Dependency graphs
Or: why scheduling is hard

Koz Ross

19th October, 2017

[AUT CS(]

AUT Computer Science Club

ShEeorS

<057



Outline

Introduction

Preliminaries

Dependency graphs

Working with dependency graphs

Questions



A simple recipe: tomato scrambled eggs



A simple recipe: tomato scrambled eggs

Chop tomatoes into small pieces.

Break the eggs into a bowl.

Beat the eggs.

Mix the tomatoes into the eggs.

Heat up a frying pan to medium heat.

Dump the egg-and-tomato mixture into the frying pan.

Cook the mixture until desired consistency.

© N g b=

Season with salt and pepper.



A simple recipe: tomato scrambled eggs

Chop tomatoes into small pieces.

Break the eggs into a bowl.

Beat the eggs.

Mix the tomatoes into the eggs.

Heat up a frying pan to medium heat.

Dump the egg-and-tomato mixture into the frying pan.

Cook the mixture until desired consistency.

© N g b=

Season with salt and pepper.

» Some tasks can be done simultaneously (e.g. 1 and 3)



A simple recipe: tomato scrambled eggs

© N g b=

Chop tomatoes into small pieces.

Break the eggs into a bowl.

Beat the eggs.

Mix the tomatoes into the eggs.

Heat up a frying pan to medium heat.

Dump the egg-and-tomato mixture into the frying pan.
Cook the mixture until desired consistency.

Season with salt and pepper.

Some tasks can be done simultaneously (e.g. 1 and 3)

Other tasks must be done in a certain order (e.g. 2 must
happen before 3)



A simple recipe: tomato scrambled eggs

© N g b=

Chop tomatoes into small pieces.

Break the eggs into a bowl.

Beat the eggs.

Mix the tomatoes into the eggs.

Heat up a frying pan to medium heat.

Dump the egg-and-tomato mixture into the frying pan.
Cook the mixture until desired consistency.

Season with salt and pepper.

Some tasks can be done simultaneously (e.g. 1 and 3)

Other tasks must be done in a certain order (e.g. 2 must
happen before 3)

These together determine how (and how fast!) we can finish
all the tasks



Why does it matter?

» Knowing how many tasks (and which ones) can be done
simultaneously helps us finish faster



Why does it matter?

» Knowing how many tasks (and which ones) can be done
simultaneously helps us finish faster
» Knowing how many additional processes we can benefit from

(and how long they'll spend idle) lets us use our resources
more efficiently



Why does it matter?

» Knowing how many tasks (and which ones) can be done
simultaneously helps us finish faster

» Knowing how many additional processes we can benefit from
(and how long they'll spend idle) lets us use our resources
more efficiently

» Finding the critical path gives us a hard bound on how quickly
we can finish at all



Why does it matter?

» Knowing how many tasks (and which ones) can be done
simultaneously helps us finish faster

» Knowing how many additional processes we can benefit from
(and how long they'll spend idle) lets us use our resources
more efficiently

» Finding the critical path gives us a hard bound on how quickly
we can finish at all

» Especially important for computers (parallel processing is how
we get all of our speed gains these days)



Why does it matter?

» Knowing how many tasks (and which ones) can be done
simultaneously helps us finish faster

» Knowing how many additional processes we can benefit from
(and how long they'll spend idle) lets us use our resources
more efficiently

» Finding the critical path gives us a hard bound on how quickly
we can finish at all

» Especially important for computers (parallel processing is how
we get all of our speed gains these days)

> A special (and limited) case of scheduling (this acts as a
‘difficulty floor" for the more general version)



The basics

Let N={0,1,2,...} be the set of natural numbers. We use
Ny ={xeN|z <k} forkeN



The basics

Let N={0,1,2,...} be the set of natural numbers. We use
Ny = {x € N| z < k} for k € N. For example:

» Ny = {} (there are no natural numbers less than 0)



The basics

Let N={0,1,2,...} be the set of natural numbers. We use
Ny = {x € N| z < k} for k € N. For example:

» Ny = {} (there are no natural numbers less than 0)
> Ni = {0}



The basics

Let N={0,1,2,...} be the set of natural numbers. We use
Ny = {x € N| z < k} for k € N. For example:

