
Penetration Test Report

Marcus Rohrmoser Mobile
Software

V 1.0
Amsterdam, November 26th, 2024
Public

Document Properties

Client Marcus Rohrmoser Mobile Software

Title Penetration Test Report

Targets Seppo Social Web Server Instance
Seppo Web Application
Communication between client-server

Version 1.0

Pentesters Nicolas Jeannerod, Sabrina Deibe

Authors Sabrina Deibe, Nicolas Jeannerod, Marcus Bointon

Reviewed by Marcus Bointon

Approved by Melanie Rieback

Version control

Version Date Author Description

0.1 September 4th, 2024 Sabrina Deibe, Nicolas
Jeannerod

Initial draft

0.2 October 30th, 2024 Marcus Bointon Review

1.0 November 26th, 2024 Marcus Bointon 1.0

Contact

For more information about this document and its contents please contact Radically Open Security B.V.

Name Melanie Rieback

Address Science Park 608
1098 XH Amsterdam
The Netherlands

Phone +31 (0)20 2621 255

Email info@radicallyopensecurity.com

Radically Open Security B.V. is registered at the trade register of the Dutch chamber of commerce under number 60628081.

Table of Contents

1 Executive Summary 4
1.1 Introduction 4

1.2 Scope of work 4

1.3 Project objectives 4

1.4 Timeline 4

1.5 Results In A Nutshell 5

1.6 Summary of Findings 5

1.6.1 Findings by Threat Level 6

1.6.2 Findings by Type 7

1.7 Summary of Recommendations 7

2 Methodology 9
2.1 Planning 9

2.2 Risk Classification 9

3 Reconnaissance and Fingerprinting 11

4 Findings 12
4.1 CLN-003 — File.out_channel' can append to an existing file 12

4.2 CLN-009 — Insecure session handling 13

4.3 CLN-011 — Improper input validation results in multiple session tokens 14

4.4 CLN-002 — Missing error documentation 15

4.5 CLN-005 — Missing dependencies 16

4.6 CLN-007 — No lock-out mechanism 17

4.7 CLN-008 — Verbose error messages are displayed 17

4.8 CLN-010 — Incomplete input validation leads to crash 19

4.9 CLN-013 — Improper handling of rejected Lwt promises 19

4.10 CLN-014 — Improper handling of the PID in the lock file 20

5 Non-Findings 22
5.1 NF-004 — Little documentation 22

6 Future Work 23

7 Conclusion 24

Appendix 1 Testing team 25

1 Executive Summary

1.1 Introduction

Between August 19, 2024 and August 30, 2024, Radically Open Security B.V. carried out a penetration test for Marcus

Rohrmoser Mobile Software

This report contains our findings as well as detailed explanations of exactly how ROS performed the penetration test.

1.2 Scope of work

The scope of the penetration test was limited to the following target(s):

• Seppo Social Web Server Instance

• Seppo Web Application

• Communication between client-server

The scoped services are broken down as follows:

• Pentest of Seppo Application (incl. reporting): 10 days

• PM/Review: 1 days

• Total effort: 11 days

1.3 Project objectives

The objective is to perform a penetration test of the Seppo social application to assess its security. To do so, ROS will

perform a security assessment using the STRIDE threat model to identify potential threats within the application’s design

and employ the OWASP Top Ten methodology for the web application penetration test. Any vulnerabilities discovered

will be exploited to evaluate the potential for further access and privilege escalation, providing Marcus Rohrmoser Mobile

Software with a comprehensive understanding of security risks and recommendations for remediation.

1.4 Timeline

The security audit took place between August 19, 2024 and August 30, 2024.

4 Radically Open Security B.V.

Public

1.5 Results In A Nutshell

During this crystal-box penetration test we found 3 Moderate and 7 Low-severity issues.

We did not find any severe issues in the Seppo project, though there are some minor ones.

As is often the case, there are issues surrounding login mechanisms, such as improper session handling providing an

opportunity to create unlimited session tokens CLN-011 (page 14), an incomplete logout mechanism CLN-009 (page

13), and a lack of anti-automation on the login form CLN-007 (page 17).

