
Hash tables
Or: why maths matters

Yuan Yuan

20th July, 2017

Outline

The dictionary problem

Hash functions

The hash table

Questions

The dictionary problem

Definition
An entry is a pair of key and value.

Definition
A dictionary is a set of entries, such that no two entries have the
same key.

Definition
The dictionary problem requires us to maintain a dictionary D,
with the following operations:

len(D): Return the number of entries in D

put(D, k, v): Add a new entry to D with key k and value v; if an
entry with key k already exists, replace its value with
v

get(D, k): Return the value of the entry whose key is k, or null
if no such entry exists

The dictionary problem

Definition
An entry is a pair of key and value.

Definition
A dictionary is a set of entries, such that no two entries have the
same key.

Definition
The dictionary problem requires us to maintain a dictionary D,
with the following operations:

len(D): Return the number of entries in D

put(D, k, v): Add a new entry to D with key k and value v; if an
entry with key k already exists, replace its value with
v

get(D, k): Return the value of the entry whose key is k, or null
if no such entry exists

The dictionary problem

Definition
An entry is a pair of key and value.

Definition
A dictionary is a set of entries, such that no two entries have the
same key.

Definition
The dictionary problem requires us to maintain a dictionary D,
with the following operations:

len(D): Return the number of entries in D

put(D, k, v): Add a new entry to D with key k and value v; if an
entry with key k already exists, replace its value with
v

get(D, k): Return the value of the entry whose key is k, or null
if no such entry exists

The dictionary problem

Definition
An entry is a pair of key and value.

Definition
A dictionary is a set of entries, such that no two entries have the
same key.

Definition
The dictionary problem requires us to maintain a dictionary D,
with the following operations:

len(D): Return the number of entries in D

put(D, k, v): Add a new entry to D with key k and value v; if an
entry with key k already exists, replace its value with
v

get(D, k): Return the value of the entry whose key is k, or null
if no such entry exists

The dictionary problem

Definition
An entry is a pair of key and value.

Definition
A dictionary is a set of entries, such that no two entries have the
same key.

Definition
The dictionary problem requires us to maintain a dictionary D,
with the following operations:

len(D): Return the number of entries in D

put(D, k, v): Add a new entry to D with key k and value v; if an
entry with key k already exists, replace its value with
v

get(D, k): Return the value of the entry whose key is k, or null
if no such entry exists

The dictionary problem

Definition
An entry is a pair of key and value.

Definition
A dictionary is a set of entries, such that no two entries have the
same key.

Definition
The dictionary problem requires us to maintain a dictionary D,
with the following operations:

len(D): Return the number of entries in D

put(D, k, v): Add a new entry to D with key k and value v; if an
entry with key k already exists, replace its value with
v

get(D, k): Return the value of the entry whose key is k, or null
if no such entry exists

Why we care about the dictionary problem

I Databases (keys are identifiers, values are data)
I A solution to this problem can implement almost any other

data structure:
I Arrays and lists (keys are consecutive integers)
I Sets (keys and values are the same as each other)
I Trees, graphs, etc
I At least one programming language (Lua) does exactly this!

I Allows us to give names to data, and use those names instead
of the data itself (c.f. any programming language ever)

In short, we want good solutions to the dictionary problem! We
also don’t want to impose too many constraints on the data
beyond equality being defined (so ordering shouldn’t matter, for
example).

Why we care about the dictionary problem

I Databases (keys are identifiers, values are data)

I A solution to this problem can implement almost any other
data structure:

I Arrays and lists (keys are consecutive integers)
I Sets (keys and values are the same as each other)
I Trees, graphs, etc
I At least one programming language (Lua) does exactly this!

I Allows us to give names to data, and use those names instead
of the data itself (c.f. any programming language ever)

In short, we want good solutions to the dictionary problem! We
also don’t want to impose too many constraints on the data
beyond equality being defined (so ordering shouldn’t matter, for
example).

Why we care about the dictionary problem

I Databases (keys are identifiers, values are data)
I A solution to this problem can implement almost any other

data structure:

I Arrays and lists (keys are consecutive integers)
I Sets (keys and values are the same as each other)
I Trees, graphs, etc
I At least one programming language (Lua) does exactly this!

I Allows us to give names to data, and use those names instead
of the data itself (c.f. any programming language ever)

In short, we want good solutions to the dictionary problem! We
also don’t want to impose too many constraints on the data
beyond equality being defined (so ordering shouldn’t matter, for
example).

Why we care about the dictionary problem

I Databases (keys are identifiers, values are data)
I A solution to this problem can implement almost any other

data structure:
I Arrays and lists (keys are consecutive integers)

I Sets (keys and values are the same as each other)
I Trees, graphs, etc
I At least one programming language (Lua) does exactly this!

I Allows us to give names to data, and use those names instead
of the data itself (c.f. any programming language ever)

In short, we want good solutions to the dictionary problem! We
also don’t want to impose too many constraints on the data
beyond equality being defined (so ordering shouldn’t matter, for
example).

Why we care about the dictionary problem

I Databases (keys are identifiers, values are data)
I A solution to this problem can implement almost any other

data structure:
I Arrays and lists (keys are consecutive integers)
I Sets (keys and values are the same as each other)

I Trees, graphs, etc
I At least one programming language (Lua) does exactly this!

I Allows us to give names to data, and use those names instead
of the data itself (c.f. any programming language ever)

In short, we want good solutions to the dictionary problem! We
also don’t want to impose too many constraints on the data
beyond equality being defined (so ordering shouldn’t matter, for
example).

