
What are algorithms,

and why do we care?

Building up

Going asymptotic

Questions

Introduction to asymptotic analysis

Or: How computer science is like cooking

Koz Ross

March 30, 2017



Overview

What are algorithms,

and why do we care?

Building up

Going asymptotic

Questions

What are algorithms, and why do we care?

Building up

Going asymptotic

Questions



What are algorithms, and why do

we care?

What are algorithms,

and why do we care?

• Definition of an

algorithm

• Why we care

• What do we mean by

‘efficient’?

Building up

Going asymptotic

Questions



Definition of an algorithm

What are algorithms,

and why do we care?

• Definition of an

algorithm

• Why we care

• What do we mean by

‘efficient’?

Building up

Going asymptotic

Questions

“A procedure, described in a finite number of

instructions, for transforming inputs into an output to

solve a specific problem. The instructions must be

unambiguous, guaranteed to terminate, and solve the

problem correctly in all cases.”



Definition of an algorithm

What are algorithms,

and why do we care?

• Definition of an

algorithm

• Why we care

• What do we mean by

‘efficient’?

Building up

Going asymptotic

Questions

“A procedure, described in a finite number of

instructions, for transforming inputs into an output to

solve a specific problem. The instructions must be

unambiguous, guaranteed to terminate, and solve the

problem correctly in all cases.”

Alternatively, you can think of an algorithm as a recipe:



Definition of an algorithm

What are algorithms,

and why do we care?

• Definition of an

algorithm

• Why we care

• What do we mean by

‘efficient’?

Building up

Going asymptotic

Questions

“A procedure, described in a finite number of

instructions, for transforming inputs into an output to

solve a specific problem. The instructions must be

unambiguous, guaranteed to terminate, and solve the

problem correctly in all cases.”

Alternatively, you can think of an algorithm as a recipe:

• The ingredients are the inputs



Definition of an algorithm

What are algorithms,

and why do we care?

• Definition of an

algorithm

• Why we care

• What do we mean by

‘efficient’?

Building up

Going asymptotic

Questions

“A procedure, described in a finite number of

instructions, for transforming inputs into an output to

solve a specific problem. The instructions must be

unambiguous, guaranteed to terminate, and solve the

problem correctly in all cases.”

Alternatively, you can think of an algorithm as a recipe:

• The ingredients are the inputs

• The recipe directions are the instructions



Definition of an algorithm

What are algorithms,

and why do we care?

• Definition of an

algorithm

• Why we care

• What do we mean by

‘efficient’?

Building up

Going asymptotic

Questions

“A procedure, described in a finite number of

instructions, for transforming inputs into an output to

solve a specific problem. The instructions must be

unambiguous, guaranteed to terminate, and solve the

problem correctly in all cases.”

Alternatively, you can think of an algorithm as a recipe:

• The ingredients are the inputs

• The recipe directions are the instructions

• The (hopefully!) resulting food is the output



Why we care

What are algorithms,

and why do we care?

• Definition of an

algorithm

• Why we care

• What do we mean by

‘efficient’?

Building up

Going asymptotic

Questions

• Algorithms are very fundamental to computer science (which is

why it’s all about cooking!)



Why we care

What are algorithms,

and why do we care?

• Definition of an

algorithm

• Why we care

• What do we mean by

‘efficient’?

Building up

Going asymptotic

Questions

• Algorithms are very fundamental to computer science (which is

why it’s all about cooking!)

• They define what we can do at all, and what we can do efficiently



Why we care

What are algorithms,

and why do we care?

• Definition of an

algorithm

• Why we care

• What do we mean by

‘efficient’?

Building up

Going asymptotic

Questions

• Algorithms are very fundamental to computer science (which is

why it’s all about cooking!)

• They define what we can do at all, and what we can do efficiently

• Improved algorithms lead to improved everything-else



Why we care

What are algorithms,

and why do we care?

• Definition of an

algorithm

• Why we care

• What do we mean by

‘efficient’?

Building up

Going asymptotic

Questions

• Algorithms are very fundamental to computer science (which is

why it’s all about cooking!)

• They define what we can do at all, and what we can do efficiently

• Improved algorithms lead to improved everything-else

• ‘Ready-baked’ efficient solutions to many problems (theoretical

and practical)



Why we care

What are algorithms,

and why do we care?

• Definition of an

algorithm

• Why we care

• What do we mean by

‘efficient’?

Building up

Going asymptotic

Questions

• Algorithms are very fundamental to computer science (which is

why it’s all about cooking!)

• They define what we can do at all, and what we can do efficiently

• Improved algorithms lead to improved everything-else

• ‘Ready-baked’ efficient solutions to many problems (theoretical

and practical)

• If you don’t know this stuff, everything you do on a computer will

run like hot garbage, and you won’t know why, or what to do

about it



Why we care

What are algorithms,

and why do we care?