Incomplete input validation can lead to application crashes CLN-010 (page 19). Some error messages contain links to

documentation that does not exist CLN-002 (page 15). The application fails to declare some required dependencies,

making it more difficult to deploy CLN-005 (page 16), and also fails to declare sufficiently strict version constraints,

making reproducible builds harder. Incomplete exception handling can lead to information disclosure through verbose

error messages CLN-013 (page 19).

Some file output operations are subject to concurrency problems, possibly resulting in file corruption CLN-003 (page

12), and race conditions in handling PID file locks can result in corrupt, missing, or incorrect file contents CLN-014

(page 20).

1.6 Summary of Findings

ID Type Description Threat level

CLN-003 Concurrency The function File.out_channel' can append to an existing
file, potentially leading to corrupted files.

Moderate

CLN-009 Session handling Session cookies storing the user session are replayable
and are not invalidated on logout.

Moderate

CLN-011 Input validation An attacker may spoof a user session by providing
unexpected input that makes the server generate
unlimited valid session tokens.

Moderate

CLN-002 Missing documentation Some errors contain error codes and documentation links,
but some of these links are broken.

Low

CLN-005 Dependencies The .opam file is missing two dependencies. crunch and
tyre, without which the build cannot succeed. In general,
the dependencies are specified without their versions,
which might hinder future reproducibility.

Low

CLN-007 Rate limiting There is no account lockout enforced on the application
allowing password guessing attacks. Usernames are
public.

Low

CLN-008 Information Disclosure Internal error messages including detailed code errors
and/or stack traces are displayed to the end user.

Low

CLN-010 Denial of Service Certain injections or unexpected input causes the
server to crash and freeze, without allowing any kind of
interaction.

Low

Executive Summary 5

CLN-013 Error handling In various places, rejected Lwt promises can slip through
a catch-all try ... with, potentially reaching the top-level.

Low

CLN-014 Concurrency The PID file lock mechanism seems to work, but the
content of the lock file is not guaranteed to be the PID of
the process.

Low

1.6.1 Findings by Threat Level

70.0%

30.0%

Moderate (3)

Low (7)

6 Radically Open Security B.V.

Public

1.6.2 Findings by Type

10.0%

10.0%

10.0%

10.0%

10.0% 10.0%

10.0%

10.0%

20.0%

Concurrency (2)

Session handling (1)

Input validation (1)

Missing documentation (1)

Dependencies (1)

Rate limiting (1)

Information disclosure (1)

Denial of service (1)

Error handling (1)

1.7 Summary of Recommendations

ID Type Recommendation

CLN-003 Concurrency • Check that the file to write to does not exist, or truncate the file when
opening, or generate temporary file names randomly to avoid clashes.

CLN-009 Session handling • Expire the session server-side, not just on the client.
• Invalidate session cookies upon change of password, logout, or when

the browser is closed.
• Implement stringent controls over cookie sessions, using short expiry

times.

CLN-011 Input validation • Invalidate server-side session state correctly.
• Validate session cookies injected on the cookie header, and expected

behaviour server side.
• Implement idle and absolute session timeouts.
• Limit login retry attempts to mitigate brute-forcing.

CLN-002 Missing documentation • Write the missing documentation for the errors.
• Ensure survivability of this documentation by, for example, archiving

the website and pointing users to the archive in error messages, and/
or by moving the error descriptions into Seppo's repository.

CLN-005 Dependencies • Add the missing dependencies to the .opam file.
• Establish a policy for the definition of dependencies in a reproducible

way, for instance by exporting a working opam switch or by relying on
reproducibility-oriented tools.

• Test periodically, ideally in an automated way, that one can rebuild
Seppo from scratch.

CLN-007 Rate limiting • Lock accounts after 3 to 5 unsuccessful login attempts.

Executive Summary 7

• Only unlock accounts after a predetermined period of time, via a self-
service unlock mechanism, secret questions, or intervention by an
administrator.

• Use a CAPTCHA to prevent automated login attempts.

