
JSS Journal of Statistical Software
January 2012, Volume 46, Issue 3. http://www.jstatsoft.org/

A Multi-Language Computing Environment for

Literate Programming and Reproducible Research

Eric Schulte
University of New Mexico

Dan Davison
Counsyl

Thomas Dye
University of Hawai‘i

Carsten Dominik
University of Amsterdam

Abstract

We present a new computing environment for authoring mixed natural and com-
puter language documents. In this environment a single hierarchically-organized plain
text source file may contain a variety of elements such as code in arbitrary program-
ming languages, raw data, links to external resources, project management data, working
notes, and text for publication. Code fragments may be executed in situ with graphical,
numerical and textual output captured or linked in the file. Export to LATEX, HTML,
LATEX beamer, DocBook and other formats permits working reports, presentations and
manuscripts for publication to be generated from the file. In addition, functioning pure
code files can be automatically extracted from the file. This environment is implemented
as an extension to the Emacs text editor and provides a rich set of features for authoring
both prose and code, as well as sophisticated project management capabilities.

Keywords: literate programming, reproducible research, compendium, WEB, Emacs.

1. Introduction

There are a variety of settings in which it is desirable to mix prose, code, data, and compu-
tational results in a single document.

� Scientific research increasingly involves the use of computational tools. Successful com-
munication and verification of research results requires that this code is distributed
together with results and explanatory prose.

� In software development the exchange of ideas is accomplished through both code and

http://www.jstatsoft.org/

2 A Computing Environment for Literate Programming and Reproducible Research

Org-mode

* Plain Text Markup

- prose composition

- code composition

- data analysis

#+begin_src C :tangle run.c

int main(){

return 0;

}

#+end_src

#+headers: :results graphics

#+begin_src R :file fig.pdf

plot(data)

#+end_src

HTML

<h1>Plain Text Markup</h1>

prose composition

code composition

data analysis

LATEX

\Section{Plain Text Markup}

\begin{itemize}

\item prose composition

\item code composition

\item data analysis

\end{itemize}

Source
Code

int main(){

return 0;

}

Embedded data
and source code
in arbitrary
languages

Raw output, tab-
ular data, figures,
etc.

Code Evaluation

Export
Code

Extraction

(Weave)(Tangle)

Figure 1: Org-mode enables both the composition and application of code and prose.

prose; code provides concrete implementation while prose provides higher level expla-
nation. Without proper documentation, the usability and future extensibility of com-
putational tools are compromised.

� In pedagogical environments it is important for descriptions of algorithms or techniques
to go hand-in-hand with implementations and example output. These environments
include in-class presentations, published books and articles, online tutorials, and expe-
riential blogs with accompanying instructions.

In each of the situations described above, prose in the absence of code is typically insufficient.
Similarly, code without expository prose is a less-than-ideal medium for communication be-
tween people. In this paper we describe the plain text markup language Org-mode, with
a focus on its provision of a unified environment supporting many different approaches to
composition and application of combined prose and code (Figure 1). Working in Org-mode is
an extension of standard text editing. Thus, trivial usage of Org-mode is nothing more than
text editing, from which point the user can start to add special plain text Org-mode elements
to the document. Org-mode is therefore easy to adopt and aims to be a general solution for
authoring projects with mixed computational and natural languages. It supports multiple
programming languages, export targets, and work flows.

With Org-mode the entire life cycle of a research or development project can take place within
a single document. Because Org-mode is language agnostic and the user can mix languages
within a document, it is possible to support a very wide variety of projects. These range

Journal of Statistical Software 3

from those of a single user, who keeps a laboratory notebook with embedded calculations
in Org-mode, to the collaborative work-group tasked with engineering a complex system,
using Org-mode in conjunction with a modern version control system such as git to build a
repository of code and documentation. With the data, code and text of a project stored in
the same document, which can be exported to a variety of formats, the future reproducibility
of the work is enhanced without placing a great burden on the author.

We start by reviewing existing approaches to the combined authoring of prose and code,
including software tools designed to address one or more of the use cases for mixed natural
and computer language documents (Section 2). We then describe the design of Org-mode
(Section 3) and demonstrate some of its uses with three short examples (Section 4). We
conclude with a discussion of why we believe Org-mode constitutes a uniquely productive
environment for authoring mixed prose and code projects (Section 5). This document is itself
written in Org-mode; the version submitted to the journal was created by running a single
export command. This command executed the source code examples and generated the figures
before exporting its content to a LATEX file marked up according the journal’s specification.
The Org-mode source for this paper is available in the supplementary material.

2. Background

The combined authoring of prose and code has historically been approached from two different
standpoints.

Literate programming: Enhances traditional software development by embedding code in
explanatory essays and encourages treating the act of development as one of communi-
cation with future maintainers.

Reproducible research: Embeds executable code in research reports and publications, with
the aim of allowing readers to re-run the analyses described.

We discuss each of these approaches in turn and include a review of existing software tools
that support each technique.

2.1. Literate programming

Let us change our traditional attitude to the construction of programs: Instead
of imagining that our main task is to instruct a computer what to do, let us
concentrate rather on explaining to human beings what we want a computer to do.

(Knuth 1984)

The technique of literate programming was introduced by Donald Knuth in the early 1980’s,
not long after he created the TEX typesetting software. Knuth described literate programming
as aiming to encourage the author of a computational work to approach the project “as an
essayist, whose main concern is with exposition and excellence of style” (Knuth 1984).

Accordingly, the input files for literate programming tools mix sections of computer code with
sections of natural language, typically marked up in TEX or LATEX. The literate programming

4 A Computing Environment for Literate Programming and Reproducible Research

tool provides methods to create two types of view into the document; articles of typeset
prose with marked-up code blocks intended for human consumption, and computer-readable
documents of pure source code. The literate programming terms for generating these views
are weaving and tangling, respectively. A common feature of literate programming tools is
the ability to organize code blocks differently when tangling and weaving, thereby allowing
the programmer to introduce material to humans in a different order than code is introduced
to the computer.