» Ny = {} (there are no natural numbers less than 0)

> Ni = {0}

» N5 ={0,1,2,3,4}



The basics

Let N={0,1,2,...} be the set of natural numbers. We use
Ny = {x € N| z < k} for k € N. For example:

» Ny = {} (there are no natural numbers less than 0)
> Ni = {0}
> Ns = {0,1,2,3,4}

Definition
Let A be a set. The powerset of A is the set

P(A) = {x |2 C A}



The basics

Let N={0,1,2,...} be the set of natural numbers. We use
Ny = {x € N| z < k} for k € N. For example:

» Ny = {} (there are no natural numbers less than 0)
> Ni = {0}
> Ns = {0,1,2,3,4}

Definition
Let A be a set. The powerset of A is the set

P(A) = {x |2 C A}

For example,

P(N3) = {{},{0}, {1}, {2},{0,1},{0,2},{1,2},{0, 1,2} }.



Task list

Definition
A k-task list is a function T} : Ny — P(Ng). We call each t € Ny,
a task of Ty,.



Task list

Definition
A k-task list is a function T} : Ny — P(Ng). We call each t € Ny,
a task of Ty,.

Essentially, we number all of the tasks sequentially, and associate
them with those tasks that need to be done immediately before

them.



Task list

Definition
A k-task list is a function T} : Ny — P(Ng). We call each t € Ny,
a task of Ty,.
Essentially, we number all of the tasks sequentially, and associate
them with those tasks that need to be done immediately before
them. For example, if our tasks were:

> Get up (numbered 0)

» Take a dump (numbered 1)

» Brush teeth (numbered 2)



Task list

Definition
A k-task list is a function T} : Ny — P(Ng). We call each t € Ny,
a task of Ty,.
Essentially, we number all of the tasks sequentially, and associate
them with those tasks that need to be done immediately before
them. For example, if our tasks were:

> Get up (numbered 0)

» Take a dump (numbered 1)

» Brush teeth (numbered 2)

A possible 3-task list for that would be {(0,{}), (1,{0}), (2,{0})}.






Dependencies

Throughout, let T}, be a k-task list, and let z,y € Ng.



Dependencies

Throughout, let T}, be a k-task list, and let z,y € Ng.

Definition
x is a (direct) dependency of y in Ty, if © € Ti(y).



Dependencies

Throughout, let T}, be a k-task list, and let z,y € Ng.

Definition

x is a (direct) dependency of y in Ty, if © € Ti(y).

Definition

Let do,d1,...,d, € Ng. (do,dy,...,d,) is a dependency chain in
Ty, if for any 0 < i < n, d; is a dependency of d; 1 in T}.



Dependencies

Throughout, let T}, be a k-task list, and let z,y € Ng.

Definition
x is a (direct) dependency of y in Ty, if © € Ti(y).

Definition
Let do,d1,...,d, € Ng. (do,dy,...,d,) is a dependency chain in
Ty, if for any 0 < i < n, d; is a dependency of d; 1 in T}.

Definition
x Is a transitive dependency of y in Ty, if there exists a dependency
chain in T}, whose first element is = and whose last element is y.



Dependencies

Throughout, let T}, be a k-task list, and let z,y € Ng.

Definition
x is a (direct) dependency of y in Ty, if © € Ti(y).

Definition
Let do,d1,...,d, € Ng. (do,dy,...,d,) is a dependency chain in
Ty, if for any 0 < i < n, d; is a dependency of d; 1 in T}.

Definition
x Is a transitive dependency of y in Ty, if there exists a dependency
chain in T}, whose first element is = and whose last element is y.

Definition
We have a cyclic dependency between x and y in Ty, if x is a
transitive dependency of y and y is a transitive dependency of .



Dependencies

Throughout, let T}, be a k-task list, and let z,y € Ng.

Definition
x is a (direct) dependency of y in Ty, if © € Ti(y).

Definition
Let do,d1,...,d, € Ng. (do,dy,...,d,) is a dependency chain in
Ty, if for any 0 < i < n, d; is a dependency of d; 1 in T}.

Definition
x Is a transitive dependency of y in Ty, if there exists a dependency
chain in T}, whose first element is = and whose last element is y.

