
Sorting
Or: some of what Koz spent about two years of his life on

Koz Ross

5th October, 2017



Outline

Introduction

Defining sorting precisely

Some sorting algorithms

Limits on performance

Questions



What is sorting and why we care

Sorting is putting things in some kind of order.

This is very useful,
for a range of reasons:

I Some tasks are impossible without it (e.g. finding the median)
I Some tasks are much easier on sorted data (e.g. searching for

a specific item)
I Generalizes many other tasks (e.g. top-k queries)
I Sorting is used everywhere

As a result, sorting is one of the oldest computer science problems
we have, and has been studied to death.



What is sorting and why we care

Sorting is putting things in some kind of order. This is very useful,
for a range of reasons:

I Some tasks are impossible without it (e.g. finding the median)
I Some tasks are much easier on sorted data (e.g. searching for

a specific item)
I Generalizes many other tasks (e.g. top-k queries)
I Sorting is used everywhere

As a result, sorting is one of the oldest computer science problems
we have, and has been studied to death.



What is sorting and why we care

Sorting is putting things in some kind of order. This is very useful,
for a range of reasons:

I Some tasks are impossible without it (e.g. finding the median)

I Some tasks are much easier on sorted data (e.g. searching for
a specific item)

I Generalizes many other tasks (e.g. top-k queries)
I Sorting is used everywhere

As a result, sorting is one of the oldest computer science problems
we have, and has been studied to death.



What is sorting and why we care

Sorting is putting things in some kind of order. This is very useful,
for a range of reasons:

I Some tasks are impossible without it (e.g. finding the median)
I Some tasks are much easier on sorted data (e.g. searching for

a specific item)

I Generalizes many other tasks (e.g. top-k queries)
I Sorting is used everywhere

As a result, sorting is one of the oldest computer science problems
we have, and has been studied to death.



What is sorting and why we care

Sorting is putting things in some kind of order. This is very useful,
for a range of reasons:

I Some tasks are impossible without it (e.g. finding the median)
I Some tasks are much easier on sorted data (e.g. searching for

a specific item)
I Generalizes many other tasks (e.g. top-k queries)

I Sorting is used everywhere

As a result, sorting is one of the oldest computer science problems
we have, and has been studied to death.



What is sorting and why we care

Sorting is putting things in some kind of order. This is very useful,
for a range of reasons:

I Some tasks are impossible without it (e.g. finding the median)
I Some tasks are much easier on sorted data (e.g. searching for

a specific item)
I Generalizes many other tasks (e.g. top-k queries)
I Sorting is used everywhere

As a result, sorting is one of the oldest computer science problems
we have, and has been studied to death.



What is sorting and why we care

Sorting is putting things in some kind of order. This is very useful,
for a range of reasons:

I Some tasks are impossible without it (e.g. finding the median)
I Some tasks are much easier on sorted data (e.g. searching for

a specific item)
I Generalizes many other tasks (e.g. top-k queries)
I Sorting is used everywhere

As a result, sorting is one of the oldest computer science problems
we have, and has been studied to death.



A little tour

I A precise definition of sorting
I Some known sorting algorithms
I Inherent limit on the performance of any algorithm
I Limitations of this result

Without further ado, let’s commence!



A little tour

I A precise definition of sorting

I Some known sorting algorithms
I Inherent limit on the performance of any algorithm
I Limitations of this result

Without further ado, let’s commence!



A little tour

I A precise definition of sorting
I Some known sorting algorithms

I Inherent limit on the performance of any algorithm
I Limitations of this result

Without further ado, let’s commence!



A little tour

I A precise definition of sorting
I Some known sorting algorithms
I Inherent limit on the performance of any algorithm

I Limitations of this result

Without further ado, let’s commence!



A little tour

I A precise definition of sorting
I Some known sorting algorithms
I Inherent limit on the performance of any algorithm
I Limitations of this result

Without further ado, let’s commence!



A little tour

I A precise definition of sorting
I Some known sorting algorithms
I Inherent limit on the performance of any algorithm
I Limitations of this result

Without further ado, let’s commence!



Some basics

Let N = {0, 1, 2, . . .} be the set of natural numbers.

A n-tuple
t = (a0, a1, . . . , an−1) is a collection of elements with fixed
positions. We use t[i] to denote ai for i ∈ 0, 1, . . . , n− 1.

Definition
Let A,B be sets. The Cartesian product of A and B is the set

A×B = {(x, y) | x ∈ A, y ∈ B}

Example
Let A = {1, 2, 3}, B = {a, b}. A×B is

{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}

We denote the special case of A×A as A2.



Some basics

Let N = {0, 1, 2, . . .} be the set of natural numbers. A n-tuple
t = (a0, a1, . . . , an−1) is a collection of elements with fixed
positions. We use t[i] to denote ai for i ∈ 0, 1, . . . , n− 1.

Definition
Let A,B be sets. The Cartesian product of A and B is the set

A×B = {(x, y) | x ∈ A, y ∈ B}

Example
Let A = {1, 2, 3}, B = {a, b}. A×B is

{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}

We denote the special case of A×A as A2.



Some basics

Let N = {0, 1, 2, . . .} be the set of natural numbers. A n-tuple
t = (a0, a1, . . . , an−1) is a collection of elements with fixed
positions. We use t[i] to denote ai for i ∈ 0, 1, . . . , n− 1.

Definition
Let A,B be sets. The Cartesian product of A and B is the set

A×B = {(x, y) | x ∈ A, y ∈ B}

Example
Let A = {1, 2, 3}, B = {a, b}. A×B is

{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}

We denote the special case of A×A as A2.



Some basics

Let N = {0, 1, 2, . . .} be the set of natural numbers. A n-tuple
t = (a0, a1, . . . , an−1) is a collection of elements with fixed
positions. We use t[i] to denote ai for i ∈ 0, 1, . . . , n− 1.