CLN-008 Information Disclosure • Display only generic error messages to end users.
• Log detailed error messages internally.
• Establish a policy for handling errors, and ensure that there is a global

error handler to catch any errors not specifically intercepted.

CLN-010 Denial of Service • Implement robust input validation (including size limits) and escaping
of special characters in all user inputs.

CLN-013 Error handling • Rework catch-all places to ensure that either they do not process
an Lwt promise, or that the rejected Lwt promises are processed
correctly.

CLN-014 Concurrency • Change the code to acquire the lock before any modification is made
to the file.

8 Radically Open Security B.V.

Public

2 Methodology

2.1 Planning

Our general approach during penetration tests is as follows:

1. Reconnaissance

We attempt to gather as much information as possible about the target. Reconnaissance can take two forms:

active and passive. A passive attack is always the best starting point as this would normally defeat intrusion

detection systems and other forms of protection afforded to the app or network. This usually involves trying to

discover publicly available information by visiting websites, newsgroups, etc. An active form would be more

intrusive, could possibly show up in audit logs and might take the form of a social engineering type of attack.

2. Enumeration

We use various fingerprinting tools to determine what hosts are visible on the target network and, more

importantly, try to ascertain what services and operating systems they are running. Visible services are researched

further to tailor subsequent tests to match.

3. Scanning

Vulnerability scanners are used to scan all discovered hosts for known vulnerabilities or weaknesses. The results

are analyzed to determine if there are any vulnerabilities that could be exploited to gain access or enhance

privileges to target hosts.

4. Obtaining Access

We use the results of the scans to assist in attempting to obtain access to target systems and services, or to

escalate privileges where access has been obtained (either legitimately though provided credentials, or via

vulnerabilities). This may be done surreptitiously (for example to try to evade intrusion detection systems or rate

limits) or by more aggressive brute-force methods. This step also consist of manually testing the application

against the latest (2021) list of OWASP Top 10 risks. The discovered vulnerabilities from scanning and manual

testing are moreover used to further elevate access on the application.

2.2 Risk Classification

Throughout the report, vulnerabilities or risks are labeled and categorized according to the Penetration Testing Execution

Standard (PTES). For more information, see: http://www.pentest-standard.org/index.php/Reporting

These categories are:

• Extreme

Extreme risk of security controls being compromised with the possibility of catastrophic financial/reputational

losses occurring as a result.

Methodology 9

http://www.pentest-standard.org/index.php/Reporting

• High

High risk of security controls being compromised with the potential for significant financial/reputational losses

occurring as a result.

• Elevated

Elevated risk of security controls being compromised with the potential for material financial/reputational losses

occurring as a result.

• Moderate

Moderate risk of security controls being compromised with the potential for limited financial/reputational losses

occurring as a result.

• Low

Low risk of security controls being compromised with measurable negative impacts as a result.

10 Radically Open Security B.V.

Public

3 Reconnaissance and Fingerprinting

We were able to gain information about the software and infrastructure through the following automated scans. Any

relevant scan output will be referred to in the findings.

• nmap – http://nmap.org

Reconnaissance and Fingerprinting 11

http://nmap.org

4 Findings

We have identified the following issues:

4.1 CLN-003 — File.out_channel' can append to an existing file

Vulnerability ID: CLN-003

Vulnerability type: Concurrency

Threat level: Moderate

Description:

The function File.out_channel' can append to an existing file, potentially leading to corrupted files.

Technical description:

The function File.out_channel' can append to an existing file, because it opens the file in question in append

mode. In particular, this can make it non-idempotent in situations where the execution is interrupted. For instance:

• Call File.out_channel' f "file" a first time. This will create a temporary file file~ and fill it with

whatever f does.

• Interrupt the execution before renaming file~ to file.

• Call File.out_channel' f "file" another time. This will append to the temporary file file~, then

rename it to file.

Impact:

The function File.out_channel' might not be idempotent, breaking the mental model that the developers have of it.

In practice, it could lead to files being corrupted by containing the content of two calls to File.out_channel' instead

of just one.