Definition
We have a cyclic dependency between x and y in Ty, if x is a
transitive dependency of y and y is a transitive dependency of .

Where clear, we will drop references to T}, from now on.



More on task lists

Observation
A k-task list with a cyclic dependency is impossible to complete.



More on task lists

Observation
A k-task list with a cyclic dependency is impossible to complete.

Let T}, be a k-task list without any cyclic dependencies.



More on task lists

Observation
A k-task list with a cyclic dependency is impossible to complete.

Let T}, be a k-task list without any cyclic dependencies.
Definition
The minimum parallel width of T}, is the size of the smallest set of

tasks where no two members are connected by a dependency
chain.



More on task lists

Observation
A k-task list with a cyclic dependency is impossible to complete.

Let T}, be a k-task list without any cyclic dependencies.

Definition

The minimum parallel width of T}, is the size of the smallest set of
tasks where no two members are connected by a dependency
chain. We define the maximum parallel width of T}, analogously.



More on task lists

Observation
A k-task list with a cyclic dependency is impossible to complete.

Let T}, be a k-task list without any cyclic dependencies.
Definition
The minimum parallel width of T}, is the size of the smallest set of

tasks where no two members are connected by a dependency
chain. We define the maximum parallel width of T}, analogously.

Definition
The critical path of T}, is the longest dependency chain.



What we want to know about task lists



What we want to know about task lists

1. Are there any cyclic dependencies?



What we want to know about task lists

1. Are there any cyclic dependencies?

2. What are the minimum and maximum parallel widths?



What we want to know about task lists

1. Are there any cyclic dependencies?
2. What are the minimum and maximum parallel widths?
3. What is the length of the critical path?



What we want to know about task lists

1. Are there any cyclic dependencies?

2. What are the minimum and maximum parallel widths?
3. What is the length of the critical path?
4

. How can we compute all of these things?



What we want to know about task lists

SANESR .

Are there any cyclic dependencies?

What are the minimum and maximum parallel widths?
What is the length of the critical path?

How can we compute all of these things?

How efficiently can we compute all of these things?



Graphs

Definition
A (directed) graph G = (V, E) is a tuple, where V is a set of
vertices, and E C V x V is a set of edges.



Graphs

Definition
A (directed) graph G = (V, E) is a tuple, where V is a set of
vertices, and E C V x V is a set of edges.

Our graphs will always have V' = Nj.



Graphs

Definition
A (directed) graph G = (V, E) is a tuple, where V is a set of
vertices, and E C V x V is a set of edges.

Our graphs will always have V' = Nj.

CO D
D
<>

This is a visual representation of the graph

(N47 {(07 1)7 (Oa 2)’ (1’ 2)})



Paths and cycles

Definition

A path in a graph G = (V, E) is a tuple (po,p1,...,Pn), such that:
» Each p; € V; and
» For any 0 < i <mn, (pij,pi+1) € E.



Paths and cycles

Definition

A path in a graph G = (V, E) is a tuple (po,p1,...,Pn), such that:
» Each p; € V; and
» For any 0 < i <mn, (pij,pi+1) € E.

Definition
A cycle is a path whose first and last element are equal.



Paths and cycles

Definition

A path in a graph G = (V, E) is a tuple (po,p1,...,Pn), such that:
» Each p; € V; and
» For any 0 < i <mn, (pij,pi+1) € E.

Definition
A cycle is a path whose first and last element are equal. We say a
graph is cyclic if it contains any cycles, and acyclic otherwise.



Sources and neighbourhoods

Definition
For any edge e = (a,b), we call a the head of e, and b the tail of e.



Sources and neighbourhoods

Definition
For any edge e = (a,b), we call a the head of e, and b the tail of e.

Definition
A vertex u is a source if it is not the tail of any edge.



Sources and neighbourhoods

Definition
For any edge e = (a,b), we call a the head of e, and b the tail of e.

Definition
A vertex u is a source if it is not the tail of any edge. A vertex u is
a sink if it is not the head of any edge.



Sources and neighbourhoods

Definition
For any edge e = (a,b), we call a the head of e, and b the tail of e.

Definition
A vertex u is a source if it is not the tail of any edge. A vertex u is
a sink if it is not the head of any edge.