Definition
Let A,B be sets. The Cartesian product of A and B is the set

A×B = {(x, y) | x ∈ A, y ∈ B}

Example
Let A = {1, 2, 3}, B = {a, b}. A×B is

{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}

We denote the special case of A×A as A2.



Some basics

Let N = {0, 1, 2, . . .} be the set of natural numbers. A n-tuple
t = (a0, a1, . . . , an−1) is a collection of elements with fixed
positions. We use t[i] to denote ai for i ∈ 0, 1, . . . , n− 1.

Definition
Let A,B be sets. The Cartesian product of A and B is the set

A×B = {(x, y) | x ∈ A, y ∈ B}

Example
Let A = {1, 2, 3}, B = {a, b}. A×B is

{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}

We denote the special case of A×A as A2.



Relations

Definition
Let A,B be sets. A (binary) relation between A and B is
R ⊆ A×B. For x ∈ A, y ∈ B, we write xRy to mean (x, y) ∈ R.

We can think of a relation as explicitly spelling out what things in
A and B are related.



Relations

Definition
Let A,B be sets. A (binary) relation between A and B is
R ⊆ A×B. For x ∈ A, y ∈ B, we write xRy to mean (x, y) ∈ R.

We can think of a relation as explicitly spelling out what things in
A and B are related.



Ordering

Definition
Let S be a set. A (non-strict) ordering on S is a binary relation
5⊆ S2, such that 5 has the following properties:

Antisymmetry: For any a, b ∈ S, if a 5 b and b 5 a, then a = b;
Transitivity: For any a, b, c ∈ S, if a 5 b and b 5 c, then a 5 c;

and
Totality: For any a, b ∈ S, a 5 b or b 5 a.

We can read a 5 b as ‘a does not come after b according to the
ordering 5’. We can have multiple orderings on various sets.



Ordering

Definition
Let S be a set. A (non-strict) ordering on S is a binary relation
5⊆ S2, such that 5 has the following properties:

Antisymmetry: For any a, b ∈ S, if a 5 b and b 5 a, then a = b;

Transitivity: For any a, b, c ∈ S, if a 5 b and b 5 c, then a 5 c;
and

Totality: For any a, b ∈ S, a 5 b or b 5 a.

We can read a 5 b as ‘a does not come after b according to the
ordering 5’. We can have multiple orderings on various sets.



Ordering

Definition
Let S be a set. A (non-strict) ordering on S is a binary relation
5⊆ S2, such that 5 has the following properties:

Antisymmetry: For any a, b ∈ S, if a 5 b and b 5 a, then a = b;
Transitivity: For any a, b, c ∈ S, if a 5 b and b 5 c, then a 5 c;

and

Totality: For any a, b ∈ S, a 5 b or b 5 a.

We can read a 5 b as ‘a does not come after b according to the
ordering 5’. We can have multiple orderings on various sets.



Ordering

Definition
Let S be a set. A (non-strict) ordering on S is a binary relation
5⊆ S2, such that 5 has the following properties:

Antisymmetry: For any a, b ∈ S, if a 5 b and b 5 a, then a = b;
Transitivity: For any a, b, c ∈ S, if a 5 b and b 5 c, then a 5 c;

and
Totality: For any a, b ∈ S, a 5 b or b 5 a.

We can read a 5 b as ‘a does not come after b according to the
ordering 5’. We can have multiple orderings on various sets.



Ordering

Definition
Let S be a set. A (non-strict) ordering on S is a binary relation
5⊆ S2, such that 5 has the following properties:

Antisymmetry: For any a, b ∈ S, if a 5 b and b 5 a, then a = b;
Transitivity: For any a, b, c ∈ S, if a 5 b and b 5 c, then a 5 c;

and
Totality: For any a, b ∈ S, a 5 b or b 5 a.

We can read a 5 b as ‘a does not come after b according to the
ordering 5’.

We can have multiple orderings on various sets.



Ordering

Definition
Let S be a set. A (non-strict) ordering on S is a binary relation
5⊆ S2, such that 5 has the following properties:

Antisymmetry: For any a, b ∈ S, if a 5 b and b 5 a, then a = b;
Transitivity: For any a, b, c ∈ S, if a 5 b and b 5 c, then a 5 c;

and
Totality: For any a, b ∈ S, a 5 b or b 5 a.

We can read a 5 b as ‘a does not come after b according to the
ordering 5’. We can have multiple orderings on various sets.



Ordering examples

Consider N. We can see that ≤ is an ordering on N:

Antisymmetry: If we have two natural numbers x, y such that
x ≤ y and y ≤ x, they must be equal;

Transitivity: We can ‘chain together’ ≤ in exactly this way;
Totality: Any two natural numbers can be compared with ≤.

We can also do something similar with ≥. If we look at other sets,
we get many other orderings (e.g. lex and reverse lex for strings).



Ordering examples

Consider N. We can see that ≤ is an ordering on N:

Antisymmetry: If we have two natural numbers x, y such that
x ≤ y and y ≤ x, they must be equal;

Transitivity: We can ‘chain together’ ≤ in exactly this way;
Totality: Any two natural numbers can be compared with ≤.

We can also do something similar with ≥. If we look at other sets,
we get many other orderings (e.g. lex and reverse lex for strings).



Ordering examples

Consider N. We can see that ≤ is an ordering on N:

Antisymmetry: If we have two natural numbers x, y such that
x ≤ y and y ≤ x, they must be equal;

Transitivity: We can ‘chain together’ ≤ in exactly this way;

Totality: Any two natural numbers can be compared with ≤.

We can also do something similar with ≥. If we look at other sets,
we get many other orderings (e.g. lex and reverse lex for strings).