Why we care about the dictionary problem

I Databases (keys are identifiers, values are data)
I A solution to this problem can implement almost any other

data structure:
I Arrays and lists (keys are consecutive integers)
I Sets (keys and values are the same as each other)
I Trees, graphs, etc

I At least one programming language (Lua) does exactly this!
I Allows us to give names to data, and use those names instead

of the data itself (c.f. any programming language ever)

In short, we want good solutions to the dictionary problem! We
also don’t want to impose too many constraints on the data
beyond equality being defined (so ordering shouldn’t matter, for
example).

Why we care about the dictionary problem

I Databases (keys are identifiers, values are data)
I A solution to this problem can implement almost any other

data structure:
I Arrays and lists (keys are consecutive integers)
I Sets (keys and values are the same as each other)
I Trees, graphs, etc
I At least one programming language (Lua) does exactly this!

I Allows us to give names to data, and use those names instead
of the data itself (c.f. any programming language ever)

In short, we want good solutions to the dictionary problem! We
also don’t want to impose too many constraints on the data
beyond equality being defined (so ordering shouldn’t matter, for
example).

Why we care about the dictionary problem

I Databases (keys are identifiers, values are data)
I A solution to this problem can implement almost any other

data structure:
I Arrays and lists (keys are consecutive integers)
I Sets (keys and values are the same as each other)
I Trees, graphs, etc
I At least one programming language (Lua) does exactly this!

I Allows us to give names to data, and use those names instead
of the data itself (c.f. any programming language ever)

In short, we want good solutions to the dictionary problem! We
also don’t want to impose too many constraints on the data
beyond equality being defined (so ordering shouldn’t matter, for
example).

Why we care about the dictionary problem

I Databases (keys are identifiers, values are data)
I A solution to this problem can implement almost any other

data structure:
I Arrays and lists (keys are consecutive integers)
I Sets (keys and values are the same as each other)
I Trees, graphs, etc
I At least one programming language (Lua) does exactly this!

I Allows us to give names to data, and use those names instead
of the data itself (c.f. any programming language ever)

In short, we want good solutions to the dictionary problem!

We
also don’t want to impose too many constraints on the data
beyond equality being defined (so ordering shouldn’t matter, for
example).

Why we care about the dictionary problem

I Databases (keys are identifiers, values are data)
I A solution to this problem can implement almost any other

data structure:
I Arrays and lists (keys are consecutive integers)
I Sets (keys and values are the same as each other)
I Trees, graphs, etc
I At least one programming language (Lua) does exactly this!

I Allows us to give names to data, and use those names instead
of the data itself (c.f. any programming language ever)

In short, we want good solutions to the dictionary problem! We
also don’t want to impose too many constraints on the data
beyond equality being defined (so ordering shouldn’t matter, for
example).

First attempt: Array or list

We can store our entries in an array or list.

We can remember the
number of elements we store, and modify it on all operations in
constant time, which makes len a O(1) operation.

For put, we scan the array or list left-to-right, comparing each
entry’s key with k. If we get a match, replace that entry’s value
with v; otherwise, add a new entry with key k and value v at the
end. This is O(n), because we might have to scan the entire array
or list.

We can do get similarly, except that we return the value if we find
a match, or null otherwise. This is also O(n).

Verdict: Not very good at all.

First attempt: Array or list

We can store our entries in an array or list. We can remember the
number of elements we store, and modify it on all operations in
constant time, which makes len a O(1) operation.

For put, we scan the array or list left-to-right, comparing each
entry’s key with k. If we get a match, replace that entry’s value
with v; otherwise, add a new entry with key k and value v at the
end. This is O(n), because we might have to scan the entire array
or list.

We can do get similarly, except that we return the value if we find
a match, or null otherwise. This is also O(n).

Verdict: Not very good at all.

First attempt: Array or list

We can store our entries in an array or list. We can remember the
number of elements we store, and modify it on all operations in
constant time, which makes len a O(1) operation.

For put, we scan the array or list left-to-right, comparing each
entry’s key with k. If we get a match, replace that entry’s value
with v; otherwise, add a new entry with key k and value v at the
end.

This is O(n), because we might have to scan the entire array
or list.

We can do get similarly, except that we return the value if we find
a match, or null otherwise. This is also O(n).

Verdict: Not very good at all.

First attempt: Array or list

We can store our entries in an array or list. We can remember the
number of elements we store, and modify it on all operations in
constant time, which makes len a O(1) operation.

For put, we scan the array or list left-to-right, comparing each
entry’s key with k. If we get a match, replace that entry’s value
with v; otherwise, add a new entry with key k and value v at the
end. This is O(n), because we might have to scan the entire array
or list.

We can do get similarly, except that we return the value if we find
a match, or null otherwise. This is also O(n).

Verdict: Not very good at all.

First attempt: Array or list

We can store our entries in an array or list. We can remember the
number of elements we store, and modify it on all operations in
constant time, which makes len a O(1) operation.

For put, we scan the array or list left-to-right, comparing each
entry’s key with k. If we get a match, replace that entry’s value
with v; otherwise, add a new entry with key k and value v at the
end. This is O(n), because we might have to scan the entire array
or list.

We can do get similarly, except that we return the value if we find
a match, or null otherwise.

This is also O(n).

Verdict: Not very good at all.

First attempt: Array or list

We can store our entries in an array or list. We can remember the
number of elements we store, and modify it on all operations in
constant time, which makes len a O(1) operation.

For put, we scan the array or list left-to-right, comparing each
entry’s key with k. If we get a match, replace that entry’s value
with v; otherwise, add a new entry with key k and value v at the
end. This is O(n), because we might have to scan the entire array
or list.