Definition
Let G = (V, E) be a graph and u € V. The neighbourhood of u
N(u)={veV](uv) e E}.



Connecting k-task lists and graphs

Let T}, be a k-task list. We can represent it as a graph, which we
call the dependency graph of Tj,.



Connecting k-task lists and graphs

Let T}, be a k-task list. We can represent it as a graph, which we
call the dependency graph of T},. More specifically:



Connecting k-task lists and graphs

Let T}, be a k-task list. We can represent it as a graph, which we
call the dependency graph of T},. More specifically:

Definition

The dependency graph of Ty, is D(T},) = (V, E), such that:
» V =Ng; and
» E={(u,v) € N? | u€ Ty(v)}



Connecting k-task lists and graphs

Let T}, be a k-task list. We can represent it as a graph, which we
call the dependency graph of T},. More specifically:

Definition
The dependency graph of Ty, is D(T},) = (V, E), such that:

» V =Ng; and
» E={(u,v) € N? | u€ Ty(v)}

Any k-task list has a unique dependency graph.



Connecting k-task lists and graphs

Let T}, be a k-task list. We can represent it as a graph, which we
call the dependency graph of T},. More specifically:
Definition
The dependency graph of Ty, is D(T},) = (V, E), such that:
» V =Ng; and
» E={(u,v) € N? | u€ Ty(v)}

Any k-task list has a unique dependency graph. This means that
we can solve problems for k-task lists by solving (related) problems
on their dependency graphs.



Representing dependency graphs

To compute with dependency graphs, we need a way to store them
on the computer:



Representing dependency graphs

To compute with dependency graphs, we need a way to store them
on the computer:

Definition
Let G = (Ng, E) be a graph. The adjacency matrix of G is a k X k
matrix M (G), such that

1 if (u,v) €FE

0 otherwise

M(G)[ul[v] = {



Representing dependency graphs

To compute with dependency graphs, we need a way to store them
on the computer:

Definition
Let G = (Ng, E) be a graph. The adjacency matrix of G is a k X k
matrix M (G), such that

1 if (u,v) €FE

0 otherwise

M(G)[ul[v] = {

Consider the previous example graph and its adjacency matrix:



Representing dependency graphs
To compute with dependency graphs, we need a way to store them
on the computer:
Definition
Let G = (Ng, E) be a graph. The adjacency matrix of G is a k X k
matrix M (G), such that

1 if (u,v) €FE

0 otherwise

M(G)u]fv] = {
Consider the previous example graph and its adjacency matrix:

GO D

)

o O O O
o O O
OO =
o O O O



Testing for cyclic dependencies

Observation
If a k-task set has a cyclic dependency, its dependency graph will
be cyclic.



Testing for cyclic dependencies

Observation

If a k-task set has a cyclic dependency, its dependency graph will
be cyclic.

Lemma
If a graph has no source vertices, then it is cyclic.



Testing for cyclic dependencies

Observation

If a k-task set has a cyclic dependency, its dependency graph will
be cyclic.

Lemma
If a graph has no source vertices, then it is cyclic.

Thus, we need a way of determining what our source vertices are.



Finding source vertices

We can check what the source vertices of a graph G are as follows:



Finding source vertices

We can check what the source vertices of a graph G are as follows:

1. Initially, assume all vertices are sources.



Finding source vertices

We can check what the source vertices of a graph G are as follows:

1. Initially, assume all vertices are sources.

2. For each row of M (G) and each column, if the ith column’s
entry in that row is 1, then mark 4 as not being a source.



Finding source vertices

We can check what the source vertices of a graph G are as follows:

1. Initially, assume all vertices are sources.

2. For each row of M (G) and each column, if the ith column’s
entry in that row is 1, then mark 4 as not being a source.

3. Return the set of all unmarked vertices.



Finding source vertices

We can check what the source vertices of a graph G are as follows:

1. Initially, assume all vertices are sources.

2. For each row of M (G) and each column, if the ith column’s
entry in that row is 1, then mark 4 as not being a source.

3. Return the set of all unmarked vertices.

If G has n vertices, this procedure takes O(n?) time, as we
potentially have to inspect every cell of the adjacency matrix.