Ordering examples

Consider N. We can see that ≤ is an ordering on N:

Antisymmetry: If we have two natural numbers x, y such that
x ≤ y and y ≤ x, they must be equal;

Transitivity: We can ‘chain together’ ≤ in exactly this way;
Totality: Any two natural numbers can be compared with ≤.

We can also do something similar with ≥. If we look at other sets,
we get many other orderings (e.g. lex and reverse lex for strings).



Ordering examples

Consider N. We can see that ≤ is an ordering on N:

Antisymmetry: If we have two natural numbers x, y such that
x ≤ y and y ≤ x, they must be equal;

Transitivity: We can ‘chain together’ ≤ in exactly this way;
Totality: Any two natural numbers can be compared with ≤.

We can also do something similar with ≥. If we look at other sets,
we get many other orderings (e.g. lex and reverse lex for strings).



Defining sorting

Definition
Let S be a set, t be an n-tuple of elements of S, and 5 be an
ordering on S. Given t,5 as input, the sorting problem requires us
to return an n-tuple t′ such that:

I Every element of t is an element of t′; and
I For any i, j ∈ 0, 1, . . . , n− 1, if i ≤ j then t′[i] 5 t′[j].

Put simply, the sorting problem requires us to put t ‘in order’
according to 5.



Defining sorting

Definition
Let S be a set, t be an n-tuple of elements of S, and 5 be an
ordering on S. Given t,5 as input, the sorting problem requires us
to return an n-tuple t′ such that:

I Every element of t is an element of t′; and
I For any i, j ∈ 0, 1, . . . , n− 1, if i ≤ j then t′[i] 5 t′[j].

Put simply, the sorting problem requires us to put t ‘in order’
according to 5.



Defining sorting

Definition
Let S be a set, t be an n-tuple of elements of S, and 5 be an
ordering on S. Given t,5 as input, the sorting problem requires us
to return an n-tuple t′ such that:

I Every element of t is an element of t′; and

I For any i, j ∈ 0, 1, . . . , n− 1, if i ≤ j then t′[i] 5 t′[j].

Put simply, the sorting problem requires us to put t ‘in order’
according to 5.



Defining sorting

Definition
Let S be a set, t be an n-tuple of elements of S, and 5 be an
ordering on S. Given t,5 as input, the sorting problem requires us
to return an n-tuple t′ such that:

I Every element of t is an element of t′; and
I For any i, j ∈ 0, 1, . . . , n− 1, if i ≤ j then t′[i] 5 t′[j].

Put simply, the sorting problem requires us to put t ‘in order’
according to 5.



Defining sorting

Definition
Let S be a set, t be an n-tuple of elements of S, and 5 be an
ordering on S. Given t,5 as input, the sorting problem requires us
to return an n-tuple t′ such that:

I Every element of t is an element of t′; and
I For any i, j ∈ 0, 1, . . . , n− 1, if i ≤ j then t′[i] 5 t′[j].

Put simply, the sorting problem requires us to put t ‘in order’
according to 5.



Shifting to algorithms

Since we’re dealing with algorithms, we have to be precise with our
assumptions. We also want to be as general as possible.

Definition
A comparison sort is an algorithm for the sorting problem that
does not make any additional assumptions about the input tuple,
aside from what is required by the sorting problem.

We can view this in several ways:
I Most general kind of sort (assumes only what it must)
I Most ‘difficult’ sort (no additional ‘hacks’ we can lean on

based on the data)
I Closest to a ‘pure’ view of how hard the sorting problem is (no

‘extra baggage’ to confuse analysis)



Shifting to algorithms

Since we’re dealing with algorithms, we have to be precise with our
assumptions. We also want to be as general as possible.

Definition
A comparison sort is an algorithm for the sorting problem that
does not make any additional assumptions about the input tuple,
aside from what is required by the sorting problem.

We can view this in several ways:
I Most general kind of sort (assumes only what it must)
I Most ‘difficult’ sort (no additional ‘hacks’ we can lean on

based on the data)
I Closest to a ‘pure’ view of how hard the sorting problem is (no

‘extra baggage’ to confuse analysis)



Shifting to algorithms

Since we’re dealing with algorithms, we have to be precise with our
assumptions. We also want to be as general as possible.

Definition
A comparison sort is an algorithm for the sorting problem that
does not make any additional assumptions about the input tuple,
aside from what is required by the sorting problem.

We can view this in several ways:

I Most general kind of sort (assumes only what it must)
I Most ‘difficult’ sort (no additional ‘hacks’ we can lean on

based on the data)
I Closest to a ‘pure’ view of how hard the sorting problem is (no

‘extra baggage’ to confuse analysis)



Shifting to algorithms

Since we’re dealing with algorithms, we have to be precise with our
assumptions. We also want to be as general as possible.

Definition
A comparison sort is an algorithm for the sorting problem that
does not make any additional assumptions about the input tuple,
aside from what is required by the sorting problem.

We can view this in several ways:
I Most general kind of sort (assumes only what it must)

I Most ‘difficult’ sort (no additional ‘hacks’ we can lean on
based on the data)

I Closest to a ‘pure’ view of how hard the sorting problem is (no
‘extra baggage’ to confuse analysis)



Shifting to algorithms

Since we’re dealing with algorithms, we have to be precise with our
assumptions. We also want to be as general as possible.

Definition
A comparison sort is an algorithm for the sorting problem that
does not make any additional assumptions about the input tuple,
aside from what is required by the sorting problem.

We can view this in several ways:
I Most general kind of sort (assumes only what it must)
I Most ‘difficult’ sort (no additional ‘hacks’ we can lean on

based on the data)

I Closest to a ‘pure’ view of how hard the sorting problem is (no
‘extra baggage’ to confuse analysis)



Shifting to algorithms

Since we’re dealing with algorithms, we have to be precise with our
assumptions. We also want to be as general as possible.