The original literate programming tool, developed by Knuth, was WEB, which consists of
two primary programs, TANGLE and WEAVE (Knuth 1984). This system supported the Pascal
programming language and produced documents typeset with TEX. Somewhat later, Knuth
and Levy (1994) produced a C language version, cweb. A modern descendent of these tools
is noweb (Johnson and Johnson 2000) which is designed to be language independent. Its
primary programs, notangle and noweave, are both written in C. Documents produced by
noweave can be typeset with TEX, LATEX, and troff or displayed in a web browser as HTML.
Software tools such as WEB, cweb, and noweb enable the authoring of both prose and code,
but do not provide facilities for the execution of code from within documents. Instead, code
intended for execution is tangled and the resulting source code files are sent to a compiler or
interpreter.

2.2. Reproducible research

An article about computational science in a scientific publication is not the schol-
arship itself, it is merely advertising of the scholarship. The actual scholarship is
the complete software development environment and complete set of instructions
which generated the figures.

(Buckheit and Donoho 1995)

A research project typically relies upon components such as:

� The data being studied;

� Details of calculations and code used in data analysis;

� Methodological conventions and assumptions;

� Decisions among alternate analytic paths.

However, the documents produced by a research project typically stand apart from the things
they describe and rely upon, which makes it difficult for other researchers to reproduce the
results and to understand fully the conclusions of the research project. This situation is
problematic because reproducibility of results and accurate communication are both central
to notions of good science.

A software solution to this problem was proposed by Gentleman and Temple Lang (2004),
who “introduce the concept of a compendium as both a container for the different elements
that make up the document and its computations (i.e., text, code, data, . . .), and as a means
for distributing, managing and updating the collection.”

They summarize the uses and implications of a compendium as follows:

Journal of Statistical Software 5

� It encapsulates the actual work of the author, not just an abridged version suitable for
publication;

� It can display different levels of detail in derived documents;

� The computations included in it can be re-run by an interested reader, potentially with
different inputs;

� It contains explicit computational details that make it easier for an interested reader to
adapt and extend the methods;

� It enables programmatic construction of plots and tables;

� Its components can be treated as data or inputs to software and manipulated program-
matically in ways perhaps not envisioned by the author.

Reproducible research thus approaches mixed natural and computational language documents
from a different direction than literate programming. Rather than adding prose to computa-
tional projects, reproducible research seeks to augment publications of scientific research with
the computer code used to carry out the research. Whereas literate programming extracts
embedded code into an external file used as input to a compiler or an interpreter, code embed-
ded in a reproducible research document is intended to be executed as part of the document
generation process. In this way the data, analysis, and figures supporting a publication can
be generated from the publication itself.

Gentleman and Temple Lang (2004) propose the adoption of compendia as the new unit of
peer review and distribution of scientific work.

The compendium concept, and that of reproducible research, has the potential to
improve the state of publication about computational science. The tools we have
proposed and discussed will allow us to move from an era of advertisement to one
where our scholarship itself is published. This exposes the computations them-
selves to the scientific method and enhances the potential for iterative refinement
and extension.

Sweave (Leisch 2002) is a modern software tool written in the R statistical programming
language (R Development Core Team 2011) that can be used for reproducible research. Sweave
and the R community at large inspired the work that led to the compendium idea, and the
recent resurgence of interest in reproducible research owes much to the success of both R
and Sweave. Sweave documents consist of blocks of R code embedded in LATEX documents.
The R functions that make up Sweave execute the embedded R code and produce another
LATEX document that includes the resulting tables, graphical figures, and inline results. If the
Sweave document is accompanied by the data files and any other code that is used, then the
reader can trace a result back to the relevant computations and through to the original data.

2.3. Existing tools

Several software tools support composition of combined prose and code, but in a less com-
prehensive manner than Org-mode (Table 1). Simple comment extraction engines such as

6 A Computing Environment for Literate Programming and Reproducible Research

LATEX HTML
Tool LP RR export export Language Reference

Javadoc partial no no yes Java Javadoc Team (2003)
POD partial no no yes Perl Wall et al. (2000)
Haskell .lhs partial no yes yes Haskell Jones (2003, Chapter 9.4)
noweb yes no yes yes any Johnson and Johnson (2000)
cweb yes no yes yes C/C++ Knuth and Levy (1994)
Sweave partial yes yes yes R Leisch (2002)
SASweave partial yes yes yes R/SAS Lenth and Højsgaard (2007)
Statweave partial yes yes yes any Lenth (2009)
Scribble yes yes yes yes scheme Flatt et al. (2009)
Org-mode yes yes yes yes any

Table 1: Comparison of existing tools.

POD and Javadoc are by far the most widely used among these tools. These, and other tools
like them, are specific to a single language and are used for embedded API documentation
exported as HTML – unlike more sophisticated tools which generally support a number of
documentation export formats. Their support for literate programming is partial because
they do not recognize named code blocks or reorganize code. Haskell .lhs files extend the
functionality of these simple extraction engines by embedding code into a narrative docu-
ment structure in which prose is primary. The support for literate programming is partial,
however, because code cannot be re-organized during tangling. Tools with full literate pro-
gramming functionality, such as cweb and noweb, are direct descendants of Knuth’s original
WEB system. These tools do not support reproducible research.

Probably the most popular reproducible research tool is Sweave, which is used extensively by
the R programming community. The Sweave approach to reproducible research has spawned
similar tools, such as SASweave and Statweave, some of which support statistical languages
other than R, and which target document preparation systems other than LATEX, including
Open Document Format and Microsoft Word (Lenth and Højsgaard 2007; Baier and Neuwirth
2007; Kuhn 2006; Lenth 2009). Sweave and its descendants do not support code block re-
organization during tangling and thus only partially support literate programming.