• Definition of an

algorithm

• Why we care

• What do we mean by

‘efficient’?

Building up

Going asymptotic

Questions

• Algorithms are very fundamental to computer science (which is

why it’s all about cooking!)

• They define what we can do at all, and what we can do efficiently

• Improved algorithms lead to improved everything-else

• ‘Ready-baked’ efficient solutions to many problems (theoretical

and practical)

• If you don’t know this stuff, everything you do on a computer will

run like hot garbage, and you won’t know why, or what to do

about it

Thus, we really need to be able to compare algorithms to each other,

and also understand why they run the way they do, if we have any

hope of making them do our bidding.



What do we mean by ‘efficient’?

What are algorithms,

and why do we care?

• Definition of an

algorithm

• Why we care

• What do we mean by

‘efficient’?

Building up

Going asymptotic

Questions

Efficiency is ultimately doing more with less effort. We can measure

the ‘effort’ required to run an algorithm in two ways:



What do we mean by ‘efficient’?

What are algorithms,

and why do we care?

• Definition of an

algorithm

• Why we care

• What do we mean by

‘efficient’?

Building up

Going asymptotic

Questions

Efficiency is ultimately doing more with less effort. We can measure

the ‘effort’ required to run an algorithm in two ways:

• How much time we need to solve a problem instance; and



What do we mean by ‘efficient’?

What are algorithms,

and why do we care?

• Definition of an

algorithm

• Why we care

• What do we mean by

‘efficient’?

Building up

Going asymptotic

Questions

Efficiency is ultimately doing more with less effort. We can measure

the ‘effort’ required to run an algorithm in two ways:

• How much time we need to solve a problem instance; and

• How much space (in terms of memory) we would have to use as

part of this process.



What do we mean by ‘efficient’?

What are algorithms,

and why do we care?

• Definition of an

algorithm

• Why we care

• What do we mean by

‘efficient’?

Building up

Going asymptotic

Questions

Efficiency is ultimately doing more with less effort. We can measure

the ‘effort’ required to run an algorithm in two ways:

• How much time we need to solve a problem instance; and

• How much space (in terms of memory) we would have to use as

part of this process.

Determining these two factors is an important part of algorithm

analysis.



What do we mean by ‘efficient’?

What are algorithms,

and why do we care?

• Definition of an

algorithm

• Why we care

• What do we mean by

‘efficient’?

Building up

Going asymptotic

Questions

Efficiency is ultimately doing more with less effort. We can measure

the ‘effort’ required to run an algorithm in two ways:

• How much time we need to solve a problem instance; and

• How much space (in terms of memory) we would have to use as

part of this process.

Determining these two factors is an important part of algorithm

analysis. Additionally, any method we use must explain why we get

the performance it claims.



Building up

What are algorithms,

and why do we care?

Building up

• Analysis by

implementation

• A model

• Time and space

complexity

• An example algorithm

Going asymptotic

Questions



Analysis by implementation

What are algorithms,

and why do we care?

Building up

• Analysis by

implementation

• A model

• Time and space

complexity

• An example algorithm

Going asymptotic

Questions

“To analyze the efficiency of an algorithm, implement it,

run it on some inputs, and measure the time required

and the memory used.”



Analysis by implementation

What are algorithms,

and why do we care?

Building up

• Analysis by

implementation

• A model

• Time and space

complexity

• An example algorithm

Going asymptotic

Questions

“To analyze the efficiency of an algorithm, implement it,

run it on some inputs, and measure the time required

and the memory used.”

Not bad per se, but has a few notable downsides:



Analysis by implementation

What are algorithms,

and why do we care?

Building up

• Analysis by

implementation

• A model

• Time and space

complexity

• An example algorithm

Going asymptotic

Questions

“To analyze the efficiency of an algorithm, implement it,

run it on some inputs, and measure the time required

and the memory used.”

Not bad per se, but has a few notable downsides:

• Very labour-intensive (programming is hard!)



Analysis by implementation

What are algorithms,

and why do we care?

Building up

• Analysis by

implementation

• A model

• Time and space

complexity

• An example algorithm

Going asymptotic

Questions

“To analyze the efficiency of an algorithm, implement it,

run it on some inputs, and measure the time required

and the memory used.”

Not bad per se, but has a few notable downsides:

• Very labour-intensive (programming is hard!)

• Too many external factors (programmer skill, language, OS,

hardware, workload. . .)



Analysis by implementation

What are algorithms,

and why do we care?

Building up

• Analysis by

implementation

• A model

• Time and space

complexity

• An example algorithm

Going asymptotic

Questions

“To analyze the efficiency of an algorithm, implement it,

run it on some inputs, and measure the time required

and the memory used.”

Not bad per se, but has a few notable downsides:

• Very labour-intensive (programming is hard!)