Definition
A comparison sort is an algorithm for the sorting problem that
does not make any additional assumptions about the input tuple,
aside from what is required by the sorting problem.

We can view this in several ways:
I Most general kind of sort (assumes only what it must)
I Most ‘difficult’ sort (no additional ‘hacks’ we can lean on

based on the data)
I Closest to a ‘pure’ view of how hard the sorting problem is (no

‘extra baggage’ to confuse analysis)



Our approach to analysis

We’ll take the ‘default’ for algorithm analysis:

RAM model: I Serial processor (can only do one thing at a
time)

I Non-hierarchical, addressable memory
I Primitive operations take constant time

Asymptotic: I Based on the size of the input
I Care about the growth rate of the time required

Worst-case: I If we’d have different results for same-size
inputs, take the worst one

I All input tuple elements are unique
I Tuple elements are ‘random’ (i.e. no sorted

sub-sequences)



Our approach to analysis

We’ll take the ‘default’ for algorithm analysis:

RAM model: I Serial processor (can only do one thing at a
time)

I Non-hierarchical, addressable memory
I Primitive operations take constant time

Asymptotic: I Based on the size of the input
I Care about the growth rate of the time required

Worst-case: I If we’d have different results for same-size
inputs, take the worst one

I All input tuple elements are unique
I Tuple elements are ‘random’ (i.e. no sorted

sub-sequences)



Our approach to analysis

We’ll take the ‘default’ for algorithm analysis:

RAM model: I Serial processor (can only do one thing at a
time)

I Non-hierarchical, addressable memory

I Primitive operations take constant time
Asymptotic: I Based on the size of the input

I Care about the growth rate of the time required
Worst-case: I If we’d have different results for same-size

inputs, take the worst one
I All input tuple elements are unique
I Tuple elements are ‘random’ (i.e. no sorted

sub-sequences)



Our approach to analysis

We’ll take the ‘default’ for algorithm analysis:

RAM model: I Serial processor (can only do one thing at a
time)

I Non-hierarchical, addressable memory
I Primitive operations take constant time

Asymptotic: I Based on the size of the input
I Care about the growth rate of the time required

Worst-case: I If we’d have different results for same-size
inputs, take the worst one

I All input tuple elements are unique
I Tuple elements are ‘random’ (i.e. no sorted

sub-sequences)



Our approach to analysis

We’ll take the ‘default’ for algorithm analysis:

RAM model: I Serial processor (can only do one thing at a
time)

I Non-hierarchical, addressable memory
I Primitive operations take constant time

Asymptotic: I Based on the size of the input

I Care about the growth rate of the time required
Worst-case: I If we’d have different results for same-size

inputs, take the worst one
I All input tuple elements are unique
I Tuple elements are ‘random’ (i.e. no sorted

sub-sequences)



Our approach to analysis

We’ll take the ‘default’ for algorithm analysis:

RAM model: I Serial processor (can only do one thing at a
time)

I Non-hierarchical, addressable memory
I Primitive operations take constant time

Asymptotic: I Based on the size of the input
I Care about the growth rate of the time required

Worst-case: I If we’d have different results for same-size
inputs, take the worst one

I All input tuple elements are unique
I Tuple elements are ‘random’ (i.e. no sorted

sub-sequences)



Our approach to analysis

We’ll take the ‘default’ for algorithm analysis:

RAM model: I Serial processor (can only do one thing at a
time)

I Non-hierarchical, addressable memory
I Primitive operations take constant time

Asymptotic: I Based on the size of the input
I Care about the growth rate of the time required

Worst-case: I If we’d have different results for same-size
inputs, take the worst one

I All input tuple elements are unique
I Tuple elements are ‘random’ (i.e. no sorted

sub-sequences)



Our approach to analysis

We’ll take the ‘default’ for algorithm analysis:

RAM model: I Serial processor (can only do one thing at a
time)

I Non-hierarchical, addressable memory
I Primitive operations take constant time

Asymptotic: I Based on the size of the input
I Care about the growth rate of the time required

Worst-case: I If we’d have different results for same-size
inputs, take the worst one

I All input tuple elements are unique

I Tuple elements are ‘random’ (i.e. no sorted
sub-sequences)



Our approach to analysis

We’ll take the ‘default’ for algorithm analysis:

RAM model: I Serial processor (can only do one thing at a
time)

I Non-hierarchical, addressable memory
I Primitive operations take constant time

Asymptotic: I Based on the size of the input
I Care about the growth rate of the time required

Worst-case: I If we’d have different results for same-size
inputs, take the worst one

I All input tuple elements are unique
I Tuple elements are ‘random’ (i.e. no sorted

sub-sequences)



Algorithms we know

‘Slow’ (O(n2)): Bubble sort, insertion sort, selection sort,
etc.

‘Fast’ (O(n log(n))): Mergesort, quicksort, introsort, timesort,
etc.

Can we do better than this? Is there any algorithm that can beat
the ‘fast’ ones? No.



Algorithms we know

‘Slow’ (O(n2)): Bubble sort, insertion sort, selection sort,
etc.

‘Fast’ (O(n log(n))): Mergesort, quicksort, introsort, timesort,
etc.

Can we do better than this? Is there any algorithm that can beat
the ‘fast’ ones? No.



Algorithms we know

‘Slow’ (O(n2)): Bubble sort, insertion sort, selection sort,
etc.

‘Fast’ (O(n log(n))): Mergesort, quicksort, introsort, timesort,
etc.

Can we do better than this? Is there any algorithm that can beat
the ‘fast’ ones? No.



Algorithms we know

‘Slow’ (O(n2)): Bubble sort, insertion sort, selection sort,
etc.

‘Fast’ (O(n log(n))): Mergesort, quicksort, introsort, timesort,
etc.