Only Scribble and Org-mode provide full support for both literate programming and re-
producible research. Scribble is implemented as an extension to the scheme programming
language. Scribble makes use of the lexical scoping of the underlying language to manage
relations between prose and code. Org-mode is the first tool that supports both literate pro-
gramming using traditional WEB-style references and reproducible research. Additionally,
Org-mode is the only reproducible research tool that supports data flow between code blocks
of arbitrary programming languages.

3. Design of Org-mode

At the core of Org-mode is the Emacs text editor (Stallman 1981) and Emacs Lisp (Lewis et al.
2010), a dialect of Lisp that supports the editing of text documents. The Emacs editor has
been under development since the mid 1970s and at the time of writing the official released
version is 23. The functionality described in this paper is implemented in the development

Journal of Statistical Software 7

version of Emacs which will be released as Emacs 24. Org-mode extends Emacs with a
simple and powerful markup language that turns it into a language for creating, parsing, and
interacting with hierarchically-organized text documents. Its rich feature set includes text
structuring, project management, and a publishing system that can export to a variety of
formats. Source code and data are located in active blocks, distinct from text sections, where
“active” here means that code and data blocks can be evaluated to return their contents or
their computational results. The results of code block evaluation can be written to a named
data block in the document, where it can be referred to by other code blocks, any one of
which can be written in a different computing language. In this way, an Org-mode buffer
becomes a place where different computer languages communicate with one another. Like
Emacs, Org-mode is extensible: support for new languages can be added by the user in a
modular fashion through the definition of a small number of Emacs Lisp functions.

In the remainder of this section, we first describe Org-mode in more detail, focusing on those
features that support literate programming and reproducible research (Section 3.1). We then
describe code blocks and their evaluation (Section 3.2), weaving and tangling of Org-mode
documents (Section 3.3), and language support facilities (Section 3.4).

3.1. Structure and content of Org-mode documents

Org-mode is an Emacs extension that organizes note taking, task management, project plan-
ning, documentation and authoring. Its name comes from its organizing function and the fact
that extensions to Emacs are often implemented as modes – software modules that define the
way a user can edit and interact with certain classes of documents. Org-mode documents are
plain text files, usually with the file name extension .org. Working in Org-mode starts with
conventional text editing and incrementally adds Org-mode-specific features. Because Emacs
has been ported to a large number of operating systems Org-mode can be run on a wide
variety of devices and its plain text documents are compatible between arbitrary platforms.

Document structure

The fundamental structure of Org-mode documents is the outline, comprising a hierarchically
arranged collection of nodes. A document can have a section of text before the first node,
which is often used for defining general properties of the document such as a title, and for
technical setup. Following this initial section is a sequence of top-level nodes, each of which is
the root of a subtree of arbitrary depth. Nodes in the outline are single line headings identified
by one or more asterisks at the beginning of the line. The number of asterisks indicates the
hierarchical level of the node.

* First heading

Some arbitrary text

* Second heading

** A subsection of the second heading

* Third heading

Each heading line can be followed by arbitrary text, which gives the document the logical
structure of a book or article. The hierarchical outline structure can be folded at every node,
making it possible to expose selected sections for quick access or to provide a structural
overview of the document.

8 A Computing Environment for Literate Programming and Reproducible Research

Metadata on nodes

One of the primary design goals of Org-mode was to define a system that combines efficient
note-taking and brainstorming with a task management and project planning system. A single
Org-mode document can hold the notes together with all the data necessary to keep track
of tasks and projects associated with the notes. This is accomplished by assigning metadata
to outline nodes using a special syntax. Metadata for a node can include a task state, like
TODO or DONE, a priority, and one or more tags, dates, and arbitrary key-value pairs called
properties. In the following example the top-level node is a task with state TODO, a priority of
A, and tagged for urgent attention at work. The task has been scheduled for 18 August 2010
and a property indicates that it was delegated to Peter.

* TODO [#A] Some task :@work:urgent:

SCHEDULED: <2010-08-18 Wed>

:PROPERTIES:

:delegated_to: Peter

:END:

The task and project management functionality of Org-mode is centered around the metadata
associated with nodes. Org-mode provides facilities to create and modify metadata quickly
and efficiently. It also provides facilities to search, sort, and filter headlines, to display a
chronological summary of all headlines with date and time metadata, to display tabular
views of properties at selected headlines, to clock in and out of headlines defined as tasks,
and more.

The outline structure of documents defines a hierarchy of metadata. Tags and properties of
a node are inherited by its sub-nodes, and views of the document can be designed that sum
or average the properties inherited by a node. Code blocks live in this hierarchy of content
and metadata, all of which is accessible to and can be modified by the code blocks.

Special document content

The text following a headline in an Org-mode document can be structured to represent various
types of information, including vectors, matrices, source code, and arbitrary pieces of text.
Vector and matrix data are represented as tables where the columns are marked by vertical
bars and rows are optionally separated by dashed lines as shown in the following example.
Org-mode provides a number of commands for natural table navigation and editing. The
Emacs mathematical tool, calc Gillespie (1990), can be used to carry out computations in
tables. This feature is similar to spreadsheet applications, but Org-mode uses plain text to
represent both data and formulas.

| Name 1 | Name 2 | ... | Name N |

|--------+--------+-----+--------|

| Value | ... | ... | ... |

| ... | ... | ... | ... |

3.2. Code and data block extensions

Both code and data blocks are active in Org-mode documents. This means that code blocks
can be evaluated and their results written to the document as Org-mode constructs. These

Journal of Statistical Software 9

blocks can interact with both data and code blocks through a simple and powerful variable
passing system.

Syntax

Data blocks that are preceded by a line that begins with #+name:, and are followed by a name
unique within the document, can be accessed by code blocks. These can be tables, example
blocks, or links.

#+name: tabular-data

| 1 | 2 |

| 2 | 3 |

| 3 | 5 |

| 4 | 7 |

| 5 | 11 |

#+name: scalar-data

: 9

#+name: linked-data

[[http://external-data.org]]

Active code blocks are marked with a #+name: line, followed by a name unique within the
document. Such blocks can be augmented by header arguments that control the way Org-
mode handles evaluation and export. Any number of optional #+headers: lines may be used
to split header arguments across multiple lines.