• Too many external factors (programmer skill, language, OS,

hardware, workload. . .)

• The test data problem (what do we test against?)



Analysis by implementation

What are algorithms,

and why do we care?

Building up

• Analysis by

implementation

• A model

• Time and space

complexity

• An example algorithm

Going asymptotic

Questions

“To analyze the efficiency of an algorithm, implement it,

run it on some inputs, and measure the time required

and the memory used.”

Not bad per se, but has a few notable downsides:

• Very labour-intensive (programming is hard!)

• Too many external factors (programmer skill, language, OS,

hardware, workload. . .)

• The test data problem (what do we test against?)

While this method is useful at the end of the process, it’s not a very

good analytical tool in general.



Analysis by implementation

What are algorithms,

and why do we care?

Building up

• Analysis by

implementation

• A model

• Time and space

complexity

• An example algorithm

Going asymptotic

Questions

“To analyze the efficiency of an algorithm, implement it,

run it on some inputs, and measure the time required

and the memory used.”

Not bad per se, but has a few notable downsides:

• Very labour-intensive (programming is hard!)

• Too many external factors (programmer skill, language, OS,

hardware, workload. . .)

• The test data problem (what do we test against?)

While this method is useful at the end of the process, it’s not a very

good analytical tool in general. To do better than this, we need a

different view of the problem, as well as a different method.



A model

What are algorithms,

and why do we care?

Building up

• Analysis by

implementation

• A model

• Time and space

complexity

• An example algorithm

Going asymptotic

Questions

In sciences (of all sorts), a model is a way of looking at the world

which:



A model

What are algorithms,

and why do we care?

Building up

• Analysis by

implementation

• A model

• Time and space

complexity

• An example algorithm

Going asymptotic

Questions

In sciences (of all sorts), a model is a way of looking at the world

which:

• Minimizes the impact of factors we don’t care about



A model

What are algorithms,

and why do we care?

Building up

• Analysis by

implementation

• A model

• Time and space

complexity

• An example algorithm

Going asymptotic

Questions

In sciences (of all sorts), a model is a way of looking at the world

which:

• Minimizes the impact of factors we don’t care about

• Stays true to the reality of factors we do care about



A model

What are algorithms,

and why do we care?

Building up

• Analysis by

implementation

• A model

• Time and space

complexity

• An example algorithm

Going asymptotic

Questions

In sciences (of all sorts), a model is a way of looking at the world

which:

• Minimizes the impact of factors we don’t care about

• Stays true to the reality of factors we do care about

• Explains why phenomena occur like they do.



A model

What are algorithms,

and why do we care?

Building up

• Analysis by

implementation

• A model

• Time and space

complexity

• An example algorithm

Going asymptotic

Questions

In sciences (of all sorts), a model is a way of looking at the world

which:

• Minimizes the impact of factors we don’t care about

• Stays true to the reality of factors we do care about

• Explains why phenomena occur like they do.

Examples of models include:



A model

What are algorithms,

and why do we care?

Building up

• Analysis by

implementation

• A model

• Time and space

complexity

• An example algorithm

Going asymptotic

Questions

In sciences (of all sorts), a model is a way of looking at the world

which:

• Minimizes the impact of factors we don’t care about

• Stays true to the reality of factors we do care about

• Explains why phenomena occur like they do.

Examples of models include:

• The Standard Model



A model

What are algorithms,

and why do we care?

Building up

• Analysis by

implementation

• A model

• Time and space

complexity

• An example algorithm

Going asymptotic

Questions

In sciences (of all sorts), a model is a way of looking at the world

which:

• Minimizes the impact of factors we don’t care about

• Stays true to the reality of factors we do care about

• Explains why phenomena occur like they do.

Examples of models include:

• The Standard Model

• The orbital model



A model

What are algorithms,

and why do we care?

Building up

• Analysis by

implementation

• A model

• Time and space

complexity

• An example algorithm

Going asymptotic

Questions

In sciences (of all sorts), a model is a way of looking at the world

which:

• Minimizes the impact of factors we don’t care about

• Stays true to the reality of factors we do care about

• Explains why phenomena occur like they do.

Examples of models include:

• The Standard Model

• The orbital model

• Statistical models



A model

What are algorithms,

and why do we care?

Building up

• Analysis by

implementation

• A model

• Time and space

complexity

• An example algorithm

Going asymptotic

Questions

In sciences (of all sorts), a model is a way of looking at the world

which:

• Minimizes the impact of factors we don’t care about

• Stays true to the reality of factors we do care about

• Explains why phenomena occur like they do.

Examples of models include:

• The Standard Model

• The orbital model

• Statistical models

Models allow us to analyze and understand their subject matter

without having to ‘manually verify’ everything.



A model of a computer

What are algorithms,

and why do we care?

