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Outline

What is this, and why should I care?

How do we implement this?

How good are these?

There’s this one thing I don’t get…
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int add () {
return 2 + 3;
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We can make the function more flexible (and thus, do more work)
by parameterizing its arguments.

That way, the user can decide
what numbers it gets to add instead of us:
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return x + y;

}

We call this argument parameterization, and it is a very useful
thing to have (in fact, programming would be pretty pointless
without it). But then, what if our user wants to add two floats
instead?
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Consider this (partial) definition of a (singly) linked list:

struct node {
int data;
node* next;

};
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node* first;

};

list* list_new ();

What if our user wanted a list of floats instead? Does it really
matter for list operations what kind of data we’re storing?
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The problem

These are both examples of type restrictions.

Normally, these are a
good thing, as we wouldn’t want something like this to compile:

/* this won't compile */
sqrt("10");
/* but will *run* in JavaScript, sigh... */

However, in our two examples, type restrictions get in our way.
Wouldn’t it be nice if we could parameterize over types as well?
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What would this look like?

struct node <T> {
T data;
node <T>* next;

};

struct list <T> {
node <T>* first;

};

list <T>* list_new ();

So now, if the user wants a list of ints, they will write
list <int>* foo = list_new();.
If they prefer a list of floats, they can write
list <float>* bar = list_new();.



What would this look like?

struct node <T> {
T data;
node <T>* next;

};

struct list <T> {
node <T>* first;

};

list <T>* list_new ();

So now, if the user wants a list of ints, they will write
list <int>* foo = list_new();.
If they prefer a list of floats, they can write
list <float>* bar = list_new();.



What would this look like?

struct node <T> {
T data;
node <T>* next;

};

struct list <T> {
node <T>* first;

};

list <T>* list_new ();

So now, if the user wants a list of ints, they will write
list <int>* foo = list_new();.
If they prefer a list of floats, they can write
list <float>* bar = list_new();.



Why do we care?

I Write the code for a list once, and it will be able to store
anything a user could want.

I Still have protection against things like this:
list <int>* foo = list_new();
/* won't compile */
list_insert(foo, "bar");

I Can write very useful things:
struct pair <T,U> {
T left;
U right;

}; /* a pair of anything! */

In short: Type parameterization makes our code more flexible,
more concise, and generally better.
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Some terminology

A type parameter is a placeholder type.

When we mention it in a
definition (like a structure or a function), we call this a declaration:

struct pair <T,U> { /* declaration */
T left;
U right;

}

Later, when we actually use the structure of function, we have to
provide an actual type for the type parameter (instantiation):

pair <float, int> foo; /* instantiation */
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Homogenous translation

I Type parameter declarations (and anything using them) get
promoted to some specific type and compiled on the spot.

I Type parameter instantiations are first checked for
consistency; if no problems are found, their types are simply
ignored where appropriate.

Thus, at runtime, a pair <int, float> is no different to a
pair <float, char*> — might as well be pair <wtf, wtf> for
all we care.
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I Type parameter declarations (and anything using them) get
turned into a ‘template’, with gaps where the type parameters
should go. Nothing gets compiled yet.

I When the compiler sees a type parameter instantiation, it
copy-pastes the types into the template, compiles the result,
and uses the result for all identical future cases.

This, when the compiler sees pair<int, float> for the first
time, it will compile a special version for just those types; if it later
sees pair<float, char*>, it’ll compile a special version for those
types; and so on.
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Advantages
I Simple:

I Compiles faster
I Simpler compiler logic

I Smaller binaries:
I Less space required
I Can use instruction cache

effectively

Disadvantages
I No type information at

runtime
I Indirection:

I Overhead for a pointer to
the data

I Extra pointer chasing
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I No single answer — both have various tradeoffs in general
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I Let’s see some examples!

We will have rating indicators:

‘This is good (or not a problem)!’ ‘This is bad (or a real problem)!’
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Conclusion

I Type parametrization is something we want (and language
designers have obliged)

I There’s more than one way to do it, and it must be viewed in
the context of the language they inhabit

I More work is still being done on this!
I Important to understand how something works (don’t just

blindly follow hype and buzzwords)

“In software development, abstraction is often used as a
synonym for indirection. Not so in mathematics.”

Susan Potter (@SusanPotter)
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Question time!


	What is this, and why should I care?
	How do we implement this?
	How good are these?
	There's this one thing I don't get…