Recommendation:

Prevent this situation from happening within File.out_channel' by checking that the file to write to does not exist, or

truncating the file when opening, or by generating temporary file names randomly to avoid clashes.

12 Radically Open Security B.V.

https://codeberg.org/seppo/seppo/src/commit/3b0578ff5f441a020603e8d74031f1a3cfaea0a6/lib/file.ml#L146-L157

Public

4.2 CLN-009 — Insecure session handling

Vulnerability ID: CLN-009

Vulnerability type: Session handling

Threat level: Moderate

Description:

Session cookies storing the user session are replayable and are not invalidated on logout.

Technical description:

Session cookies can be maliciously or fraudulently repeated or delayed by any attacker who might intercept the data,

have access to session that contains the cookie, or any other mechanism that allows getting hold of the cookie.

After the user logs out, the session cookie is deleted from the client, however, the session remains active and valid on

the server side.

On the upside, the HttpOnly flag is set correctly on the session cookie, so scripts cannot access its value.

Impact:

Session cookies remain usable even after the user logs out of the application. The cookie is only released from the

browser but remains active on the server, which allows for session replay and impersonation. Someone can access /

seppo.cgi/passwd and change the credentials of the user that is associated with the session cookie. If an attacker

obtains a copy of the session cookie, they will be able to continue to use it after the user thinks they have logged out.

Recommendation:

• Expire the session server-side, not just on the client.

• Invalidate session cookies upon change of password, logout, or when the browser is closed.

• Implement stringent controls over cookie sessions, using short expiry times.

Findings 13

4.3 CLN-011 — Improper input validation results in multiple session tokens

Vulnerability ID: CLN-011

Vulnerability type: Input validation

Threat level: Moderate

Description:

An attacker may spoof a user session by providing unexpected input that makes the server generate unlimited valid

session tokens.

Technical description:

On the endpoint /seppo.cgi/session, a user is able to force the server to provide multiple session cookies with

indefinite validity.

When a user injects different payloads in place of the session cookie, the server creates new session cookies

that belong to the same user and are all valid simultaneously. Subsequent calls to /seppo.cgi/timeline/p/

seppo.cgi/seppo.cgi/seppo.cgi are generated, causing the server crash after some seconds with an error

message: ERR_TOO_MANY_REDIRECTS. Try clearing your cookies.

Impact:

An adversary that has access to the session cookies is able to impersonate the user by submitting the active session

cookie. It is also able to generate new session cookies equally valid.

Recommendation:

• Invalidate server-side session state correctly.

• Validate session cookies injected on the cookie header, and expected behaviour server side.

General session recommendations:

• Implement idle and absolute session timeouts: Terminate sessions that have been inactive for a while (session

timeout) and an absolute session timeout requiring reauthentication after a fixed time period (absolute timeout),

regardless of activity.

14 Radically Open Security B.V.

Public

• Limit login retry attempts to mitigate brute-forcing.

4.4 CLN-002 — Missing error documentation

Vulnerability ID: CLN-002

Vulnerability type: Missing documentation

Threat level: Low

Description:

Some errors contain error codes and documentation links, but some of these links are broken.

Technical description:

Some errors have no documentation, e.g. error code E1005 points to https://seppo.social/E1005 for

explanations, which, at the time of writing, does not exist.

Impact:

This might prevent other users from choosing Seppo, or from contributing. In the far future, the fact that error

descriptions are not in the Seppo repository but on another website may lead to these descriptions not being available

any more.

Recommendation:

• Write the missing documentation for the errors.

• Ensure survivability of this documentation by, for example, archiving the website and pointing users to the archive

in error messages, and/or by moving the error descriptions into Seppo's repository.

Findings 15

4.5 CLN-005 — Missing dependencies

Vulnerability ID: CLN-005

Vulnerability type: Dependencies

Threat level: Low

Description:

The .opam file is missing two dependencies. crunch and tyre, without which the build cannot succeed. In general,

the dependencies are specified without their versions, which might hinder future reproducibility.