Can we do better than this? Is there any algorithm that can beat
the ‘fast’ ones?

No.



Algorithms we know

‘Slow’ (O(n2)): Bubble sort, insertion sort, selection sort,
etc.

‘Fast’ (O(n log(n))): Mergesort, quicksort, introsort, timesort,
etc.

Can we do better than this? Is there any algorithm that can beat
the ‘fast’ ones? No.





Factorials and permutations

Definition
Let n ∈ N. The factorial of n is

n! =

{
1 if n = 0; and
n · n− 1 otherwise

Alternatively,

n! =

n∏
i=1

i = 1× 2× · · · × n

Definition
Let S be a set of n elements. A permutation of S is an n-tuple of
unique elements of S.

Example
Two possible permutations of S = {1, 2, 3} are (1, 3, 2), (2, 3, 1).



Factorials and permutations

Definition
Let n ∈ N. The factorial of n is

n! =

{
1 if n = 0; and
n · n− 1 otherwise

Alternatively,

n! =

n∏
i=1

i = 1× 2× · · · × n

Definition
Let S be a set of n elements. A permutation of S is an n-tuple of
unique elements of S.

Example
Two possible permutations of S = {1, 2, 3} are (1, 3, 2), (2, 3, 1).



Factorials and permutations

Definition
Let n ∈ N. The factorial of n is

n! =

{
1 if n = 0; and
n · n− 1 otherwise

Alternatively,

n! =

n∏
i=1

i = 1× 2× · · · × n

Definition
Let S be a set of n elements. A permutation of S is an n-tuple of
unique elements of S.

Example
Two possible permutations of S = {1, 2, 3} are (1, 3, 2), (2, 3, 1).



Relating factorials and permutations

Lemma
Let S be a set of n elements. There are n! possible permutations
of S.

Proof.
We use induction on n. When n = 0, we observe that the only
permutation is (). As 0! = 1, the lemma holds for n = 0.

When n > 0, suppose that the lemma holds to some k ≥ 0. Thus,
there are k! permutations of any k-element set S. Without loss of
generality, we observe that any k + 1-element set S′ is equal to
some k-element set S with an additional element u 6∈ S. Thus, to
convert a permutation of S into a permutation p of S′, we need to
‘insert’ u into p. As there are k+ 1 possible positions to insert into
for each permutation of S, the number of possible permutations of
S′ is thus k!(k + 1) = (k + 1)!. Thus, the lemma holds for all
n.



Relating factorials and permutations

Lemma
Let S be a set of n elements. There are n! possible permutations
of S.

Proof.
We use induction on n.

When n = 0, we observe that the only
permutation is (). As 0! = 1, the lemma holds for n = 0.

When n > 0, suppose that the lemma holds to some k ≥ 0. Thus,
there are k! permutations of any k-element set S. Without loss of
generality, we observe that any k + 1-element set S′ is equal to
some k-element set S with an additional element u 6∈ S. Thus, to
convert a permutation of S into a permutation p of S′, we need to
‘insert’ u into p. As there are k+ 1 possible positions to insert into
for each permutation of S, the number of possible permutations of
S′ is thus k!(k + 1) = (k + 1)!. Thus, the lemma holds for all
n.



Relating factorials and permutations

Lemma
Let S be a set of n elements. There are n! possible permutations
of S.

Proof.
We use induction on n. When n = 0, we observe that the only
permutation is (). As 0! = 1, the lemma holds for n = 0.

When n > 0, suppose that the lemma holds to some k ≥ 0. Thus,
there are k! permutations of any k-element set S. Without loss of
generality, we observe that any k + 1-element set S′ is equal to
some k-element set S with an additional element u 6∈ S. Thus, to
convert a permutation of S into a permutation p of S′, we need to
‘insert’ u into p. As there are k+ 1 possible positions to insert into
for each permutation of S, the number of possible permutations of
S′ is thus k!(k + 1) = (k + 1)!. Thus, the lemma holds for all
n.



Relating factorials and permutations

Lemma
Let S be a set of n elements. There are n! possible permutations
of S.

Proof.
We use induction on n. When n = 0, we observe that the only
permutation is (). As 0! = 1, the lemma holds for n = 0.

When n > 0, suppose that the lemma holds to some k ≥ 0. Thus,
there are k! permutations of any k-element set S.

Without loss of
generality, we observe that any k + 1-element set S′ is equal to
some k-element set S with an additional element u 6∈ S. Thus, to
convert a permutation of S into a permutation p of S′, we need to
‘insert’ u into p. As there are k+ 1 possible positions to insert into
for each permutation of S, the number of possible permutations of
S′ is thus k!(k + 1) = (k + 1)!. Thus, the lemma holds for all
n.



Relating factorials and permutations

Lemma
Let S be a set of n elements. There are n! possible permutations
of S.

Proof.
We use induction on n. When n = 0, we observe that the only
permutation is (). As 0! = 1, the lemma holds for n = 0.

When n > 0, suppose that the lemma holds to some k ≥ 0. Thus,
there are k! permutations of any k-element set S. Without loss of
generality, we observe that any k + 1-element set S′ is equal to
some k-element set S with an additional element u 6∈ S.

Thus, to
convert a permutation of S into a permutation p of S′, we need to
‘insert’ u into p. As there are k+ 1 possible positions to insert into
for each permutation of S, the number of possible permutations of
S′ is thus k!(k + 1) = (k + 1)!. Thus, the lemma holds for all
n.



Relating factorials and permutations

Lemma
Let S be a set of n elements. There are n! possible permutations
of S.

Proof.
We use induction on n. When n = 0, we observe that the only
permutation is (). As 0! = 1, the lemma holds for n = 0.