Finding source vertices

We can check what the source vertices of a graph G are as follows:

1. Initially, assume all vertices are sources.

2. For each row of M (G) and each column, if the ith column’s
entry in that row is 1, then mark 4 as not being a source.

3. Return the set of all unmarked vertices.

If G has n vertices, this procedure takes O(n?) time, as we
potentially have to inspect every cell of the adjacency matrix.

However, this is not a complete test — a graph with source
vertices may still be cyclic!



A more thorough cycle test

Observation

» A source cannot be part of any cycle

> A cycle must eventually re-visit at least one node



A more thorough cycle test

Observation

» A source cannot be part of any cycle

> A cycle must eventually re-visit at least one node

We can use this to design a more thorough method:



A more thorough cycle test

Observation

» A source cannot be part of any cycle

> A cycle must eventually re-visit at least one node

We can use this to design a more thorough method:

1. Let S =0 and C be the set of sources



A more thorough cycle test

Observation

» A source cannot be part of any cycle

> A cycle must eventually re-visit at least one node

We can use this to design a more thorough method:

1. Let S =0 and C be the set of sources
2. Repeat until C' is empty:



A more thorough cycle test

Observation

» A source cannot be part of any cycle

> A cycle must eventually re-visit at least one node

We can use this to design a more thorough method:

1. Let S =0 and C be the set of sources
2. Repeat until C' is empty:

21 LetC'=10
2.2 For every u € C-



A more thorough cycle test

Observation

» A source cannot be part of any cycle

> A cycle must eventually re-visit at least one node

We can use this to design a more thorough method:

1. Let S =0 and C be the set of sources
2. Repeat until C' is empty:

21 LetC'=10
2.2 For every u € C-

221 Adduto S



A more thorough cycle test

Observation

» A source cannot be part of any cycle
> A cycle must eventually re-visit at least one node

We can use this to design a more thorough method:

1. Let S =0 and C be the set of sources

2. Repeat until C' is empty:
21 LetC'=10
2.2 For every u € C-

2.2.1 Add u to S
2.2.2 If any v € N(u) is in S, declare we've found a cycle and stop



A more thorough cycle test

Observation

» A source cannot be part of any cycle
> A cycle must eventually re-visit at least one node

We can use this to design a more thorough method:

1. Let S =0 and C be the set of sources

2. Repeat until C' is empty:
21 LetC'=10
2.2 For every u € C-

2.2.1 Add u to S
2.2.2 If any v € N(u) is in S, declare we've found a cycle and stop

2.2.3 Otherwise, add every v € N(u) to C’



A more thorough cycle test

Observation

» A source cannot be part of any cycle
> A cycle must eventually re-visit at least one node

We can use this to design a more thorough method:

1. Let S =0 and C be the set of sources

2. Repeat until C' is empty:
21 LetC'=10
2.2 For every u € C-

2.2.1 Add u to S
2.2.2 If any v € N(u) is in S, declare we've found a cycle and stop

2.2.3 Otherwise, add every v € N(u) to C’
23 SetC=C"

3. Declare that there are no cycles and stop.

This process is also O(n?) — we have to make as many checks as
there are edges, and there could be as many as n?.



Finding parallel widths

When we search for cycles, at the start of each ‘outer’ loop body,
C will contain a set of vertices which are not connected by any
dependency chain.



Finding parallel widths

When we search for cycles, at the start of each ‘outer’ loop body,
C will contain a set of vertices which are not connected by any
dependency chain. Thus, the algorithm ‘slices’ the dependency
graph into parallelizable chunks.



Finding parallel widths

When we search for cycles, at the start of each ‘outer’ loop body,
C will contain a set of vertices which are not connected by any
dependency chain. Thus, the algorithm ‘slices’ the dependency
graph into parallelizable chunks. The size of the biggest chunk will
be the maximum parallel width; similarly, the size of the smallest
will be the minimum parallel width.



Finding parallel widths

When we search for cycles, at the start of each ‘outer’ loop body,
C will contain a set of vertices which are not connected by any
dependency chain. Thus, the algorithm ‘slices’ the dependency
graph into parallelizable chunks. The size of the biggest chunk will
be the maximum parallel width; similarly, the size of the smallest
will be the minimum parallel width.

We can determine both by simply setting each of these values as
equal to the size of the set of sources, then updating it as we go
through.