Technical description:

Seppo specifies dependencies via a seppo.opam file in its repository. However, this file fails to mention at least two

dependencies, the OCaml libraries crunch and tyre, that are necessary to build it properly. Additionally, only the name

of the dependencies are specified, without version bounds or exact version constraints.

Impact:

Both the missing dependencies and the lack of version bounds hinders reproducibility. It makes it harder for an external

person or for our future selves to take on Seppo, build it, and contribute to it. The lack of exact versions makes it near

impossible to rebuild the exact same executable.

Recommendation:

• Add the missing dependencies to the .opam file.

• Establish a policy for the definition of dependencies in a reproducible way, for instance by exporting a working

opam switch or by relying on reproducibility-oriented tools.

• Test periodically, ideally in an automated way, that one can rebuild Seppo from scratch.

16 Radically Open Security B.V.

Public

4.6 CLN-007 — No lock-out mechanism

Vulnerability ID: CLN-007

Vulnerability type: Rate limiting

Threat level: Low

Description:

There is no account lockout enforced on the application allowing password guessing attacks. Usernames are public.

Technical description:

Seppo lacks account lockout mechanisms that are useful in mitigating brute-force attacks. An attacker might implement

brute force attacks or guessing attacks towards different accounts of users without any limitation or lockout mechanism.

Usernames are public, making it easier for an attacker to target valid account names.

Impact:

The result of a successful attack is dangerous as the attacker will have full access to the user account, along with all the

functionality and services they have access to.

Recommendation:

• Lock accounts after 3 to 5 unsuccessful login attempts.

• Only unlock accounts after a predetermined period of time, via a self-service unlock mechanism, secret questions,

or intervention by an administrator.

• Use a CAPTCHA to prevent automated login attempts.

4.7 CLN-008 — Verbose error messages are displayed

Vulnerability ID: CLN-008

Vulnerability type: Information Disclosure

Threat level: Low

Findings 17

Description:

Internal error messages including detailed code errors and/or stack traces are displayed to the end user.

Technical description:

Web applications frequently generate error conditions during normal operation, such as null pointers, network timeouts,

general failures and other common conditions that can lead to different types of errors. These must be handled

according to a well-thought-out scheme that will provide a meaningful error message to the user, without revealing any

internal or sensitive information about the application.

We found the following detailed error messages in the application:

Source URL: test0.seppo.social/seppo.cgi/passwd

Status: 500 Internal server Error see https://Seppo.Social/E1005 File "bin/cgi.ml", line 42,
 characters 2-8: Assertion Failed

Source URL: test0.seppo.social/seppo.cgi/activitypub/actor.xml

Status: 500 Internal Server Error see https://Seppo.Social/E1005 File "lib/ap.ml", line 1170,
 characters 4-10: Assertion failed

These errors were generated upon release of passwd file and retrieving resources, among other actions. These errors

reveal internal information and should be treated to provide generic error messages to the end user.

Source URL: /seppo.cgi/login

Status: 500 Internal Server Error
see https://Seppo.Social/E1005
End_of_file*

This last error happens on sending a POST request without a form. It comes from the form function in bin/cgi.ml

calling Html.Form.of_channel, itself using input_line from OCaml's standard library. input_line raises an

End_of_file exception, caught only by the catchall handler in bin/seppo_bin.ml.

Impact:

While not a direct threat, the leaked internal information can help to target other attacks.

Recommendation:

• Display only generic error messages to end users.

• Log detailed error messages internally.

18 Radically Open Security B.V.

Public

• Establish a policy for handling errors, and ensure that there is a global error handler to catch any errors not

specifically intercepted.

4.8 CLN-010 — Incomplete input validation leads to crash

Vulnerability ID: CLN-010

Vulnerability type: Denial of Service

Threat level: Low

Description:

Certain injections or unexpected input causes the server to crash and freeze, without allowing any kind of interaction.

Technical description:

Injections cause a degradation of service leading to application freeze. Specifically, this occurs on the login page, on the

user and password field when the following input has been inserted: </script><script>alert(1)</script>

Impact:

An attacker can send malformed requests, so that Seppo Web Server crashes, halts, or runs slowly; in all cases

impacting availability.