We can do get similarly, except that we return the value if we find
a match, or null otherwise. This is also O(n).

Verdict: Not very good at all.

First attempt: Array or list

We can store our entries in an array or list. We can remember the
number of elements we store, and modify it on all operations in
constant time, which makes len a O(1) operation.

For put, we scan the array or list left-to-right, comparing each
entry’s key with k. If we get a match, replace that entry’s value
with v; otherwise, add a new entry with key k and value v at the
end. This is O(n), because we might have to scan the entire array
or list.

We can do get similarly, except that we return the value if we find
a match, or null otherwise. This is also O(n).

Verdict: Not very good at all.

Can we do better?

Ideally, we want the following:

I get and put to be asymptotically fast (as close to O(1) as
possible)

I All operations to be practically fast (i.e. no asymptotic
‘abuse’)

I A data structure which is as simple as possible (because
programming is hard enough already)

There is a structure which achieves all of the above. First, we need
to do a bit of preparation…

Can we do better?

Ideally, we want the following:
I get and put to be asymptotically fast (as close to O(1) as

possible)

I All operations to be practically fast (i.e. no asymptotic
‘abuse’)

I A data structure which is as simple as possible (because
programming is hard enough already)

There is a structure which achieves all of the above. First, we need
to do a bit of preparation…

Can we do better?

Ideally, we want the following:
I get and put to be asymptotically fast (as close to O(1) as

possible)
I All operations to be practically fast (i.e. no asymptotic

‘abuse’)

I A data structure which is as simple as possible (because
programming is hard enough already)

There is a structure which achieves all of the above. First, we need
to do a bit of preparation…

Can we do better?

Ideally, we want the following:
I get and put to be asymptotically fast (as close to O(1) as

possible)
I All operations to be practically fast (i.e. no asymptotic

‘abuse’)
I A data structure which is as simple as possible (because

programming is hard enough already)

There is a structure which achieves all of the above. First, we need
to do a bit of preparation…

Can we do better?

Ideally, we want the following:
I get and put to be asymptotically fast (as close to O(1) as

possible)
I All operations to be practically fast (i.e. no asymptotic

‘abuse’)
I A data structure which is as simple as possible (because

programming is hard enough already)

There is a structure which achieves all of the above.

First, we need
to do a bit of preparation…

Can we do better?

Ideally, we want the following:
I get and put to be asymptotically fast (as close to O(1) as

possible)
I All operations to be practically fast (i.e. no asymptotic

‘abuse’)
I A data structure which is as simple as possible (because

programming is hard enough already)

There is a structure which achieves all of the above. First, we need
to do a bit of preparation…

Preliminaries

Let N = {0, 1, 2, . . .} be the set of natural numbers. We use Nk to
represent the set {x ∈ N | x can be represented using k bits }, for
k ∈ N.

For example, N0 = {} (no number can be represented in 0
bits) and N1 = {0, 1}.

Let A,B be sets. A function f : A→ B is a set of pairs such that
for any (x, y) ∈ f , x ∈ A, y ∈ B, and for every x ∈ A, there exists
exactly one y ∈ B such that (x, y) ∈ f . In this case, A is the
domain of f and B is the codomain of f . For any x ∈ A, we
denote by f(x) (the value of f at x) the y such that (x, y) ∈ f .

An example function f : {a, b, c} → {1, 2, 3} is
{(a, 1), (b, 1), (c, 2)}. In this case, the domain of f is {a, b, c}, the
codomain of f is {1, 2, 3} and f(a) = 1.

Preliminaries

Let N = {0, 1, 2, . . .} be the set of natural numbers. We use Nk to
represent the set {x ∈ N | x can be represented using k bits }, for
k ∈ N. For example, N0 = {} (no number can be represented in 0
bits) and N1 = {0, 1}.

Let A,B be sets. A function f : A→ B is a set of pairs such that
for any (x, y) ∈ f , x ∈ A, y ∈ B, and for every x ∈ A, there exists
exactly one y ∈ B such that (x, y) ∈ f . In this case, A is the
domain of f and B is the codomain of f . For any x ∈ A, we
denote by f(x) (the value of f at x) the y such that (x, y) ∈ f .

An example function f : {a, b, c} → {1, 2, 3} is
{(a, 1), (b, 1), (c, 2)}. In this case, the domain of f is {a, b, c}, the
codomain of f is {1, 2, 3} and f(a) = 1.

Preliminaries

Let N = {0, 1, 2, . . .} be the set of natural numbers. We use Nk to
represent the set {x ∈ N | x can be represented using k bits }, for
k ∈ N. For example, N0 = {} (no number can be represented in 0
bits) and N1 = {0, 1}.

Let A,B be sets. A function f : A→ B is a set of pairs such that
for any (x, y) ∈ f , x ∈ A, y ∈ B, and for every x ∈ A, there exists
exactly one y ∈ B such that (x, y) ∈ f .

In this case, A is the
domain of f and B is the codomain of f . For any x ∈ A, we
denote by f(x) (the value of f at x) the y such that (x, y) ∈ f .

An example function f : {a, b, c} → {1, 2, 3} is
{(a, 1), (b, 1), (c, 2)}. In this case, the domain of f is {a, b, c}, the
codomain of f is {1, 2, 3} and f(a) = 1.

Preliminaries

Let N = {0, 1, 2, . . .} be the set of natural numbers. We use Nk to
represent the set {x ∈ N | x can be represented using k bits }, for
k ∈ N. For example, N0 = {} (no number can be represented in 0
bits) and N1 = {0, 1}.