#+name: <name>

#+headers: <header arguments>

#+begin_src <language> <header arguments>

<body>

#+end_src

Evaluation

When a code block is evaluated, the captured output appears by default in the Org-mode
buffer immediately following the code block, e.g.,

#+begin_src ruby

require 'date'

"This was last evaluated on #{Date.today}"

#+end_src

#+results:

: This was last evaluated on 2010-12-21

By default, a code block is evaluated in a dedicated system process that does not persist
after evaluation is complete. The :dir header argument can be used to specify the directory

10 A Computing Environment for Literate Programming and Reproducible Research

associated with the system process; if this is a directory on a remote machine then the code
executes on the remote machine and the results are automatically transferred across the
network to the local Emacs process.

In addition, evaluation of several languages may be performed in an interactive Emacs “ses-
sion”that persists indefinitely. For example, session-based evaluation of R code uses R sessions
provided by the Emacs Speaks Statistics (ESS) project (Rossini et al. 2004). Thus, both the
Org-mode buffer and the language-specific session buffers may be used to share functions and
data structures between blocks. In Org-mode, R code editing and session-based R evaluation
are implemented using ESS. Therefore Org-mode is not a replacement for ESS; rather Org-
mode provides a document authoring and project management environment within which to
embed traditional ESS usage.

Session-based evaluation during export to LATEX is similar to the approach taken by Sweave,
in which every code block is evaluated in the same persistent session. In Org-mode, the
:session header argument takes an optional name, making it possible to maintain multiple
distinct sessions. Thus, Org-mode builds upon and extends the functionality of Sweave.

Results

Org-mode returns the results of code block evaluation as strings, scalars, tables, or links. By
default, these are inserted in the Org-mode buffer as special plain text elements immediately
after the code block. In practice, the user has extensive control over how evaluation results
are handled.

At the most basic level, results can be collected from code blocks by value or as output. This
behavior is controlled by the :results header argument.

:results value Specifies that the code block should be treated as a function, and the results
should be equal to the value of the last expression in the block, like the return value of
a function. This is the default setting.

:results output Specifies that the results should be collected from STDOUT, as they are
written by the application responsible for code execution.

These differences are demonstrated by the following perl code, which yields different results
depending on the value of the :results header argument. Note that the first example uses
the default :results value and returns a scalar. When output is returned the same code
yields a string.

#+begin_src perl

$x = 8;

$x = $x + 1;

print "shouting into the dark!\n";

$x

#+end_src

#+results:

: 9

Journal of Statistical Software 11

#+begin_src perl :results output

$x = 8;

$x = $x + 1;

print "shouting into the dark!\n";

$x

#+end_src

#+results:

: shouting into the dark!

Org-mode also recognizes vector and matrix results and inserts them as tables into the buffer,
as demonstrated by the following two blocks of Haskell code.

#+begin_src haskell

[1, 2, 3, 4, 5]

#+end_src

#+results:

| 1 | 2 | 3 | 4 | 5 |

#+begin_src haskell

zip [1..] $ map (+1) [1, 2, 3]

#+end_src

#+results:

| 1 | 2 |

| 2 | 3 |

| 3 | 4 |

When the :file header argument is used, Org-mode saves the results to the named file and
places a link to it in the document. These links are handled by Org-mode in the usual ways;
they can be opened from within the document and included in exports with captions and
labels for cross-referencing.

Much more information about controlling the evaluation of code and the handling of code
results is available in the Org-mode documentation (Dominik 2010, Chapter 14).

Variables

Org-mode implements a simple system of passing arguments to code blocks. The :var header
argument takes a variable name and a value and assigns the value to the named variable inside
the code block. Values can be literal values, such as scalars or vectors of numbers or strings,
references to named data blocks, links, or references to named code blocks. In the latter case,
the value is the result of evaluating the referenced code block.

All values passed to variables are served by the Emacs Lisp interpreter that is at the core of
Emacs. Such values, whether read from literal inline data or tables, or the result of code block
execution, are translated into Emacs Lisp data structures. These structures are composed of
numbers or strings, and may be either scalars or matrices of arbitrary dimension (represented

12 A Computing Environment for Literate Programming and Reproducible Research

internally by Lisp lists of arbitrarily deep nesting). Each language supported by Org-mode
provides language-specific methods of translating to and from these simple Emacs Lisp data
structures.

This argument passing syntax makes possible complex chaining of the active elements of a
document. The results of a computation in one computer language can be used as input to a
block of code in another language, as shown in Section 4.

3.3. Export

Borrowing terms from the literate programming literature, Org-mode supports both weaving
– the exportation of a mixed code/prose document to a format suitable for reading by a
human – and tangling – the exportation of a mixed code/prose document to a pure code file
suitable for execution by a computer.

Weaving: Org-mode provides a sophisticated and full-featured system to export to a number
of target formats including HTML and LATEX, with support for pre-processing code
blocks as part of the export process. Using the :exports header argument, the code of
the code block, the results of executing the code block, both code and results, or neither
can be included in the export.

Tangling: Source code in an Org-mode document can be re-arranged on export. Often, the
order in which code needs to be presented to a computer differs from the order in which
the code may be best organized in a document. Literate programming systems like
noweb solve this problem using code-block references that are expanded as part of the
tangle process (Johnson and Johnson 2000). Org-mode implements the noweb reference
system using identical syntax and functionality.

3.4. Language support

The core functions of Org-mode related to source code are language agnostic. The tangling,
source code editing, and export features can be used for any computer language, even those
that are not specifically supported; only code evaluation and interaction with live sessions
require language-specific functions. Support for new languages can be added by defining a
small number of Emacs Lisp functions named according to language, following some simple
conventions. Currently, Org-mode has support for more than 30 languages. The ease with
which support for new languages can be added is evidenced by the fact that new language
support is increasingly implemented by Org-mode users.