Building up

• Analysis by

implementation

• A model

• Time and space

complexity

• An example algorithm

Going asymptotic

Questions

Because algorithms ultimately run on computers, our model must be

of a computer.



A model of a computer

What are algorithms,

and why do we care?

Building up

• Analysis by

implementation

• A model

• Time and space

complexity

• An example algorithm

Going asymptotic

Questions

Because algorithms ultimately run on computers, our model must be

of a computer.

There are many choices of model, depending on what kind of

computer we want to study, as well as what aspects of it interest us.



A model of a computer

What are algorithms,

and why do we care?

Building up

• Analysis by

implementation

• A model

• Time and space

complexity

• An example algorithm

Going asymptotic

Questions

Because algorithms ultimately run on computers, our model must be

of a computer.

There are many choices of model, depending on what kind of

computer we want to study, as well as what aspects of it interest us.

The most traditional (and foundational) model for algorithm analysis

is the random access model (RAM).



A model of a computer

What are algorithms,

and why do we care?

Building up

• Analysis by

implementation

• A model

• Time and space

complexity

• An example algorithm

Going asymptotic

Questions

Because algorithms ultimately run on computers, our model must be

of a computer.

There are many choices of model, depending on what kind of

computer we want to study, as well as what aspects of it interest us.

The most traditional (and foundational) model for algorithm analysis

is the random access model (RAM). This closely represents a

computer at the time when algorithm analysis first became a topic in

its own right (around 1950).



The random access model

What are algorithms,

and why do we care?

Building up

• Analysis by

implementation

• A model

• Time and space

complexity

• An example algorithm

Going asymptotic

Questions

In RAM, we have access to:



The random access model

What are algorithms,

and why do we care?

Building up

• Analysis by

implementation

• A model

• Time and space

complexity

• An example algorithm

Going asymptotic

Questions

In RAM, we have access to:

• A single, sequential processing unit (PU)



The random access model

What are algorithms,

and why do we care?

Building up

• Analysis by

implementation

• A model

• Time and space

complexity

• An example algorithm

Going asymptotic

Questions

In RAM, we have access to:

• A single, sequential processing unit (PU)

• Addressable memory, divided into words of w bits



The random access model

What are algorithms,

and why do we care?

Building up

• Analysis by

implementation

• A model

• Time and space

complexity

• An example algorithm

Going asymptotic

Questions

In RAM, we have access to:

• A single, sequential processing unit (PU)

• Addressable memory, divided into words of w bits

A primitive instruction is any of the following:



The random access model

What are algorithms,

and why do we care?

Building up

• Analysis by

implementation

• A model

• Time and space

complexity

• An example algorithm

Going asymptotic

Questions

In RAM, we have access to:

• A single, sequential processing unit (PU)

• Addressable memory, divided into words of w bits

A primitive instruction is any of the following:

• Arithmetic (+,−, ·,÷) on w-bit integers



The random access model

What are algorithms,

and why do we care?

Building up

• Analysis by

implementation

• A model

• Time and space

complexity

• An example algorithm

Going asymptotic

Questions

In RAM, we have access to:

• A single, sequential processing unit (PU)

• Addressable memory, divided into words of w bits

A primitive instruction is any of the following:

• Arithmetic (+,−, ·,÷) on w-bit integers

• Comparison (<,>,≤,≥,=, 6=) of two w-bit integers or flags



The random access model

What are algorithms,

and why do we care?

Building up

• Analysis by

implementation

• A model

• Time and space

complexity

• An example algorithm

Going asymptotic

Questions

In RAM, we have access to:

• A single, sequential processing unit (PU)

• Addressable memory, divided into words of w bits

A primitive instruction is any of the following:

• Arithmetic (+,−, ·,÷) on w-bit integers

• Comparison (<,>,≤,≥,=, 6=) of two w-bit integers or flags

• Allocation of any number of consecutively-addressed words



The random access model

What are algorithms,

and why do we care?

Building up

• Analysis by

implementation

• A model

• Time and space

complexity

• An example algorithm

Going asymptotic

Questions

In RAM, we have access to:

• A single, sequential processing unit (PU)

• Addressable memory, divided into words of w bits

A primitive instruction is any of the following:

• Arithmetic (+,−, ·,÷) on w-bit integers

• Comparison (<,>,≤,≥,=, 6=) of two w-bit integers or flags

• Allocation of any number of consecutively-addressed words

• Given an address, a one-word read or write there



The random access model

What are algorithms,

and why do we care?

Building up

• Analysis by

implementation

• A model

• Time and space

complexity

• An example algorithm

Going asymptotic

Questions

In RAM, we have access to:

• A single, sequential processing unit (PU)

• Addressable memory, divided into words of w bits

A primitive instruction is any of the following:

• Arithmetic (+,−, ·,÷) on w-bit integers

• Comparison (<,>,≤,≥,=, 6=) of two w-bit integers or flags

• Allocation of any number of consecutively-addressed words

• Given an address, a one-word read or write there

• Conditional or unconditional branch



The random access model

What are algorithms,

and why do we care?