Let A,B be sets. A function f : A→ B is a set of pairs such that
for any (x, y) ∈ f , x ∈ A, y ∈ B, and for every x ∈ A, there exists
exactly one y ∈ B such that (x, y) ∈ f . In this case, A is the
domain of f and B is the codomain of f .

For any x ∈ A, we
denote by f(x) (the value of f at x) the y such that (x, y) ∈ f .

An example function f : {a, b, c} → {1, 2, 3} is
{(a, 1), (b, 1), (c, 2)}. In this case, the domain of f is {a, b, c}, the
codomain of f is {1, 2, 3} and f(a) = 1.

Preliminaries

Let N = {0, 1, 2, . . .} be the set of natural numbers. We use Nk to
represent the set {x ∈ N | x can be represented using k bits }, for
k ∈ N. For example, N0 = {} (no number can be represented in 0
bits) and N1 = {0, 1}.

Let A,B be sets. A function f : A→ B is a set of pairs such that
for any (x, y) ∈ f , x ∈ A, y ∈ B, and for every x ∈ A, there exists
exactly one y ∈ B such that (x, y) ∈ f . In this case, A is the
domain of f and B is the codomain of f . For any x ∈ A, we
denote by f(x) (the value of f at x) the y such that (x, y) ∈ f .

An example function f : {a, b, c} → {1, 2, 3} is
{(a, 1), (b, 1), (c, 2)}. In this case, the domain of f is {a, b, c}, the
codomain of f is {1, 2, 3} and f(a) = 1.

Preliminaries

Let N = {0, 1, 2, . . .} be the set of natural numbers. We use Nk to
represent the set {x ∈ N | x can be represented using k bits }, for
k ∈ N. For example, N0 = {} (no number can be represented in 0
bits) and N1 = {0, 1}.

Let A,B be sets. A function f : A→ B is a set of pairs such that
for any (x, y) ∈ f , x ∈ A, y ∈ B, and for every x ∈ A, there exists
exactly one y ∈ B such that (x, y) ∈ f . In this case, A is the
domain of f and B is the codomain of f . For any x ∈ A, we
denote by f(x) (the value of f at x) the y such that (x, y) ∈ f .

An example function f : {a, b, c} → {1, 2, 3} is
{(a, 1), (b, 1), (c, 2)}.

In this case, the domain of f is {a, b, c}, the
codomain of f is {1, 2, 3} and f(a) = 1.

Preliminaries

Let N = {0, 1, 2, . . .} be the set of natural numbers. We use Nk to
represent the set {x ∈ N | x can be represented using k bits }, for
k ∈ N. For example, N0 = {} (no number can be represented in 0
bits) and N1 = {0, 1}.

Let A,B be sets. A function f : A→ B is a set of pairs such that
for any (x, y) ∈ f , x ∈ A, y ∈ B, and for every x ∈ A, there exists
exactly one y ∈ B such that (x, y) ∈ f . In this case, A is the
domain of f and B is the codomain of f . For any x ∈ A, we
denote by f(x) (the value of f at x) the y such that (x, y) ∈ f .

An example function f : {a, b, c} → {1, 2, 3} is
{(a, 1), (b, 1), (c, 2)}. In this case, the domain of f is {a, b, c}, the
codomain of f is {1, 2, 3} and f(a) = 1.

More about functions

Let f : A→ B be a function. We say f is one-to-one if, for any
x, y ∈ A, if x 6= y, then f(x) 6= f(y).

An example one-to-one
function f : {a, b, c} → {1, 2, 3} would be {(a, 1), (b, 2), (c, 3)}.

Lemma
Let A be an infinite set and B be a finite set. There is no function
f : A→ B such that f is one-to-one.

Definition
Let A be a set, and let k ∈ N. A hash function for A is some
f : A→ Nk. We call the value of f(x) the hash of x.

You can think of a hash function as producing a fixed-length
summary of its input.

More about functions

Let f : A→ B be a function. We say f is one-to-one if, for any
x, y ∈ A, if x 6= y, then f(x) 6= f(y). An example one-to-one
function f : {a, b, c} → {1, 2, 3} would be {(a, 1), (b, 2), (c, 3)}.

Lemma
Let A be an infinite set and B be a finite set. There is no function
f : A→ B such that f is one-to-one.

Definition
Let A be a set, and let k ∈ N. A hash function for A is some
f : A→ Nk. We call the value of f(x) the hash of x.

You can think of a hash function as producing a fixed-length
summary of its input.

More about functions

Let f : A→ B be a function. We say f is one-to-one if, for any
x, y ∈ A, if x 6= y, then f(x) 6= f(y). An example one-to-one
function f : {a, b, c} → {1, 2, 3} would be {(a, 1), (b, 2), (c, 3)}.

Lemma
Let A be an infinite set and B be a finite set. There is no function
f : A→ B such that f is one-to-one.

Definition
Let A be a set, and let k ∈ N. A hash function for A is some
f : A→ Nk. We call the value of f(x) the hash of x.

You can think of a hash function as producing a fixed-length
summary of its input.

More about functions

Let f : A→ B be a function. We say f is one-to-one if, for any
x, y ∈ A, if x 6= y, then f(x) 6= f(y). An example one-to-one
function f : {a, b, c} → {1, 2, 3} would be {(a, 1), (b, 2), (c, 3)}.

Lemma
Let A be an infinite set and B be a finite set. There is no function
f : A→ B such that f is one-to-one.

Definition
Let A be a set, and let k ∈ N. A hash function for A is some
f : A→ Nk. We call the value of f(x) the hash of x.