3.5. Safety considerations

A reproducible research document includes code that can be evaluated. This carries the
potential of giving a malicious hacker direct access to the document reader’s computer. The
primary defense in this instance is for the reader to recognize malicious code and to choose
not to run it. This can be a difficult task in a reproducible research document written in a
single computer language, such as one written with Sweave, but the difficulty increases if the
document is written in several computer languages, one or more of which is not understood
by the reader.

Journal of Statistical Software 13

Org-mode has been designed with security measures to protect users from accidental or un-
informed execution of code. By default every execution of a code block requires explicit
confirmation from the user. (These confirmation requests can be stifled by customizing the
org-confirm-babel-evaluate variable.)

3.6. Where to find information about Org-mode

The official web site for Org-mode is maintained by one of us (CD) at http://orgmode.

org/. The site contains links to: the standard distribution distributed with Emacs, the
development version, and to alternative distributions packaged for a variety of operating
systems. Documentation is available as a book (Dominik 2010) and in a variety of formats
on-line. There is an on-line compact guide that can be downloaded as a 40 page introduction
to Org-mode, a reference card, a list of frequently asked questions, more than 4 dozen tutorials,
and a few screencasts. An active mailing list, emacs-orgmode@gnu.org, has a web interface
available at http://news.gmane.org/gmane.emacs.orgmode.

4. Examples

The following section demonstrates with short examples a number of common Org-mode
usage patterns. The first example highlights the flow of data between tables, code blocks of
multiple languages, and graphical figures. The second demonstrates the use of traditional
literate programming techniques. The final example demonstrates the use of Org-mode for
data analysis. It involves interaction with external data sources, automated creation and use
of local databases from within Org-mode documents for long-term persistence of potentially
large amounts of data, and the use of session-based evaluation for short term persistence of
smaller data sets.

4.1. Data flow: Pascal’s triangle

Pascal’s triangle is one name for a geometric arrangement of the binomial coefficients in
a triangle. The triangle has several interesting and useful mathematical properties. This
example constructs and manipulates a Pascal’s triangle to illustrate potential data flows in
Org-mode. Data are passed from a code block to an Org-mode table, from an Org-mode
table to a code block, from one code block to another, and from a code block to a graphic
figure. Finally, the example uses a property of the triangle to test the correctness of the
implementation, using Emacs Lisp code blocks embedded in a tabular view of the triangle to
test whether the property is satisfied.

Computing Pascal’s triangle

The following Python source block computes and returns the first five rows of Pascal’s triangle.
Org-mode inserts the value returned by the Python function into the Org-mode document as
a table named pascals-triangle. This table can be referenced by other code blocks.

#+name: pascals-triangle

#+begin_src python :var n=5 :exports none :return pascals_triangle(5)

def pascals_triangle(n):

if n == 0:

http://orgmode.org/
http://orgmode.org/
mailto:emacs-orgmode@gnu.org
http://news.gmane.org/gmane.emacs.orgmode

14 A Computing Environment for Literate Programming and Reproducible Research

return [[1]]

prev_triangle = pascals_triangle(n-1)

prev_row = prev_triangle[n-1]

this_row = map(sum, zip([0] + prev_row, prev_row + [0]))

return prev_triangle + [this_row]

return pascals_triangle(n)

#+end_src

#+results: pascals-triangle

| 1 | | | | | |

| 1 | 1 | | | | |

| 1 | 2 | 1 | | | |

| 1 | 3 | 3 | 1 | | |

| 1 | 4 | 6 | 4 | 1 | |

| 1 | 5 | 10 | 10 | 5 | 1 |

Drawing Pascal’s triangle

A more pleasing representation of Pascal’s triangle can created with the dot graphing language.
In the following code block the pascals-triangle table is passed to a block of Python code
through the variable pst. Org-mode transforms the table into a Python list, which the Python
block uses to construct strings of dot commands. The strings of dot commands are intended
for use by a subsequent code block, and not for inclusion into the exported document, as
indicated by the :exports none header argument.

#+name: pst-to-dot

#+begin_src python :var pst=pascals-triangle :results output :exports none

def node(i, j):

return '"%d_%d"' % (i+1, j+1)

def edge(i1, j1, i2, j2):

return '%s--%s;' % (node(i1, j1), node(i2,j2))

def node_with_edges(i, j):

line = '%s [label="%d"];' % (node(i, j), pst[i][j])

if j > 0:

line += edge(i-1, j-1, i, j)

if j < len(pst[i])-1:

line += edge(i-1, j, i, j)

return line

pst = [filter(None, row) for row in pst]

print '\n'.join([node_with_edges(i, j)

for i in range(len(pst))

for j in range(len(pst[i]))])

#+end_src

Journal of Statistical Software 15

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

Figure 2: Pascal’s triangle.

The output is passed directly into a block of dot code by assigning the name of the Python
code block to the variable pst-vals. Passing the results of one code block to another in
this way is called chaining ; Org-mode places no limit on the number of code blocks that can
be chained together. Evaluation propagates backwards through chained code blocks. In this
example, the :file header argument causes the code block to save the image resulting from
its evaluation into a file named pascals-triangle.pdf, and inserts a link to this image into
the Org-mode buffer. This link will then expand to include the contents of the image upon
export. It is also possible to view linked images from within an Org-mode buffer. The link is
shown both in Org-mode syntax and in exported form (Figure 2).

#+name: pst-to-fig

#+headers: :file pascals-triangle.pdf :cmdline -Tpdf

#+begin_src dot :var pst-vals=pst-to-dot :exports results

graph {

$pst-vals

}

#+end_src

#+ATTR_LaTeX width=.6\linewidth placement=[t!]