Recommendation:

• Implement robust input validation (including size limits) and escaping of special characters in all user inputs.

4.9 CLN-013 — Improper handling of rejected Lwt promises

Vulnerability ID: CLN-013

Vulnerability type: Error handling

Threat level: Low

Findings 19

Description:

In various places, rejected Lwt promises can slip through a catch-all try ... with, potentially reaching the top-level.

Technical description:

Several places in Seppo feature a catch-all using the try ... with OCaml construct. See for instance L189-L194 of

lib/main.ml as of e37cc766737e6784672f08b7cb72a610c967dc3b:

let%lwt r = try
 dispatch_job ~base ~pk j p
 with exn ->
 let e = exn |> Printexc.to_string in
 Logr.warn (fun m -> m "%s.%s Uncaught Exception job:%s %s" "Main.Queue" "process_new_and_due" j
 e);
 Error e |> Lwt.return

However, in some places, the value evaluated is an Lwt promise. Rejected Lwt promises will not be caught by such a

construct, and will reach the top-level Lwt_main.run call, only then being transformed into exceptions.

Impact:

Exceptions might be propagated into unexpected places, potentially leading to unexpected control flow, and potentially

leaking error messages as in CLN-008 (page 17). In the example above, if an exception occurs in dispatch_job

for any reason, the cleanup phase of Main.Queue.loop does not happen and the job stays in run forever, not being

retried, and not being cleaned up.

Recommendation:

Rework catch-all places to ensure that either they do not process an Lwt promise, or that the rejected Lwt promises are

processed correctly, for instance by adding a try%lwt ... with construct or an explicit Lwt.catch. Note that it is

not sufficient to ensure that Lwt.fail is never called, as regular exceptions can be turned into rejected Lwt promises

by quite a few Lwt control flow handles.

4.10 CLN-014 — Improper handling of the PID in the lock file

Vulnerability ID: CLN-014

Vulnerability type: Concurrency

Threat level: Low

20 Radically Open Security B.V.

Public

Description:

The PID file lock mechanism seems to work, but the content of the lock file is not guaranteed to be the PID of the

process.

Technical description:

Consider this code in Queue.loop in lib/main.ml (see https://codeberg.org/seppo/seppo/src/

commit/3b0578ff5f441a020603e8d74031f1a3cfaea0a6/lib/main.ml#L233-L238):

let fd = Unix.openfile lock [O_CLOEXEC; O_CREAT; O_TRUNC; O_WRONLY; O_SYNC] 0o644 in
let oc = fd |> Unix.out_channel_of_descr in
Printf.fprintf oc "%i" (Unix.getpid ());
flush oc;
Unix.lockf fd F_TLOCK 0;

The lock does not prevent another process from writing to the file, only from acquiring a write lock on the file (this is a

cooperative mechanism). This means that another process will be able to open the file, truncate it, write its PID and

flush, and only then raise an exception because it will not be able to acquire a lock.

Even if the lock prevented other processes from writing, the code contains a race where another process could have the

time to write its PID entirely or partially to the file before the first process locks it.

Technically, there is also a race going on between processes where a process could acquire a file descriptor on the

lock file before the other deletes it, resulting in a later exception when trying to write to the file descriptor. However, it is

probably not a problem that one of the processes crashes when there is more than one.

Impact:

The lock mechanism actually works, however, the content of the lock file could be pretty much anything, from the right

PID, the PID of another process, several PIDs mangled together, etc. If other pieces of software rely on this PID for other

things, they could go wrong.

Recommendation:

Change the code to acquire the lock before any modification is made to the file. For instance:

let fd = Unix.openfile lock [O_CLOEXEC; O_CREAT; O_WRONLY; O_SYNC] 0o644 in
Unix.lockf fd F_TLOCK 0;
Unix.ftruncate fd 0;
let oc = Unix.out_channel_of_descr fd in
Printf.fprintf oc "%i" (Unix.getpid ());
flush oc

Findings 21

https://codeberg.org/seppo/seppo/src/commit/3b0578ff5f441a020603e8d74031f1a3cfaea0a6/lib/main.ml#L233-L238
https://codeberg.org/seppo/seppo/src/commit/3b0578ff5f441a020603e8d74031f1a3cfaea0a6/lib/main.ml#L233-L238

5 Non-Findings

In this section we list some of the things that were tried but turned out to be dead ends.