Building up

• Analysis by

implementation

• A model

• Time and space

complexity

• An example algorithm

Going asymptotic

Questions

In RAM, we have access to:

• A single, sequential processing unit (PU)

• Addressable memory, divided into words of w bits

A primitive instruction is any of the following:

• Arithmetic (+,−, ·,÷) on w-bit integers

• Comparison (<,>,≤,≥,=, 6=) of two w-bit integers or flags

• Allocation of any number of consecutively-addressed words

• Given an address, a one-word read or write there

• Conditional or unconditional branch

• A procedure call



The random access model

What are algorithms,

and why do we care?

Building up

• Analysis by

implementation

• A model

• Time and space

complexity

• An example algorithm

Going asymptotic

Questions

In RAM, we have access to:

• A single, sequential processing unit (PU)

• Addressable memory, divided into words of w bits

A primitive instruction is any of the following:

• Arithmetic (+,−, ·,÷) on w-bit integers

• Comparison (<,>,≤,≥,=, 6=) of two w-bit integers or flags

• Allocation of any number of consecutively-addressed words

• Given an address, a one-word read or write there

• Conditional or unconditional branch

• A procedure call

• A return of a value



The random access model

What are algorithms,

and why do we care?

Building up

• Analysis by

implementation

• A model

• Time and space

complexity

• An example algorithm

Going asymptotic

Questions

In RAM, we have access to:

• A single, sequential processing unit (PU)

• Addressable memory, divided into words of w bits

A primitive instruction is any of the following:

• Arithmetic (+,−, ·,÷) on w-bit integers

• Comparison (<,>,≤,≥,=, 6=) of two w-bit integers or flags

• Allocation of any number of consecutively-addressed words

• Given an address, a one-word read or write there

• Conditional or unconditional branch

• A procedure call

• A return of a value

Any primitive instruction requires one time unit to execute.



Time and space complexity

What are algorithms,

and why do we care?

Building up

• Analysis by

implementation

• A model

• Time and space

complexity

• An example algorithm

Going asymptotic

Questions

Let A be an algorithm, and n be the size of the largest input to A.



Time and space complexity

What are algorithms,

and why do we care?

Building up

• Analysis by

implementation

• A model

• Time and space

complexity

• An example algorithm

Going asymptotic

Questions

Let A be an algorithm, and n be the size of the largest input to A.

We define the time complexity of A for inputs of size n (written

TA(n)) as the number of primitive instructions that the PU must

execute to produce correct output for A from any inputs of largest

size n.



Time and space complexity

What are algorithms,

and why do we care?

Building up

• Analysis by

implementation

• A model

• Time and space

complexity

• An example algorithm

Going asymptotic

Questions

Let A be an algorithm, and n be the size of the largest input to A.

We define the time complexity of A for inputs of size n (written

TA(n)) as the number of primitive instructions that the PU must

execute to produce correct output for A from any inputs of largest

size n.

We define the space complexity of A for inputs of size n (written

SA(n)) as the number of words of memory that we must allocate to

produce correct output for A from any inputs of largest size n.



Time and space complexity

What are algorithms,

and why do we care?

Building up

• Analysis by

implementation

• A model

• Time and space

complexity

• An example algorithm

Going asymptotic

Questions

Let A be an algorithm, and n be the size of the largest input to A.

We define the time complexity of A for inputs of size n (written

TA(n)) as the number of primitive instructions that the PU must

execute to produce correct output for A from any inputs of largest

size n.

We define the space complexity of A for inputs of size n (written

SA(n)) as the number of words of memory that we must allocate to

produce correct output for A from any inputs of largest size n.

If there are multiple possible values for TA(n), SA(n) for a

particular n, we take the highest possible value.



Time and space complexity

What are algorithms,

and why do we care?

Building up

• Analysis by

implementation

• A model

• Time and space

complexity

• An example algorithm

Going asymptotic

Questions

Let A be an algorithm, and n be the size of the largest input to A.

We define the time complexity of A for inputs of size n (written

TA(n)) as the number of primitive instructions that the PU must

execute to produce correct output for A from any inputs of largest

size n.

We define the space complexity of A for inputs of size n (written

SA(n)) as the number of words of memory that we must allocate to

produce correct output for A from any inputs of largest size n.

If there are multiple possible values for TA(n), SA(n) for a

particular n, we take the highest possible value. Thus, our analysis

is worst-case.



Time and space complexity

What are algorithms,

and why do we care?

Building up

• Analysis by

implementation

• A model

• Time and space

complexity

• An example algorithm

Going asymptotic

Questions

Let A be an algorithm, and n be the size of the largest input to A.