#+results: pst-to-fig

[[file:pascals-triangle.pdf]]

16 A Computing Environment for Literate Programming and Reproducible Research

Testing for correctness

Now that Pascal’s triangle has been constructed and a graphic representation prepared, it is
worth asking whether the triangle itself is correct. Because the sum of successive diagonals
of the triangle yields the Fibonacci series, it is possible to verify that the triangle is correct.
This can be done in many ways; here, it is done with a short block of Emacs Lisp code that
takes a row of numbers and a number n and returns pass if the sum of the numbers in the row
is equal to the nth Fibonacci number and returns fail otherwise. Calls to this code block
can be embedded into the tabular view of Pascal’s triangle using spreadsheet-style formulas.
When the spreadsheet is calculated, it returns pass for each of the five diagonals, confirming
that the implementation of Pascal’s triangle is correct.

#+name: pst-check

#+begin_src emacs-lisp :var row='(1 2 1) :var n=0 :exports code

(defun fib (n)

(if (<= n 2)

1

(+ (fib (- n 1)) (fib (- n 2)))))

(let ((row (if (listp row) row (list row))))

(if (= (fib n) (reduce #'+ row))

"pass"

"fail"))

#+end_src

#+results: pascals-triangle

| 0 | 1 | 2 | 3 | 4 | 5 |

|---+------+------+------+------+------|

| | pass | pass | pass | pass | pass |

| 1 | | | | | |

| 1 | 1 | | | | |

| 1 | 2 | 1 | | | |

| 1 | 3 | 3 | 1 | | |

| 1 | 4 | 6 | 4 | 1 | |

| 1 | 5 | 10 | 10 | 5 | 1 |

#+TBLFM: @2$2='(sbe pst-check (row @3$1) (n @1$3))

#+TBLFM: @2$3='(sbe pst-check (row @4$1..@4$2) (n @1$4))

#+TBLFM: @2$4='(sbe pst-check (row @5$1..@5$2) (n @1$5))

#+TBLFM: @2$4='(sbe pst-check (row @6$1..@6$2) (n @1$6))

#+TBLFM: @2$4='(sbe pst-check (row @7$1..@7$2) (n @1$7))

4.2. Literate programming: Cocktail sort

Cocktail sort (Rosetta Code 2010) is a variation of bubble sort in which the direction of array
traversal is alternated with each pass. As a result cocktail sort is more efficient than bubble
sort for arrays with small elements located at the end of the array.

The following literate programming example demonstrates an implementation of cocktail sort

Journal of Statistical Software 17

logically divided among three code blocks. The code blocks may be tangled to produce a single
source code file named cocktail.c which may then be compiled to generate a command line
executable.

The cocktail.c code block uses standard literate programming syntax. During tangling
code block references (i.e., <<block-name>>) are expanded to combine the three parts of the
program: the standard C header for input/output in block cocktail.c; the implementation
of the cocktail sort algorithm in block cocktail-sort; and the command-line mechanism to
accept input and return results in block main. The :noweb yes header argument enables the
expansion of noweb references and the :tangle cocktail.c header argument specifies the
name of the target source code file.

#+name: cocktail.c

#+begin_src C :noweb yes :tangle cocktail.c

#include <stdio.h>

<<cocktail-sort>>

<<main>>

#+end_src

A standard C language main method is used to collect command line arguments, call the
sorting algorithm on the supplied arguments, and print the results.

#+name: main

#+begin_src C

int main(int argc, char *argv[]) {

int lst[argc-1];

int i;

for(i=1;i<argc;i++)

lst[i-1] = atoi(argv[i]);

sort(lst, argc-1);

for(i=1;i<argc;i++)

printf("%d ", lst[i-1]);

printf("\n");

}

#+end_src

In the implementation of cocktail sort the array is repeatedly traversed in alternating direc-
tions, swapping out-of-order elements. The actual swapping of elements is handled by swap,
which sets the swapped flag when it swaps elements, but leaves the flag alone if the elements
are already in sorted order. This process continues until no more swaps have been made and
the array is sorted.

#+name: cocktail-sort

#+begin_src C :noweb yes

void sort(int *a, unsigned int l)

{

int swapped = 0;

int i;

18 A Computing Environment for Literate Programming and Reproducible Research

do {

for(i=0; i < (l-1); i++) {

<<swap>>

}

if (swapped == 0) break;

swapped = 0;

for(i= l - 2; i >= 0; i--) {

<<swap>>

}

} while(swapped > 0);

}

#+end_src

The swap method performs conditional swapping of adjacent array elements that are not in
sorted order. It sets the swapped flag if it performs a swap.

#+name: swap

#+begin_src C

if (a[i] > a[i+1]) {

int temp = a[i];

a[i] = a[i+1];

a[i+1] = temp;

swapped = 1;

}

#+end_src

In usual literate programming practice these parts can be tangled out to the file cocktail.c,
as indicated by the :tangle header argument of the cocktail.c code block. Alternately
the expanded code block can be compiled and evaluated from within the Org-mode file using
the following #+call line. The #+call: line syntax can be used to execute code blocks as
functions, specifying arguments and header arguments. The result of executing the remote
code block is inserted locally, as shown.

#+call: cocktail.c[:cmdline 8 7 6 3 2 4 78]()

#+results: cocktail.c[:cmdline 8 7 6 3 2 4 78]()

: 2

: 3

: 4

: 6

: 7

: 8

: 78

4.3. Reproducible research: Live climate data

By referencing external data, a work of Reproducible Research can remain up-to-date long
after its initial composition and publication. This example demonstrates the ability of code

Journal of Statistical Software 19

blocks in an Org-mode document to reference external data, to construct and use local stores
of data outside the document, and to maintain persistent state in external sessions, all in an
automated fashion. This allows each reader to recreate the document with up-to-date data,
and to populate a full local workspace with the data used in the document.

This example references climate change data from the US National Oceanic and Atmospheric
Administration (NOAA). The data set is much larger (hundreds of thousands of rows) than
the Pascal’s Triangle example above (Section 4.1). Accordingly, this example demonstrates
a different style of working with executable code blocks in Org-mode: instead of transferring
large amounts of data between blocks via Org-mode tables and Emacs Lisp, we use temporary
plain text files on disk and a dedicated external database. The example is implemented with
command-line tools commonly available on Unix-like systems, the sqlite database, and R.
These software tools were chosen to illustrate the use of popular data processing tools from
within Org-mode. It is worth pointing out, however, that at each step of the way alternatives
exist, one or more of which might simplify the example for any particular user.