When n > 0, suppose that the lemma holds to some k ≥ 0. Thus,
there are k! permutations of any k-element set S. Without loss of
generality, we observe that any k + 1-element set S′ is equal to
some k-element set S with an additional element u 6∈ S. Thus, to
convert a permutation of S into a permutation p of S′, we need to
‘insert’ u into p.

As there are k+ 1 possible positions to insert into
for each permutation of S, the number of possible permutations of
S′ is thus k!(k + 1) = (k + 1)!. Thus, the lemma holds for all
n.



Relating factorials and permutations

Lemma
Let S be a set of n elements. There are n! possible permutations
of S.

Proof.
We use induction on n. When n = 0, we observe that the only
permutation is (). As 0! = 1, the lemma holds for n = 0.

When n > 0, suppose that the lemma holds to some k ≥ 0. Thus,
there are k! permutations of any k-element set S. Without loss of
generality, we observe that any k + 1-element set S′ is equal to
some k-element set S with an additional element u 6∈ S. Thus, to
convert a permutation of S into a permutation p of S′, we need to
‘insert’ u into p. As there are k+ 1 possible positions to insert into
for each permutation of S, the number of possible permutations of
S′ is thus k!(k + 1) = (k + 1)!. Thus, the lemma holds for all
n.



Why this matters

Given our assumptions (worst-case), the sorting problem basically
involves finding a specific permutation (the one where everything is
in the right place). Thus, the amount of work any comparison sort
will have to do will be based on n! somehow.

The factorial function is a gigantic pain to analyze. Let’s make our
lives simpler:

Definition (Stirling approximation)
log2(n!) is O(n log(n)) and n log(n) is O(log2(n!)).

Essentially, the Stirling approximation tells us that log2(n!) and
n log(n) grow at the same rate asymptotically. We say log2(n!) is
Θ(n log(n)) in such a case.



Why this matters

Given our assumptions (worst-case), the sorting problem basically
involves finding a specific permutation (the one where everything is
in the right place).

Thus, the amount of work any comparison sort
will have to do will be based on n! somehow.

The factorial function is a gigantic pain to analyze. Let’s make our
lives simpler:

Definition (Stirling approximation)
log2(n!) is O(n log(n)) and n log(n) is O(log2(n!)).

Essentially, the Stirling approximation tells us that log2(n!) and
n log(n) grow at the same rate asymptotically. We say log2(n!) is
Θ(n log(n)) in such a case.



Why this matters

Given our assumptions (worst-case), the sorting problem basically
involves finding a specific permutation (the one where everything is
in the right place). Thus, the amount of work any comparison sort
will have to do will be based on n! somehow.

The factorial function is a gigantic pain to analyze. Let’s make our
lives simpler:

Definition (Stirling approximation)
log2(n!) is O(n log(n)) and n log(n) is O(log2(n!)).

Essentially, the Stirling approximation tells us that log2(n!) and
n log(n) grow at the same rate asymptotically. We say log2(n!) is
Θ(n log(n)) in such a case.



Why this matters

Given our assumptions (worst-case), the sorting problem basically
involves finding a specific permutation (the one where everything is
in the right place). Thus, the amount of work any comparison sort
will have to do will be based on n! somehow.

The factorial function is a gigantic pain to analyze. Let’s make our
lives simpler:

Definition (Stirling approximation)
log2(n!) is O(n log(n)) and n log(n) is O(log2(n!)).

Essentially, the Stirling approximation tells us that log2(n!) and
n log(n) grow at the same rate asymptotically. We say log2(n!) is
Θ(n log(n)) in such a case.



Why this matters

Given our assumptions (worst-case), the sorting problem basically
involves finding a specific permutation (the one where everything is
in the right place). Thus, the amount of work any comparison sort
will have to do will be based on n! somehow.

The factorial function is a gigantic pain to analyze. Let’s make our
lives simpler:

Definition (Stirling approximation)
log2(n!) is O(n log(n)) and n log(n) is O(log2(n!)).

Essentially, the Stirling approximation tells us that log2(n!) and
n log(n) grow at the same rate asymptotically. We say log2(n!) is
Θ(n log(n)) in such a case.



Why this matters

Given our assumptions (worst-case), the sorting problem basically
involves finding a specific permutation (the one where everything is
in the right place). Thus, the amount of work any comparison sort
will have to do will be based on n! somehow.

The factorial function is a gigantic pain to analyze. Let’s make our
lives simpler:

Definition (Stirling approximation)
log2(n!) is O(n log(n)) and n log(n) is O(log2(n!)).

Essentially, the Stirling approximation tells us that log2(n!) and
n log(n) grow at the same rate asymptotically.

We say log2(n!) is
Θ(n log(n)) in such a case.



Why this matters

Given our assumptions (worst-case), the sorting problem basically
involves finding a specific permutation (the one where everything is
in the right place). Thus, the amount of work any comparison sort
will have to do will be based on n! somehow.

The factorial function is a gigantic pain to analyze. Let’s make our
lives simpler:

Definition (Stirling approximation)
log2(n!) is O(n log(n)) and n log(n) is O(log2(n!)).

Essentially, the Stirling approximation tells us that log2(n!) and
n log(n) grow at the same rate asymptotically. We say log2(n!) is
Θ(n log(n)) in such a case.



The proof, at last

Theorem
Any comparison sort must perform at least Θ(n log(n))
comparisons between elements of the input.

Proof.
In order to do its work, a comparison sort must find one specific
permutation out of n! possibilities. Each comparison we perform
can eliminate at most half of the possible permutations at that
step. Thus, any comparison sort must perform at least log2(n!)
comparisons to ensure correctness. By the Stirling approximation,
this is Θ(n log(n)).

Corollary
Under our assumptions, no comparison sort with a time complexity
better than Θ(n log(n)) (and thus, O(n log(n))) can exist.