We define the time complexity of A for inputs of size n (written

TA(n)) as the number of primitive instructions that the PU must

execute to produce correct output for A from any inputs of largest

size n.

We define the space complexity of A for inputs of size n (written

SA(n)) as the number of words of memory that we must allocate to

produce correct output for A from any inputs of largest size n.

If there are multiple possible values for TA(n), SA(n) for a

particular n, we take the highest possible value. Thus, our analysis

is worst-case.



An example algorithm

What are algorithms,

and why do we care?

Building up

• Analysis by

implementation

• A model

• Time and space

complexity

• An example algorithm

Going asymptotic

Questions

Problem: Given a non-empty array arr of one-word integers, find the

largest integer in arr.



An example algorithm

What are algorithms,

and why do we care?

Building up

• Analysis by

implementation

• A model

• Time and space

complexity

• An example algorithm

Going asymptotic

Questions

Problem: Given a non-empty array arr of one-word integers, find the

largest integer in arr.

function Max(arr)

x← arr[1]
for i ∈ 2, 3, . . . , length(arr) do

if x < arr[i] then

x← arr[i]
end if

end for

return x

end function



An example algorithm

What are algorithms,

and why do we care?

Building up

• Analysis by

implementation

• A model

• Time and space

complexity

• An example algorithm

Going asymptotic

Questions

Problem: Given a non-empty array arr of one-word integers, find the

largest integer in arr.

function Max(arr)

x← arr[1]
for i ∈ 2, 3, . . . , length(arr) do

if x < arr[i] then

x← arr[i]
end if

end for

return x

end function

TMax(n) =



An example algorithm

What are algorithms,

and why do we care?

Building up

• Analysis by

implementation

• A model

• Time and space

complexity

• An example algorithm

Going asymptotic

Questions

Problem: Given a non-empty array arr of one-word integers, find the

largest integer in arr.

function Max(arr)

x← arr[1]
for i ∈ 2, 3, . . . , length(arr) do

if x < arr[i] then

x← arr[i]
end if

end for

return x

end function

TMax(n) = 4 + 6(n− 1) + 1 = 6n− 1



An example algorithm

What are algorithms,

and why do we care?

Building up

• Analysis by

implementation

• A model

• Time and space

complexity

• An example algorithm

Going asymptotic

Questions

Problem: Given a non-empty array arr of one-word integers, find the

largest integer in arr.

function Max(arr)

x← arr[1]
for i ∈ 2, 3, . . . , length(arr) do

if x < arr[i] then

x← arr[i]
end if

end for

return x

end function

TMax(n) = 4 + 6(n− 1) + 1 = 6n− 1

SMax(n) =



An example algorithm

What are algorithms,

and why do we care?

Building up

• Analysis by

implementation

• A model

• Time and space

complexity

• An example algorithm

Going asymptotic

Questions

Problem: Given a non-empty array arr of one-word integers, find the

largest integer in arr.

function Max(arr)

x← arr[1]
for i ∈ 2, 3, . . . , length(arr) do

if x < arr[i] then

x← arr[i]
end if

end for

return x

end function

TMax(n) = 4 + 6(n− 1) + 1 = 6n− 1

SMax(n) = 2



Going asymptotic

What are algorithms,

and why do we care?

Building up

Going asymptotic

• Asymptotic analysis

• Reviewing the

example

• Benefits of asymptotic

complexity

Questions



Asymptotic analysis

What are algorithms,

and why do we care?

Building up

Going asymptotic

• Asymptotic analysis

• Reviewing the

example

• Benefits of asymptotic

complexity

Questions

Ultimately, we don’t actually care about what T (n), S(n) are.



Asymptotic analysis

What are algorithms,

and why do we care?

Building up

Going asymptotic

• Asymptotic analysis

• Reviewing the

example

• Benefits of asymptotic

complexity

Questions

Ultimately, we don’t actually care about what T (n), S(n) are. What

really matters is how they behave as their input sizes grow.



Asymptotic analysis

What are algorithms,

and why do we care?

Building up

Going asymptotic

• Asymptotic analysis

• Reviewing the

example

• Benefits of asymptotic

complexity

Questions

Ultimately, we don’t actually care about what T (n), S(n) are. What

really matters is how they behave as their input sizes grow. Our

current method focuses too much on the former, and not enough on

the latter.

Thus, we make the following assumptions:



Asymptotic analysis

What are algorithms,

and why do we care?

Building up

Going asymptotic

• Asymptotic analysis

• Reviewing the

example

• Benefits of asymptotic

complexity

Questions

Ultimately, we don’t actually care about what T (n), S(n) are. What

really matters is how they behave as their input sizes grow. Our

current method focuses too much on the former, and not enough on

the latter.

Thus, we make the following assumptions:

• Input sizes can grow arbitrarily large



Asymptotic analysis

What are algorithms,

and why do we care?