You can think of a hash function as producing a fixed-length
summary of its input.

More about functions

Let f : A→ B be a function. We say f is one-to-one if, for any
x, y ∈ A, if x 6= y, then f(x) 6= f(y). An example one-to-one
function f : {a, b, c} → {1, 2, 3} would be {(a, 1), (b, 2), (c, 3)}.

Lemma
Let A be an infinite set and B be a finite set. There is no function
f : A→ B such that f is one-to-one.

Definition
Let A be a set, and let k ∈ N. A hash function for A is some
f : A→ Nk. We call the value of f(x) the hash of x.

You can think of a hash function as producing a fixed-length
summary of its input.

The hash table

Let K be a set of keys, V be a set of values, and k ∈ N.

A hash
table H for K,V consists of:

I A hash function H.hash : K → Nk

I An array H.buckets of buckets, capable of storing elements
of V . Additionally, len(H.buckets) ≤ 2k, initially full of
nulls.

As H.buckets is an array, we store and update its length similarly
to our original solution, giving us len in O(1) time.

The hash table

Let K be a set of keys, V be a set of values, and k ∈ N. A hash
table H for K,V consists of:

I A hash function H.hash : K → Nk

I An array H.buckets of buckets, capable of storing elements
of V . Additionally, len(H.buckets) ≤ 2k, initially full of
nulls.

As H.buckets is an array, we store and update its length similarly
to our original solution, giving us len in O(1) time.

The hash table

Let K be a set of keys, V be a set of values, and k ∈ N. A hash
table H for K,V consists of:

I A hash function H.hash : K → Nk

I An array H.buckets of buckets, capable of storing elements
of V . Additionally, len(H.buckets) ≤ 2k, initially full of
nulls.

As H.buckets is an array, we store and update its length similarly
to our original solution, giving us len in O(1) time.

The hash table

Let K be a set of keys, V be a set of values, and k ∈ N. A hash
table H for K,V consists of:

I A hash function H.hash : K → Nk

I An array H.buckets of buckets, capable of storing elements
of V . Additionally, len(H.buckets) ≤ 2k, initially full of
nulls.

As H.buckets is an array, we store and update its length similarly
to our original solution, giving us len in O(1) time.

The hash table

Let K be a set of keys, V be a set of values, and k ∈ N. A hash
table H for K,V consists of:

I A hash function H.hash : K → Nk

I An array H.buckets of buckets, capable of storing elements
of V . Additionally, len(H.buckets) ≤ 2k, initially full of
nulls.

As H.buckets is an array, we store and update its length similarly
to our original solution, giving us len in O(1) time.

The hash table

Let K be a set of keys, V be a set of values, and k ∈ N. A hash
table H for K,V consists of:

I A hash function H.hash : K → Nk

I An array H.buckets of buckets, capable of storing elements
of V . Additionally, len(H.buckets) ≤ 2k, initially full of
nulls.

As H.buckets is an array, we store and update its length similarly
to our original solution, giving us len in O(1) time.

put for a hash table

As hash produces a number, we can convert the hash of any key
x into a valid index for buckets by taking hash(x) modulo
len(buckets).

If there is nothing at that index, we simply store
our value there; otherwise, we replace the value there with the one
we are given.

function put(H, k, v)
i← H.hash(k) % len(H.buckets)
if H.buckets[i] = null then

len(H) ← len(H) +1

H.buckets[i]← v

This only requires a constant amount of time, plus however long it
takes to call hash.

put for a hash table

As hash produces a number, we can convert the hash of any key
x into a valid index for buckets by taking hash(x) modulo
len(buckets). If there is nothing at that index, we simply store
our value there; otherwise, we replace the value there with the one
we are given.

function put(H, k, v)
i← H.hash(k) % len(H.buckets)
if H.buckets[i] = null then

len(H) ← len(H) +1

H.buckets[i]← v

This only requires a constant amount of time, plus however long it
takes to call hash.

put for a hash table

As hash produces a number, we can convert the hash of any key
x into a valid index for buckets by taking hash(x) modulo
len(buckets). If there is nothing at that index, we simply store
our value there; otherwise, we replace the value there with the one
we are given.

function put(H, k, v)
i← H.hash(k) % len(H.buckets)
if H.buckets[i] = null then

len(H) ← len(H) +1

H.buckets[i]← v

This only requires a constant amount of time, plus however long it
takes to call hash.

put for a hash table

As hash produces a number, we can convert the hash of any key
x into a valid index for buckets by taking hash(x) modulo
len(buckets). If there is nothing at that index, we simply store
our value there; otherwise, we replace the value there with the one
we are given.

function put(H, k, v)
i← H.hash(k) % len(H.buckets)
if H.buckets[i] = null then

len(H) ← len(H) +1

H.buckets[i]← v

This only requires a constant amount of time, plus however long it
takes to call hash.

get for a hash table

This is very similar to put.

function get(H, k)
i← H.hash(k) % len(H.buckets)
return H.buckets[i]

This also requires a constant amount of time, plus the call time of
hash.

This looks great! However, this is too simplistic, and won’t work in
practice.

get for a hash table

This is very similar to put.

function get(H, k)
i← H.hash(k) % len(H.buckets)
return H.buckets[i]

This also requires a constant amount of time, plus the call time of
hash.

This looks great! However, this is too simplistic, and won’t work in
practice.

get for a hash table

This is very similar to put.

function get(H, k)
i← H.hash(k) % len(H.buckets)
return H.buckets[i]

This also requires a constant amount of time, plus the call time of
hash.