The first two code blocks fetch and parse data from NOAA using standard command-line
tools.

#+name: raw-temps

#+headers: :results output :file raw-temps.csv

#+begin_src sh :exports none

cat v2.mean_adj.Z \\

|gunzip \

|perl -pe 's/-9999/ NA/g' \

|perl -pe 's/^([0-9]{3})([0-9]{8})([0-9])/$1 $2 $3 /' \

|perl -pe 's/ +/,/g'

#+end_src

#+name: country-codes

#+headers: :results output :file country-codes.csv

#+begin_src sh :exports none

cat v2.slp.country.codes \

|perl -pe 's/ *$//' \

|perl -pe 's/ +/,/'

#+end_src

Next, the output of the first two blocks is used to create a local database of the combined
climate data. In the case of very large data sets it may be preferable to use an external store
like a database rather than storing the data as plain text in the Org-mode buffer.

#+headers: :var raw-temps-file=raw-temps :var codes-file=country-codes

#+begin_src sqlite :db climate.sqlite :exports none :results silent

drop table if exists temps;

create table temps (country,station,year,jan,feb,

mar,apr,may,jun,jul,aug,sep,oct,nov,dec);

drop table if exists countries;

create table countries (code, name);

.separator ","

20 A Computing Environment for Literate Programming and Reproducible Research

.import $raw-temps-file temps

.import $codes-file countries

#+end_src

The R-init code block reads a subset of the data from the sqlite database and splits the data
into a separate time series for each weather station, in an ESS R session named *R-climate*.
The variables persist in the *R-climate* session after the code block exits, so they can be
manipulated by other R code blocks that use the *R-climate* session.

#+name: R-init

#+headers: :var dbname="climate.sqlite"

#+begin_src R :session *R-climate* :exports results :results silent

library("RSQLite")

con <- dbConnect(dbDriver("SQLite"), dbname=dbname)

query <- paste("SELECT temps.station, temps.year, temps.jul",

"FROM temps, countries",

"WHERE countries.code=temps.country",

"AND countries.name='UNITED STATES OF AMERICA'",

"ORDER BY year;")

temps <- dbGetQuery(con, query)

temps$year <- as.integer(temps$year)

temps$jul <- as.numeric(temps$jul)/10

temps.by.station <- split(temps, temps$station, drop=TRUE)

#+end_src

Finally the persistent variables in the *R-climate* session are used to generate figures from
the climate data. Here we fit a straight line to the July temperatures at each station which
has measurements spanning the period 1880-1980, and plot a histogram of the fitted slope
parameters. The figure is written to a PDF file for incorporation into the exported document
(Figure 3).

#+name: R-graph

#+headers: :results graphics :file temp-trends.pdf

#+begin_src R :session *R-climate* :exports results

include.station <- function(station)

station$year[1] <= 1880 && station$year[nrow(station)] >= 1980

fit.slope <- function(station)

with(station, coefficients(lm(jul ~ year))["year"])

included <- sapply(temps.by.station, include.station)

slopes <- sapply(temps.by.station[included], fit.slope)

hist(slopes)

#+end_src

#+results: R-graph

[[file:temp-trends.pdf]]

Journal of Statistical Software 21

Histogram of slopes

slopes

F
re

qu
en

cy

−0.03 −0.02 −0.01 0.00 0.01 0.02 0.03

0
10

20
30

40
50

60

Figure 3: Temperature trends between 1880 and the present at weather stations in the USA.

5. Discussion

Org-mode has several features that make it a potentially useful tool for a community of
researchers and developers. These include:

Open source: Org-mode is open source software. Its inner workings are publicly visible,
and its copyright is owned by the Free Software Foundation (Stallman 2003). This
ensures that Org-mode and any work deriving from Org-mode will always be fully open
to public scrutiny and modification. These are essential qualities for software tools used
for reproducible research. The transparency required for computational results to be
accepted by the scientific community can only be achieved when the workings of each
tool in the scientist’s tool chain is open to inspection and verification.

Widely available: Software used in reproducible research should be readily available and
easily installed by readers. Org-mode is freely available and, as of the next major
release of Emacs (version 24), Org-mode, including all of the facilities discussed herein,
will be included in the Emacs core. Emacs is one of the most widely ported software
applications, making possible the installation and use of Org-mode on a wide variety of
user systems.

Active community: The Org-mode community provides ready support to both novice users
with basic questions and to developers seeking to extend Org-mode. The development

22 A Computing Environment for Literate Programming and Reproducible Research

of Org-mode would not have been possible without the attention and effort of this
community.

General and extensible: A main design goal of Org-mode’s support for working with
source code was generality. As a result, it displays no reproducible research or lit-
erate programming bias, supports arbitrary programming languages, and exports to a
wide variety of file types, including ASCII, LATEX, HTML, and DocBook. Researchers
and software developers who adopt Org-mode can be confident that it will be able to
adapt to new languages or modes of development.

Integration: Org-mode leverages the sophisticated editing modes available in Emacs for
both natural and computational languages.

Literate programming and reproducible research systems are typically prescriptive and diffi-
cult to use, and this cost of adoption has kept them from spreading more widely through the
computing community. Org-mode enables users to progress gradually from simple text edit-
ing to sophisticated data processing and code evaluation, thereby lowering the adoption cost
of these techniques. By consolidating all code, data, and text of research and development
projects, Org-mode increases the likelihood of their retention. We believe that with its ease
of adoption, familiar environment, and universal applicability across programming languages,
Org-mode represents a qualitative advance in literate programming and reproducible research
tools.