Building up

Going asymptotic

• Asymptotic analysis

• Reviewing the

example

• Benefits of asymptotic

complexity

Questions

Ultimately, we don’t actually care about what T (n), S(n) are. What

really matters is how they behave as their input sizes grow. Our

current method focuses too much on the former, and not enough on

the latter.

Thus, we make the following assumptions:

• Input sizes can grow arbitrarily large

• Constant additions or factors are irrelevant



Asymptotic analysis

What are algorithms,

and why do we care?

Building up

Going asymptotic

• Asymptotic analysis

• Reviewing the

example

• Benefits of asymptotic

complexity

Questions

Ultimately, we don’t actually care about what T (n), S(n) are. What

really matters is how they behave as their input sizes grow. Our

current method focuses too much on the former, and not enough on

the latter.

Thus, we make the following assumptions:

• Input sizes can grow arbitrarily large

• Constant additions or factors are irrelevant

• Out of multiple n-terms, only the largest matters



Asymptotic analysis

What are algorithms,

and why do we care?

Building up

Going asymptotic

• Asymptotic analysis

• Reviewing the

example

• Benefits of asymptotic

complexity

Questions

Ultimately, we don’t actually care about what T (n), S(n) are. What

really matters is how they behave as their input sizes grow. Our

current method focuses too much on the former, and not enough on

the latter.

Thus, we make the following assumptions:

• Input sizes can grow arbitrarily large

• Constant additions or factors are irrelevant

• Out of multiple n-terms, only the largest matters

• We will talk about rate of growth, not value



Asymptotic analysis

What are algorithms,

and why do we care?

Building up

Going asymptotic

• Asymptotic analysis

• Reviewing the

example

• Benefits of asymptotic

complexity

Questions

Ultimately, we don’t actually care about what T (n), S(n) are. What

really matters is how they behave as their input sizes grow. Our

current method focuses too much on the former, and not enough on

the latter.

Thus, we make the following assumptions:

• Input sizes can grow arbitrarily large

• Constant additions or factors are irrelevant

• Out of multiple n-terms, only the largest matters

• We will talk about rate of growth, not value

We call this kind of analysis asymptotic.



Asymptotic analysis

What are algorithms,

and why do we care?

Building up

Going asymptotic

• Asymptotic analysis

• Reviewing the

example

• Benefits of asymptotic

complexity

Questions

Ultimately, we don’t actually care about what T (n), S(n) are. What

really matters is how they behave as their input sizes grow. Our

current method focuses too much on the former, and not enough on

the latter.

Thus, we make the following assumptions:

• Input sizes can grow arbitrarily large

• Constant additions or factors are irrelevant

• Out of multiple n-terms, only the largest matters

• We will talk about rate of growth, not value

We call this kind of analysis asymptotic. This is because the input

can grow as big as we like, and we’re only interested in how the

running time (or space) changes with the growth of the input.



Reviewing the example

What are algorithms,

and why do we care?

Building up

Going asymptotic

• Asymptotic analysis

• Reviewing the

example

• Benefits of asymptotic

complexity

Questions

function Max(arr)

x← arr[1]
for i ∈ 2, 3, . . . , length(arr) do

if x < arr[i] then

x← arr[i]
end if

end for

return x

end function

TMax(n) = 6n− 1

SMax(n) = 2



Reviewing the example

What are algorithms,

and why do we care?

Building up

Going asymptotic

• Asymptotic analysis

• Reviewing the

example

• Benefits of asymptotic

complexity

Questions

function Max(arr)

x← arr[1]
for i ∈ 2, 3, . . . , length(arr) do

if x < arr[i] then

x← arr[i]
end if

end for

return x

end function

TMax(n) = 6n −1

SMax(n) = 2



Reviewing the example

What are algorithms,

and why do we care?

Building up

Going asymptotic

• Asymptotic analysis

• Reviewing the

example

• Benefits of asymptotic

complexity

Questions

function Max(arr)

x← arr[1]
for i ∈ 2, 3, . . . , length(arr) do

if x < arr[i] then

x← arr[i]
end if

end for

return x

end function

TMax(n) = 6n −1

SMax(n) = 2



Reviewing the example

What are algorithms,

and why do we care?

Building up

Going asymptotic

• Asymptotic analysis

• Reviewing the

example

• Benefits of asymptotic

complexity

Questions

function Max(arr)

x← arr[1]
for i ∈ 2, 3, . . . , length(arr) do

if x < arr[i] then

x← arr[i]
end if

end for

return x

end function

TMax(n) = 6n −1 WRONG!

SMax(n) = 2 WRONG!



Reviewing the example

What are algorithms,

and why do we care?