This looks great! However, this is too simplistic, and won’t work in
practice.

get for a hash table

This is very similar to put.

function get(H, k)
i← H.hash(k) % len(H.buckets)
return H.buckets[i]

This also requires a constant amount of time, plus the call time of
hash.

This looks great!

However, this is too simplistic, and won’t work in
practice.

get for a hash table

This is very similar to put.

function get(H, k)
i← H.hash(k) % len(H.buckets)
return H.buckets[i]

This also requires a constant amount of time, plus the call time of
hash.

This looks great! However, this is too simplistic, and won’t work in
practice.

Problems with our hash table

Our design assumes two things:

I We will never try to put more entries into H than
len(H.buckets)

I Given two different keys, H.hash will produce two different
hashes

Both of these are false in general: the former obviously so, the
latter because of our prior lemma, and the fact that most
interesting sets of keys (e.g. all strings) are infinite. Thus, what
will inevitably happen at some point is that our put procedure will
assign the same index to two different keys. This is called a
collision, and it really ruins our day (and design).

Collisions are inevitable — based on this, we have to design with
them in mind. Luckily, our design is easy to fix to take collisions
into account.

Problems with our hash table

Our design assumes two things:
I We will never try to put more entries into H than
len(H.buckets)

I Given two different keys, H.hash will produce two different
hashes

Both of these are false in general: the former obviously so, the
latter because of our prior lemma, and the fact that most
interesting sets of keys (e.g. all strings) are infinite. Thus, what
will inevitably happen at some point is that our put procedure will
assign the same index to two different keys. This is called a
collision, and it really ruins our day (and design).

Collisions are inevitable — based on this, we have to design with
them in mind. Luckily, our design is easy to fix to take collisions
into account.

Problems with our hash table

Our design assumes two things:
I We will never try to put more entries into H than
len(H.buckets)

I Given two different keys, H.hash will produce two different
hashes

Both of these are false in general: the former obviously so, the
latter because of our prior lemma, and the fact that most
interesting sets of keys (e.g. all strings) are infinite. Thus, what
will inevitably happen at some point is that our put procedure will
assign the same index to two different keys. This is called a
collision, and it really ruins our day (and design).

Collisions are inevitable — based on this, we have to design with
them in mind. Luckily, our design is easy to fix to take collisions
into account.

Problems with our hash table

Our design assumes two things:
I We will never try to put more entries into H than
len(H.buckets)

I Given two different keys, H.hash will produce two different
hashes

Both of these are false in general:

the former obviously so, the
latter because of our prior lemma, and the fact that most
interesting sets of keys (e.g. all strings) are infinite. Thus, what
will inevitably happen at some point is that our put procedure will
assign the same index to two different keys. This is called a
collision, and it really ruins our day (and design).

Collisions are inevitable — based on this, we have to design with
them in mind. Luckily, our design is easy to fix to take collisions
into account.

Problems with our hash table

Our design assumes two things:
I We will never try to put more entries into H than
len(H.buckets)

I Given two different keys, H.hash will produce two different
hashes

Both of these are false in general: the former obviously so, the
latter because of our prior lemma, and the fact that most
interesting sets of keys (e.g. all strings) are infinite.

Thus, what
will inevitably happen at some point is that our put procedure will
assign the same index to two different keys. This is called a
collision, and it really ruins our day (and design).

Collisions are inevitable — based on this, we have to design with
them in mind. Luckily, our design is easy to fix to take collisions
into account.

Problems with our hash table

Our design assumes two things:
I We will never try to put more entries into H than
len(H.buckets)

I Given two different keys, H.hash will produce two different
hashes

Both of these are false in general: the former obviously so, the
latter because of our prior lemma, and the fact that most
interesting sets of keys (e.g. all strings) are infinite. Thus, what
will inevitably happen at some point is that our put procedure will
assign the same index to two different keys.

This is called a
collision, and it really ruins our day (and design).

Collisions are inevitable — based on this, we have to design with
them in mind. Luckily, our design is easy to fix to take collisions
into account.

Problems with our hash table

Our design assumes two things:
I We will never try to put more entries into H than
len(H.buckets)

I Given two different keys, H.hash will produce two different
hashes

Both of these are false in general: the former obviously so, the
latter because of our prior lemma, and the fact that most
interesting sets of keys (e.g. all strings) are infinite. Thus, what
will inevitably happen at some point is that our put procedure will
assign the same index to two different keys. This is called a
collision, and it really ruins our day (and design).

Collisions are inevitable — based on this, we have to design with
them in mind. Luckily, our design is easy to fix to take collisions
into account.

Problems with our hash table

Our design assumes two things:
I We will never try to put more entries into H than
len(H.buckets)

I Given two different keys, H.hash will produce two different
hashes

Both of these are false in general: the former obviously so, the
latter because of our prior lemma, and the fact that most
interesting sets of keys (e.g. all strings) are infinite. Thus, what
will inevitably happen at some point is that our put procedure will
assign the same index to two different keys. This is called a
collision, and it really ruins our day (and design).

Collisions are inevitable — based on this, we have to design with
them in mind.

Luckily, our design is easy to fix to take collisions
into account.

Problems with our hash table

Our design assumes two things:
I We will never try to put more entries into H than
len(H.buckets)

I Given two different keys, H.hash will produce two different
hashes

Both of these are false in general: the former obviously so, the
latter because of our prior lemma, and the fact that most
interesting sets of keys (e.g. all strings) are infinite. Thus, what
will inevitably happen at some point is that our put procedure will
assign the same index to two different keys. This is called a
collision, and it really ruins our day (and design).