Org-mode has the potential to advance the expectation that all computational projects in-
clude both code and prose; the arguments that Knuth advanced for literate programming are
no less valid today, and the pervasive use of computational tools in scientific research makes
reproducible research practices essential to the peer review process. Org-mode provides re-
searchers and software developers with a powerful tool to communicate their work and make
it more accessible.

6. Acknowledgments

The authors gratefully acknowledge the Org-mode community whose ideas and feedback both
guided and motivated this work. Additionally, Eric Schulte would like to acknowledge Counsyl
for its support of this development.

References

Baier T, Neuwirth E (2007). “Excel :: COM :: R.” Computational Statistics, 22(1), 91–108.

Buckheit JB, Donoho DL (1995). “WaveLab and Reproducible Research.” In A Antoniadis,
G Oppenheim (eds.), Wavelets and Statistics, volume 103 of Lecture Notes in Statistics,
pp. 55–81. Springer-Verlag, New York.

Dominik C (2010). The Org-Mode 7 Reference Manual: Organize Your Life with GNU
Emacs. Network Theory, UK. With contributions by David O‘Toole, Bastien Guerry,
Philip Rooke, Dan Davison, Eric Schulte, and Thomas Dye.

Journal of Statistical Software 23

Flatt M, Barzilay E, Findler RB (2009). “Scribble: Closing the Book on ad hoc Documen-
tation Tools.” In International Conference on Functional Programming, pp. 109–120.

Gentleman R, Temple Lang D (2004). “Statistical Analyses and Reproducible Research.”
Technical report, Bioconductor Project. URL http://www.bepress.com/bioconductor/

paper2.

Gillespie D (1990). URL http://www.gnu.org/software/emacs/calc.html.

Javadoc Team (2003). Javadoc – The Java API Documentation Generator. Oracle. URL
http://download.oracle.com/javase/1.4.2/docs/tooldocs/solaris/javadoc.html.

Johnson A, Johnson B (2000). “Literate Programming Using Noweb.” Linux Journal, p. 1.
ISSN 1075-3583.

Jones SP (2003). Haskell 98 Language and Libraries: The Revised Report. Journal of Func-
tional Programming (Special Issue). Cambridge University Press, Cambridge.

Knuth DE (1984). “Literate Programming.” The Computer Journal, 27, 97–111.

Knuth DE, Levy S (1994). The CWEB System of Structured Documentation. Addison-
Wesley, Reading.

Kuhn M (2006). “Sweave and the Open Document Format – The odfWeave Package.” R
News, 6(4), 2–8. URL http://CRAN.R-project.org/doc/Rnews/.

Leisch F (2002). “Dynamic Generation of Statistical Reports Using Literate Data Analysis.”
In W Härdle, B Rönz (eds.), COMPSTAT 2002 – Proceedings in Computational Statistics,
pp. 575–580. Physica-Verlag, Heidelberg.

Lenth RV (2009). StatWeave User’s Manual. University of Iowa. Accessed 2011-05-22, URL
http://www.stat.uiowa.edu/~rlenth/StatWeave/StatWeave-manual.pdf.

Lenth RV, Højsgaard S (2007). “SASweave: Literate Programming Using SAS.” Journal of
Statistical Software, 19(8), 1–20. URL http://www.jstatsoft.org/v19/i08/.

Lewis B, LaLiberte D, Stallman R, The GNU Manual Group (2010). GNU Emacs Lisp Ref-
erence Manual. Free Software Foundation, Boston, 3rd edition.

R Development Core Team (2011). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:

//www.R-project.org/.

Rosetta Code (2010). URL http://rosettacode.org/.

Rossini AJ, Heiberger RM, Sparapani RA, Maechler M, Hornik K (2004). “Emacs Speaks
Statistics: A Multiplatform, Multipackage Development Environment for Statistical Anal-
ysis.” Journal of Computational and Graphical Statistics, 13(1), 247–261.

Stallman R (2003). “Free Software Foundation (FSF).” In Encyclopedia of Computer Science,
pp. 732–733. John Wiley & Sons, Chichester.

http://www.bepress.com/bioconductor/paper2
http://www.bepress.com/bioconductor/paper2
http://www.gnu.org/software/emacs/calc.html
http://download.oracle.com/javase/1.4.2/docs/tooldocs/solaris/javadoc.html
http://CRAN.R-project.org/doc/Rnews/
http://www.stat.uiowa.edu/~rlenth/StatWeave/StatWeave-manual.pdf
http://www.jstatsoft.org/v19/i08/
http://www.R-project.org/
http://www.R-project.org/
http://rosettacode.org/

24 A Computing Environment for Literate Programming and Reproducible Research

Stallman RM (1981). “Emacs the Extensible, Customizable Self-Documenting Display Editor.”
ACM SIGPLAN Notices, 16(6), 147–156.

Wall L, Christiansen T, Orwant J (2000). Programming Perl. O’Reilly, Cambridge.

Affiliation:

Eric Schulte
Department of Computer Science
University of New Mexico
1 University of New Mexico
Albuquerque, NM 87131, United States of America
E-mail: eschulte@cs.unm.edu
URL: http://cs.unm.edu/~eschulte/

Dan Davison
Counsyl and University of Oxford
180 Kimball Way
South San Francisco, CA 94080, United States of America

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume 46, Issue 3 Submitted: 2010-12-22
January 2012 Accepted: 2011-10-03

mailto:eschulte@cs.unm.edu
http://cs.unm.edu/~eschulte/
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Background
	Literate programming
	Reproducible research
	Existing tools

	Design of Org-mode
	Structure and content of Org-mode documents
	Document structure
	Metadata on nodes
	Special document content

	Code and data block extensions
	Syntax
	Evaluation
	Results
	Variables

	Export
	Language support
	Safety considerations
	Where to find information about Org-mode

	Examples
	Data flow: Pascal's triangle
	Computing Pascal's triangle
	Drawing Pascal's triangle
	Testing for correctness

	Literate programming: Cocktail sort
	Reproducible research: Live climate data

	Discussion
	Acknowledgments