The proof, at last

Theorem
Any comparison sort must perform at least Θ(n log(n))
comparisons between elements of the input.

Proof.
In order to do its work, a comparison sort must find one specific
permutation out of n! possibilities.

Each comparison we perform
can eliminate at most half of the possible permutations at that
step. Thus, any comparison sort must perform at least log2(n!)
comparisons to ensure correctness. By the Stirling approximation,
this is Θ(n log(n)).

Corollary
Under our assumptions, no comparison sort with a time complexity
better than Θ(n log(n)) (and thus, O(n log(n))) can exist.



The proof, at last

Theorem
Any comparison sort must perform at least Θ(n log(n))
comparisons between elements of the input.

Proof.
In order to do its work, a comparison sort must find one specific
permutation out of n! possibilities. Each comparison we perform
can eliminate at most half of the possible permutations at that
step.

Thus, any comparison sort must perform at least log2(n!)
comparisons to ensure correctness. By the Stirling approximation,
this is Θ(n log(n)).

Corollary
Under our assumptions, no comparison sort with a time complexity
better than Θ(n log(n)) (and thus, O(n log(n))) can exist.



The proof, at last

Theorem
Any comparison sort must perform at least Θ(n log(n))
comparisons between elements of the input.

Proof.
In order to do its work, a comparison sort must find one specific
permutation out of n! possibilities. Each comparison we perform
can eliminate at most half of the possible permutations at that
step. Thus, any comparison sort must perform at least log2(n!)
comparisons to ensure correctness.

By the Stirling approximation,
this is Θ(n log(n)).

Corollary
Under our assumptions, no comparison sort with a time complexity
better than Θ(n log(n)) (and thus, O(n log(n))) can exist.



The proof, at last

Theorem
Any comparison sort must perform at least Θ(n log(n))
comparisons between elements of the input.

Proof.
In order to do its work, a comparison sort must find one specific
permutation out of n! possibilities. Each comparison we perform
can eliminate at most half of the possible permutations at that
step. Thus, any comparison sort must perform at least log2(n!)
comparisons to ensure correctness. By the Stirling approximation,
this is Θ(n log(n)).

Corollary
Under our assumptions, no comparison sort with a time complexity
better than Θ(n log(n)) (and thus, O(n log(n))) can exist.



The proof, at last

Theorem
Any comparison sort must perform at least Θ(n log(n))
comparisons between elements of the input.

Proof.
In order to do its work, a comparison sort must find one specific
permutation out of n! possibilities. Each comparison we perform
can eliminate at most half of the possible permutations at that
step. Thus, any comparison sort must perform at least log2(n!)
comparisons to ensure correctness. By the Stirling approximation,
this is Θ(n log(n)).

Corollary
Under our assumptions, no comparison sort with a time complexity
better than Θ(n log(n)) (and thus, O(n log(n))) can exist.



Is there nothing we can do?

This is definitely a strong result that transcends any particular
algorithm. However:

I There are practical improvements we can make:
I Not all data will be this bad!
I Not all O(n log(n)) algorithms are born equal (consider

timsort versus mergesort)
I We usually know more about our data (numbers, limited

number of unique items, strings, etc)
I RAM is not the most accurate model of modern computers:

I Modern machines are parallel — lots of different optimality
points there!

I Modern memory is very hierarchical — also lots of optimality
points to consider

I Data is not static or centralized anymore:
I Interest in partial or online sorts
I Fully-dynamic sorts (data can change in arbitrary ways)
I Distributed computing



Is there nothing we can do?
This is definitely a strong result that transcends any particular
algorithm. However:

I There are practical improvements we can make:
I Not all data will be this bad!
I Not all O(n log(n)) algorithms are born equal (consider

timsort versus mergesort)
I We usually know more about our data (numbers, limited

number of unique items, strings, etc)
I RAM is not the most accurate model of modern computers:

I Modern machines are parallel — lots of different optimality
points there!

I Modern memory is very hierarchical — also lots of optimality
points to consider

I Data is not static or centralized anymore:
I Interest in partial or online sorts
I Fully-dynamic sorts (data can change in arbitrary ways)
I Distributed computing



Is there nothing we can do?
This is definitely a strong result that transcends any particular
algorithm. However:

I There are practical improvements we can make:

I Not all data will be this bad!
I Not all O(n log(n)) algorithms are born equal (consider

timsort versus mergesort)
I We usually know more about our data (numbers, limited

number of unique items, strings, etc)
I RAM is not the most accurate model of modern computers:

I Modern machines are parallel — lots of different optimality
points there!

I Modern memory is very hierarchical — also lots of optimality
points to consider

I Data is not static or centralized anymore:
I Interest in partial or online sorts
I Fully-dynamic sorts (data can change in arbitrary ways)
I Distributed computing



Is there nothing we can do?
This is definitely a strong result that transcends any particular
algorithm. However:

I There are practical improvements we can make:
I Not all data will be this bad!

I Not all O(n log(n)) algorithms are born equal (consider
timsort versus mergesort)

I We usually know more about our data (numbers, limited
number of unique items, strings, etc)

I RAM is not the most accurate model of modern computers:
I Modern machines are parallel — lots of different optimality

points there!
I Modern memory is very hierarchical — also lots of optimality

points to consider
I Data is not static or centralized anymore:

I Interest in partial or online sorts
I Fully-dynamic sorts (data can change in arbitrary ways)
I Distributed computing



Is there nothing we can do?
This is definitely a strong result that transcends any particular
algorithm. However:

I There are practical improvements we can make:
I Not all data will be this bad!
I Not all O(n log(n)) algorithms are born equal (consider

timsort versus mergesort)

I We usually know more about our data (numbers, limited
number of unique items, strings, etc)