Collisions are inevitable — based on this, we have to design with
them in mind. Luckily, our design is easy to fix to take collisions
into account.

Hash chaining

Instead of buckets storing values, each index stores a linked list
of entries, which start out empty (a bucket list).

After we calculate
an index, we work with the list at that position (just like with our
first attempt), for both of our operations.

As long as our bucket lists fill up roughly evenly, the time required
for get and put will be roughly O(n

m), where m is the size of our
bucket array. This is pretty good in practice, as long as we don’t
try to crowd too many entries into our hash table.

How can we be sure that our bucket lists will fill evenly? A
function which hashes everything to 1 is a hash function, and most
certainly won’t cause our bucket lists to fill evenly!

Hash chaining

Instead of buckets storing values, each index stores a linked list
of entries, which start out empty (a bucket list). After we calculate
an index, we work with the list at that position (just like with our
first attempt), for both of our operations.

As long as our bucket lists fill up roughly evenly, the time required
for get and put will be roughly O(n

m), where m is the size of our
bucket array. This is pretty good in practice, as long as we don’t
try to crowd too many entries into our hash table.

How can we be sure that our bucket lists will fill evenly? A
function which hashes everything to 1 is a hash function, and most
certainly won’t cause our bucket lists to fill evenly!

Hash chaining

Instead of buckets storing values, each index stores a linked list
of entries, which start out empty (a bucket list). After we calculate
an index, we work with the list at that position (just like with our
first attempt), for both of our operations.

As long as our bucket lists fill up roughly evenly, the time required
for get and put will be roughly O(n

m), where m is the size of our
bucket array.

This is pretty good in practice, as long as we don’t
try to crowd too many entries into our hash table.

How can we be sure that our bucket lists will fill evenly? A
function which hashes everything to 1 is a hash function, and most
certainly won’t cause our bucket lists to fill evenly!

Hash chaining

Instead of buckets storing values, each index stores a linked list
of entries, which start out empty (a bucket list). After we calculate
an index, we work with the list at that position (just like with our
first attempt), for both of our operations.

As long as our bucket lists fill up roughly evenly, the time required
for get and put will be roughly O(n

m), where m is the size of our
bucket array. This is pretty good in practice, as long as we don’t
try to crowd too many entries into our hash table.

How can we be sure that our bucket lists will fill evenly? A
function which hashes everything to 1 is a hash function, and most
certainly won’t cause our bucket lists to fill evenly!

Hash chaining

Instead of buckets storing values, each index stores a linked list
of entries, which start out empty (a bucket list). After we calculate
an index, we work with the list at that position (just like with our
first attempt), for both of our operations.

As long as our bucket lists fill up roughly evenly, the time required
for get and put will be roughly O(n

m), where m is the size of our
bucket array. This is pretty good in practice, as long as we don’t
try to crowd too many entries into our hash table.

How can we be sure that our bucket lists will fill evenly?

A
function which hashes everything to 1 is a hash function, and most
certainly won’t cause our bucket lists to fill evenly!

Hash chaining

Instead of buckets storing values, each index stores a linked list
of entries, which start out empty (a bucket list). After we calculate
an index, we work with the list at that position (just like with our
first attempt), for both of our operations.

As long as our bucket lists fill up roughly evenly, the time required
for get and put will be roughly O(n

m), where m is the size of our
bucket array. This is pretty good in practice, as long as we don’t
try to crowd too many entries into our hash table.

How can we be sure that our bucket lists will fill evenly? A
function which hashes everything to 1 is a hash function, and most
certainly won’t cause our bucket lists to fill evenly!

Good hash functions

In order to make sure our buckets fill evenly, we need more from
our hash functions. Specifically, for a hash function f : A→ Nk,
we would like f to have one (or both!) of the following properties:

Definition
f is uniform if, given a random x ∈ A and any specific y ∈ Nk,
there is a 1

2k
probability that f(x) = y.

Definition
f exhibits the avalanche effect if, for any x, y ∈ A which differ by
1 bit, f(x), f(y) will differ by k

2 bits.

These guarantee that, when the number of entries gets large, there
is a high probability that they will be distributed evenly over all
bucket lists.

Good hash functions

In order to make sure our buckets fill evenly, we need more from
our hash functions.

Specifically, for a hash function f : A→ Nk,
we would like f to have one (or both!) of the following properties:

Definition
f is uniform if, given a random x ∈ A and any specific y ∈ Nk,
there is a 1

2k
probability that f(x) = y.

Definition
f exhibits the avalanche effect if, for any x, y ∈ A which differ by
1 bit, f(x), f(y) will differ by k

2 bits.

These guarantee that, when the number of entries gets large, there
is a high probability that they will be distributed evenly over all
bucket lists.

Good hash functions

In order to make sure our buckets fill evenly, we need more from
our hash functions. Specifically, for a hash function f : A→ Nk,
we would like f to have one (or both!) of the following properties:

Definition
f is uniform if, given a random x ∈ A and any specific y ∈ Nk,
there is a 1

2k
probability that f(x) = y.

Definition
f exhibits the avalanche effect if, for any x, y ∈ A which differ by
1 bit, f(x), f(y) will differ by k

2 bits.

These guarantee that, when the number of entries gets large, there
is a high probability that they will be distributed evenly over all
bucket lists.

Good hash functions

In order to make sure our buckets fill evenly, we need more from
our hash functions. Specifically, for a hash function f : A→ Nk,
we would like f to have one (or both!) of the following properties:

Definition
f is uniform if, given a random x ∈ A and any specific y ∈ Nk,
there is a 1

2k
probability that f(x) = y.