5.1 NF-004 — Little documentation

The Seppo source code features very little documentation, rendering inspection and contribution more difficult. Some

modules link to RFCs, but some of those RFC links are dead. This makes inspection and contributions more difficult,

because it forces users to read all the code to understand what is happening. Additionally, because the functions have

no specification, it is impossible to say whether peculiar behaviours are bugs or features.

Add at least:

• An overview document somewhere explaining what each directory in the repository is for, e.g. the difference

between bin and chkr, lib and as2_vocab, etc.

• In each file/module and each submodule, a comment (can be two lines) explaining the purpose of this module and

the kind of functions it contains.

• Ideally, a comment (and maybe a type) for some generic helpers, for instance in the Make module.

• Ideally, a comment on each function describing what is expected of it.

22 Radically Open Security B.V.

Public

6 Future Work

• Retest of findings

When mitigations for the vulnerabilities described in this report have been deployed, a repeat test should be

performed to ensure that they are effective and have not introduced other security problems.

• Regular security assessments

Security is an ongoing process and not a product, so we advise undertaking regular security assessments and

penetration tests, ideally prior to every major release or every quarter.

Future Work 23

7 Conclusion

We discovered 3 Moderate and 7 Low-severity issues during this penetration test.

We found several vulnerabilities in the Seppo web application, including issues with error handling, the potential for

application crashes or stoppages, session cookie replay attacks, improper logout functionality, and a weak lockout

mechanism. Fortunately none of these have high severity, but they weaken the app's security posture nonetheless.

We recommend fixing all of the issues found and then performing a retest in order to ensure that mitigations are effective

and that no new vulnerabilities have been introduced.

Finally, we want to emphasize that security is a process – this penetration test is just a one-time snapshot. Security

posture must be continuously evaluated and improved. Regular audits and ongoing improvements are essential in order

to maintain control of your corporate information security. We hope that this pentest report (and the detailed explanations

of our findings) will contribute meaningfully towards that end.

Please don't hesitate to let us know if you have any further questions, or need further clarification on anything in this

report.

24 Radically Open Security B.V.

Public

Appendix 1 Testing team

Nicolas Jeannerod Nicolas Jeannerod is a software consultant, specializing in functional programming
languages such as OCaml, Haskell, and Nix/NixOS. Since joining Tweag in 2021, he
has worked on various projects, from building dynamic analysis tools for smart contracts
to enhancing blockchain consensus algorithms for Cardano. Currently, he is involved
in security audits and leading the development of NixOS modules for the Fediversity
project. Nicolas holds a PhD in Computer Science from Université de Paris, focusing on
the verification of shell scripts for file hierarchy transformations.

Sabrina Deibe Sabrina Deibe is an Information Systems Engineer with a Master's in Cryptography,
Security, and Privacy. She has extensive experience in security and risk assessments,
encryption, and key management using both open-source and proprietary tools. A
dedicated educator, she teaches Network Security at the University of Buenos Aires.
Her expertise includes network traffic analysis, intrusion detection/prevention systems,
SIEM, SOAR, and programmable networks in cloud environments. Sabrina holds
several certifications, including CCNP, CRISC, Google Cloud Certified Professional
Architect, and AWS Certified Solutions Architect.

Melanie Rieback Melanie Rieback is a former Asst. Prof. of Computer Science from the VU, who is also
the co-founder/CEO of Radically Open Security.

Front page image by dougwoods (https://www.flickr.com/photos/deerwooduk/682390157/), "Cat on
laptop", Image styling by Patricia Piolon, https://creativecommons.org/licenses/by-sa/2.0/legalcode.

Testing team 25