I RAM is not the most accurate model of modern computers:
I Modern machines are parallel — lots of different optimality

points there!
I Modern memory is very hierarchical — also lots of optimality

points to consider
I Data is not static or centralized anymore:

I Interest in partial or online sorts
I Fully-dynamic sorts (data can change in arbitrary ways)
I Distributed computing



Is there nothing we can do?
This is definitely a strong result that transcends any particular
algorithm. However:

I There are practical improvements we can make:
I Not all data will be this bad!
I Not all O(n log(n)) algorithms are born equal (consider

timsort versus mergesort)
I We usually know more about our data (numbers, limited

number of unique items, strings, etc)

I RAM is not the most accurate model of modern computers:
I Modern machines are parallel — lots of different optimality

points there!
I Modern memory is very hierarchical — also lots of optimality

points to consider
I Data is not static or centralized anymore:

I Interest in partial or online sorts
I Fully-dynamic sorts (data can change in arbitrary ways)
I Distributed computing



Is there nothing we can do?
This is definitely a strong result that transcends any particular
algorithm. However:

I There are practical improvements we can make:
I Not all data will be this bad!
I Not all O(n log(n)) algorithms are born equal (consider

timsort versus mergesort)
I We usually know more about our data (numbers, limited

number of unique items, strings, etc)
I RAM is not the most accurate model of modern computers:

I Modern machines are parallel — lots of different optimality
points there!

I Modern memory is very hierarchical — also lots of optimality
points to consider

I Data is not static or centralized anymore:
I Interest in partial or online sorts
I Fully-dynamic sorts (data can change in arbitrary ways)
I Distributed computing



Is there nothing we can do?
This is definitely a strong result that transcends any particular
algorithm. However:

I There are practical improvements we can make:
I Not all data will be this bad!
I Not all O(n log(n)) algorithms are born equal (consider

timsort versus mergesort)
I We usually know more about our data (numbers, limited

number of unique items, strings, etc)
I RAM is not the most accurate model of modern computers:

I Modern machines are parallel — lots of different optimality
points there!

I Modern memory is very hierarchical — also lots of optimality
points to consider

I Data is not static or centralized anymore:
I Interest in partial or online sorts
I Fully-dynamic sorts (data can change in arbitrary ways)
I Distributed computing



Is there nothing we can do?
This is definitely a strong result that transcends any particular
algorithm. However:

I There are practical improvements we can make:
I Not all data will be this bad!
I Not all O(n log(n)) algorithms are born equal (consider

timsort versus mergesort)
I We usually know more about our data (numbers, limited

number of unique items, strings, etc)
I RAM is not the most accurate model of modern computers:

I Modern machines are parallel — lots of different optimality
points there!

I Modern memory is very hierarchical — also lots of optimality
points to consider

I Data is not static or centralized anymore:
I Interest in partial or online sorts
I Fully-dynamic sorts (data can change in arbitrary ways)
I Distributed computing



Is there nothing we can do?
This is definitely a strong result that transcends any particular
algorithm. However:

I There are practical improvements we can make:
I Not all data will be this bad!
I Not all O(n log(n)) algorithms are born equal (consider

timsort versus mergesort)
I We usually know more about our data (numbers, limited

number of unique items, strings, etc)
I RAM is not the most accurate model of modern computers:

I Modern machines are parallel — lots of different optimality
points there!

I Modern memory is very hierarchical — also lots of optimality
points to consider

I Data is not static or centralized anymore:

I Interest in partial or online sorts
I Fully-dynamic sorts (data can change in arbitrary ways)
I Distributed computing



Is there nothing we can do?
This is definitely a strong result that transcends any particular
algorithm. However:

I There are practical improvements we can make:
I Not all data will be this bad!
I Not all O(n log(n)) algorithms are born equal (consider

timsort versus mergesort)
I We usually know more about our data (numbers, limited

number of unique items, strings, etc)
I RAM is not the most accurate model of modern computers:

I Modern machines are parallel — lots of different optimality
points there!

I Modern memory is very hierarchical — also lots of optimality
points to consider

I Data is not static or centralized anymore:
I Interest in partial or online sorts

I Fully-dynamic sorts (data can change in arbitrary ways)
I Distributed computing



Is there nothing we can do?
This is definitely a strong result that transcends any particular
algorithm. However:

I There are practical improvements we can make:
I Not all data will be this bad!
I Not all O(n log(n)) algorithms are born equal (consider

timsort versus mergesort)
I We usually know more about our data (numbers, limited

number of unique items, strings, etc)
I RAM is not the most accurate model of modern computers:

I Modern machines are parallel — lots of different optimality
points there!

I Modern memory is very hierarchical — also lots of optimality
points to consider

I Data is not static or centralized anymore:
I Interest in partial or online sorts
I Fully-dynamic sorts (data can change in arbitrary ways)

I Distributed computing



Is there nothing we can do?
This is definitely a strong result that transcends any particular
algorithm. However:

I There are practical improvements we can make:
I Not all data will be this bad!
I Not all O(n log(n)) algorithms are born equal (consider

timsort versus mergesort)
I We usually know more about our data (numbers, limited

number of unique items, strings, etc)
I RAM is not the most accurate model of modern computers:

I Modern machines are parallel — lots of different optimality
points there!

I Modern memory is very hierarchical — also lots of optimality
points to consider

I Data is not static or centralized anymore:
I Interest in partial or online sorts
I Fully-dynamic sorts (data can change in arbitrary ways)
I Distributed computing



The most important corollary

Corollary
Know your data, your tools and your problem, and you can work
(or discover) performance wonders.

Still work to be done in this area — for many years to come!



The most important corollary

Corollary
Know your data, your tools and your problem, and you can work
(or discover) performance wonders.
Still work to be done in this area — for many years to come!



Questions?


	Introduction
	Defining sorting precisely
	Some sorting algorithms
	Limits on performance
	Questions