Definition
f exhibits the avalanche effect if, for any x, y ∈ A which differ by
1 bit, f(x), f(y) will differ by k

2 bits.

These guarantee that, when the number of entries gets large, there
is a high probability that they will be distributed evenly over all
bucket lists.

Good hash functions

In order to make sure our buckets fill evenly, we need more from
our hash functions. Specifically, for a hash function f : A→ Nk,
we would like f to have one (or both!) of the following properties:

Definition
f is uniform if, given a random x ∈ A and any specific y ∈ Nk,
there is a 1

2k
probability that f(x) = y.

Definition
f exhibits the avalanche effect if, for any x, y ∈ A which differ by
1 bit, f(x), f(y) will differ by k

2 bits.

These guarantee that, when the number of entries gets large, there
is a high probability that they will be distributed evenly over all
bucket lists.

Good hash functions

In order to make sure our buckets fill evenly, we need more from
our hash functions. Specifically, for a hash function f : A→ Nk,
we would like f to have one (or both!) of the following properties:

Definition
f is uniform if, given a random x ∈ A and any specific y ∈ Nk,
there is a 1

2k
probability that f(x) = y.

Definition
f exhibits the avalanche effect if, for any x, y ∈ A which differ by
1 bit, f(x), f(y) will differ by k

2 bits.

These guarantee that, when the number of entries gets large, there
is a high probability that they will be distributed evenly over all
bucket lists.

Limitations of hash tables

I For small hash tables, the cost of hashing overwhelms
everything else (making them slower than array or list-based
approaches)

I Finding a good hash function can be difficult, especially for
variable-length keys (but easier now with cryptographic
hashing and universal hash functions)

I No order for entries (or rather, no specific order)
I Cache-unfriendly due to bucket lists (but alternative

approaches exist which don’t require them)

Overall, hash tables work best for dictionaries with large numbers
of entries and simple fixed-length keys. This is not necessarily a
problem, as a lot of real data fits these requirements. However, as
always, know your data and your tradeoffs!

Limitations of hash tables

I For small hash tables, the cost of hashing overwhelms
everything else (making them slower than array or list-based
approaches)

I Finding a good hash function can be difficult, especially for
variable-length keys (but easier now with cryptographic
hashing and universal hash functions)

I No order for entries (or rather, no specific order)
I Cache-unfriendly due to bucket lists (but alternative

approaches exist which don’t require them)

Overall, hash tables work best for dictionaries with large numbers
of entries and simple fixed-length keys. This is not necessarily a
problem, as a lot of real data fits these requirements. However, as
always, know your data and your tradeoffs!

Limitations of hash tables

I For small hash tables, the cost of hashing overwhelms
everything else (making them slower than array or list-based
approaches)

I Finding a good hash function can be difficult, especially for
variable-length keys (but easier now with cryptographic
hashing and universal hash functions)

I No order for entries (or rather, no specific order)
I Cache-unfriendly due to bucket lists (but alternative

approaches exist which don’t require them)

Overall, hash tables work best for dictionaries with large numbers
of entries and simple fixed-length keys. This is not necessarily a
problem, as a lot of real data fits these requirements. However, as
always, know your data and your tradeoffs!

Limitations of hash tables

I For small hash tables, the cost of hashing overwhelms
everything else (making them slower than array or list-based
approaches)

I Finding a good hash function can be difficult, especially for
variable-length keys (but easier now with cryptographic
hashing and universal hash functions)

I No order for entries (or rather, no specific order)

I Cache-unfriendly due to bucket lists (but alternative
approaches exist which don’t require them)

Overall, hash tables work best for dictionaries with large numbers
of entries and simple fixed-length keys. This is not necessarily a
problem, as a lot of real data fits these requirements. However, as
always, know your data and your tradeoffs!

Limitations of hash tables

I For small hash tables, the cost of hashing overwhelms
everything else (making them slower than array or list-based
approaches)

I Finding a good hash function can be difficult, especially for
variable-length keys (but easier now with cryptographic
hashing and universal hash functions)

I No order for entries (or rather, no specific order)
I Cache-unfriendly due to bucket lists (but alternative

approaches exist which don’t require them)

Overall, hash tables work best for dictionaries with large numbers
of entries and simple fixed-length keys. This is not necessarily a
problem, as a lot of real data fits these requirements. However, as
always, know your data and your tradeoffs!

Limitations of hash tables

I For small hash tables, the cost of hashing overwhelms
everything else (making them slower than array or list-based
approaches)

I Finding a good hash function can be difficult, especially for
variable-length keys (but easier now with cryptographic
hashing and universal hash functions)

I No order for entries (or rather, no specific order)
I Cache-unfriendly due to bucket lists (but alternative

approaches exist which don’t require them)

Overall, hash tables work best for dictionaries with large numbers
of entries and simple fixed-length keys. This is not necessarily a
problem, as a lot of real data fits these requirements.

However, as
always, know your data and your tradeoffs!

Limitations of hash tables

I For small hash tables, the cost of hashing overwhelms
everything else (making them slower than array or list-based
approaches)

I Finding a good hash function can be difficult, especially for
variable-length keys (but easier now with cryptographic
hashing and universal hash functions)

I No order for entries (or rather, no specific order)
I Cache-unfriendly due to bucket lists (but alternative

approaches exist which don’t require them)

Overall, hash tables work best for dictionaries with large numbers
of entries and simple fixed-length keys. This is not necessarily a
problem, as a lot of real data fits these requirements. However, as
always, know your data and your tradeoffs!

Questions?

	The dictionary problem
	Hash functions
	The hash table
	Questions