Building up

Going asymptotic

• Asymptotic analysis

• Reviewing the

example

• Benefits of asymptotic

complexity

Questions

function Max(arr)

x← arr[1]
for i ∈ 2, 3, . . . , length(arr) do

if x < arr[i] then

x← arr[i]
end if

end for

return x

end function

TMax(n) is O(n)

SMax(n) is O(1)



Reviewing the example

What are algorithms,

and why do we care?

Building up

Going asymptotic

• Asymptotic analysis

• Reviewing the

example

• Benefits of asymptotic

complexity

Questions

function Max(arr)

x← arr[1]
for i ∈ 2, 3, . . . , length(arr) do

if x < arr[i] then

x← arr[i]
end if

end for

return x

end function

TMax(n) is O(n)

SMax(n) is O(1)

We also say “the time complexity of Max is O(n)”, or even “Max is

O(n)”.



Reviewing the example

What are algorithms,

and why do we care?

Building up

Going asymptotic

• Asymptotic analysis

• Reviewing the

example

• Benefits of asymptotic

complexity

Questions

function Max(arr)

x← arr[1]
for i ∈ 2, 3, . . . , length(arr) do

if x < arr[i] then

x← arr[i]
end if

end for

return x

end function

TMax(n) is O(n)

SMax(n) is O(1)

We also say “the time complexity of Max is O(n)”, or even “Max is

O(n)”. The second one is a bit unclear, so I’d avoid it.



Benefits of asymptotic complexity

What are algorithms,

and why do we care?

Building up

Going asymptotic

• Asymptotic analysis

• Reviewing the

example

• Benefits of asymptotic

complexity

Questions

• Describes performance on the basis of how our time and space

requirements will grow relative the size of the problem, not

pegged to a particular machine (or even model!)



Benefits of asymptotic complexity

What are algorithms,

and why do we care?

Building up

Going asymptotic

• Asymptotic analysis

• Reviewing the

example

• Benefits of asymptotic

complexity

Questions

• Describes performance on the basis of how our time and space

requirements will grow relative the size of the problem, not

pegged to a particular machine (or even model!)

• Explains performance by showing us what causes the growth to

be as bad (or good) as it is in the algorithm itself



Benefits of asymptotic complexity

What are algorithms,

and why do we care?

Building up

Going asymptotic

• Asymptotic analysis

• Reviewing the

example

• Benefits of asymptotic

complexity

Questions

• Describes performance on the basis of how our time and space

requirements will grow relative the size of the problem, not

pegged to a particular machine (or even model!)

• Explains performance by showing us what causes the growth to

be as bad (or good) as it is in the algorithm itself

• Eliminates ‘noise’ constants, focusing our attention where it really

counts



Benefits of asymptotic complexity

What are algorithms,

and why do we care?

Building up

Going asymptotic

• Asymptotic analysis

• Reviewing the

example

• Benefits of asymptotic

complexity

Questions

• Describes performance on the basis of how our time and space

requirements will grow relative the size of the problem, not

pegged to a particular machine (or even model!)

• Explains performance by showing us what causes the growth to

be as bad (or good) as it is in the algorithm itself

• Eliminates ‘noise’ constants, focusing our attention where it really

counts

• Separates algorithms into well-defined groupings



Benefits of asymptotic complexity

What are algorithms,

and why do we care?

Building up

Going asymptotic

• Asymptotic analysis

• Reviewing the

example

• Benefits of asymptotic

complexity

Questions

• Describes performance on the basis of how our time and space

requirements will grow relative the size of the problem, not

pegged to a particular machine (or even model!)

• Explains performance by showing us what causes the growth to

be as bad (or good) as it is in the algorithm itself

• Eliminates ‘noise’ constants, focusing our attention where it really

counts

• Separates algorithms into well-defined groupings

• Can be determined (and verified) very quickly



Benefits of asymptotic complexity

What are algorithms,

and why do we care?

Building up

Going asymptotic

• Asymptotic analysis

• Reviewing the

example

• Benefits of asymptotic

complexity

Questions

• Describes performance on the basis of how our time and space

requirements will grow relative the size of the problem, not

pegged to a particular machine (or even model!)

• Explains performance by showing us what causes the growth to

be as bad (or good) as it is in the algorithm itself

• Eliminates ‘noise’ constants, focusing our attention where it really

counts

• Separates algorithms into well-defined groupings

• Can be determined (and verified) very quickly

It’s definitely not perfect though — but that’s material for another talk.



Questions

What are algorithms,

and why do we care?

Building up

Going asymptotic

Questions


	
	Overview
	What are algorithms, and why do we care?
	Definition of an algorithm
	Why we care
	What do we mean by `efficient'?

	Building up
	Analysis by implementation
	A model
	A model of a computer
	The random access model
	Time and space complexity
	An example algorithm

	Going asymptotic
	Asymptotic analysis
	Reviewing the example
	Reviewing the example
	Reviewing the example
	Reviewing the example
	Reviewing the example
	Benefits of asymptotic complexity

	Questions