Finding parallel widths

When we search for cycles, at the start of each ‘outer’ loop body,
C will contain a set of vertices which are not connected by any
dependency chain. Thus, the algorithm ‘slices’ the dependency
graph into parallelizable chunks. The size of the biggest chunk will
be the maximum parallel width; similarly, the size of the smallest
will be the minimum parallel width.

We can determine both by simply setting each of these values as
equal to the size of the set of sources, then updating it as we go
through. If we find a cycle, these are both 0 (as we can't do
anything).



Finding parallel widths

When we search for cycles, at the start of each ‘outer’ loop body,
C will contain a set of vertices which are not connected by any
dependency chain. Thus, the algorithm ‘slices’ the dependency
graph into parallelizable chunks. The size of the biggest chunk will
be the maximum parallel width; similarly, the size of the smallest
will be the minimum parallel width.

We can determine both by simply setting each of these values as
equal to the size of the set of sources, then updating it as we go
through. If we find a cycle, these are both 0 (as we can't do
anything).

Thus, we can find both the minimum and maximum parallel width
in O(n?) time as well.



Finding the length of the critical path

The number of times that the outer loop runs must be the length
of the critical path — otherwise, we would have to do at least one
more iteration before we exhaust every vertex.



Finding the length of the critical path

The number of times that the outer loop runs must be the length
of the critical path — otherwise, we would have to do at least one
more iteration before we exhaust every vertex. Thus, we can just
count the iterations, and report them at the end.



Finding the length of the critical path

The number of times that the outer loop runs must be the length
of the critical path — otherwise, we would have to do at least one
more iteration before we exhaust every vertex. Thus, we can just
count the iterations, and report them at the end.

If we have a cycle, the length of the critical path is co (as we can't
ever actually finish the tasks).



Finding the length of the critical path

The number of times that the outer loop runs must be the length
of the critical path — otherwise, we would have to do at least one
more iteration before we exhaust every vertex. Thus, we can just
count the iterations, and report them at the end.

If we have a cycle, the length of the critical path is co (as we can't
ever actually finish the tasks).

Thus, we can find the length of the critical path in O(n?) time as
well!



Finding the length of the critical path

The number of times that the outer loop runs must be the length
of the critical path — otherwise, we would have to do at least one
more iteration before we exhaust every vertex. Thus, we can just
count the iterations, and report them at the end.

If we have a cycle, the length of the critical path is co (as we can't
ever actually finish the tasks).

Thus, we can find the length of the critical path in O(n?) time as
well! We can potentially combine all of these together to avoid
traversing the graph more than once.



What does this all mean?

» Solving all of these problems requires quadratic time and
space, which means that it's inherently not easy



What does this all mean?

» Solving all of these problems requires quadratic time and
space, which means that it's inherently not easy

» It is possible to be (asymptotically) more space-efficient and
(practically) more time-efficient, but doesn’t happen often



What does this all mean?

» Solving all of these problems requires quadratic time and
space, which means that it's inherently not easy

» It is possible to be (asymptotically) more space-efficient and
(practically) more time-efficient, but doesn’t happen often

» Shows that more general scheduling (which has additional
requirements) is going to be at least O(n?) (and is actually
much worse)



What does this all mean?

» Solving all of these problems requires quadratic time and
space, which means that it's inherently not easy

» It is possible to be (asymptotically) more space-efficient and
(practically) more time-efficient, but doesn’t happen often

» Shows that more general scheduling (which has additional
requirements) is going to be at least O(n?) (and is actually
much worse)

» Determining the critical path itself is harder



What does this all mean?

» Solving all of these problems requires quadratic time and
space, which means that it's inherently not easy

» It is possible to be (asymptotically) more space-efficient and
(practically) more time-efficient, but doesn’t happen often

» Shows that more general scheduling (which has additional
requirements) is going to be at least O(n?) (and is actually
much worse)

» Determining the critical path itself is harder

However, despite this, we can still use these algorithms in many
cases, as long as the number of tasks we're dealing with isn't too
large.



Questions?

ARE THERE ANY

QUESTIONS?




	Introduction
	Preliminaries
	Dependency graphs
	Working with dependency graphs
	Questions

