asn=1,2,..,N, A"~ & 0, then it must have \> — (2 + p)A + 1 = 0, then we

can get the solution of A,

1
)\:§(M+2i\/4u+u2)

Therefore, we have

Ty =

S+ 2+ Ap+ )" — (5(p+2 — Ap+ )"
%u+2+\/4u+u N+ (L

We set
1
Ar(p) = 5+ 2+ Vidp+p?)
1
A-(p) = 5+ 2= Vidp+ p2),
Then, we have

At A
A (N = A ()N

n=1,2..N

By the uniqueness theorem of hormonic potentials, the results from (b) and (c)
must be equal. Therefore, we have
N c( Njm .
\ n_ sin
S T S ST (1)
X )N ()T 2 N+1 @ 2cos(g5y) N1
M)t = A (w2 XN: sm(ﬁﬂ) (97 (16)
NGOV (T T N T2 (2 - 2eos(gE) b N A1

which is the discrete identity.
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(e) We take the limit N — oo at the both sides of identity (16) and use

1 n
(N+1)2 7 N4+1

u:

then we get,

- T+ 24+ VAp+ )" — (3(p+2 — VAp+ p?)"
N=voo ( %u+2+\/4u+u NV = (51 +2 = VAp + p2)) N

N]Tr)

sm(N+1

2
= lim
N—><>OZN+1(2—2<:OS(

sin(jmy)

1
o) +

As N — oo, the 1\?7-:1 is very small and we use the Taylor series,

Jjm g 1 j7r2
N+1):2(1fcos(N+1)):2(17(175m)+...):

Jm ) = J
N+1' N+1

2 — 2 cos(

sin( +...

j27T2

(N+1)2

Let us see the limitation again. From the Calculus and Applications course, we

know that,
li ! +2+ 4 ! + ! '
1m - —
NSoo \ 2 N+1 (N+1)2  (N+1)?
1 1 1 "
<2<<N+1 2\/4(N+1)2+(N+1)2>> =0
N+1
li L -|—2+ 4 ! + !
1m - —
Nooo | 2 N+1 (N+1)2 " (N+1)2

N+1
1 1 1 1
(2(((N+1)2>+2_\/4(N+1)2+(N+1)2>> =7

For the identity, use the Taylor expansion of 2 — 2 cos( 1\?11 ),

0 ] > 2(N + 1) sin( ]]\\]]_ﬂ)

X 2(N +1)(e—et) Sin(ijﬂ(l\]fv+jz_jﬂ) L
sin(jy)

N—o00 4 j27r2+]_

X 2(N +1)(e — e~ 1)(sin(j) cos( N+1) — cos(jm) Sin(A?

1)

0= 1li +
NEHOOZ '77-(2+1

X 2(N +1)(e —e 1) (—(-1) sin(AZL))

sin(jy)

+ ...

sin(jry)
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We use the Taylor expansion of sin(j\?—L),

2N+ 1) (e—e (=(-1) )

_ RESUY
0= i > rs sn)
]:
= (el —e) (=1
0=2 sin(jm
]Z::l R (Jmy)
_dmet (=
0= ; JErc sin(jmy)
We can observe that
Y I I i)
sin(jmy
2
= Jim + 1
is the Fourier sine series of sinhy from Part I.
Since
" 50 wh N —
= — when 00
YT N
sinhy =0 when y=0
We have .
— jm(e” (=17 .
Z sin(jmy) = sinh0 =0

= j71'2—|-1

Therefore, the value of sinhy when y = 0 is coincide with what we calculate in

(e). Tt is clear that the Fourier sine series of sinh y is zero when y is fixed as -



