
Type parameterization
Or: reason #213 why Java is terrible at everything

Koz Ross

4th May, 2017



Outline

What is this, and why should I care?

How do we implement this?

How good are these?

There’s this one thing I don’t get…



Example 1

Consider the following function:

int add () {
return 2 + 3;

}

This function is very inflexible — it might as well be a constant!



Example 1

Consider the following function:

int add () {
return 2 + 3;

}

This function is very inflexible — it might as well be a constant!



Example 1

Consider the following function:

int add () {
return 2 + 3;

}

This function is very inflexible — it might as well be a constant!



Example 1

We can make the function more flexible (and thus, do more work)
by parameterizing its arguments.

That way, the user can decide
what numbers it gets to add instead of us:

int add (int x, int y) {
return x + y;

}

We call this argument parameterization, and it is a very useful
thing to have (in fact, programming would be pretty pointless
without it). But then, what if our user wants to add two floats
instead?



Example 1

We can make the function more flexible (and thus, do more work)
by parameterizing its arguments. That way, the user can decide
what numbers it gets to add instead of us:

int add (int x, int y) {
return x + y;

}

We call this argument parameterization, and it is a very useful
thing to have (in fact, programming would be pretty pointless
without it). But then, what if our user wants to add two floats
instead?



Example 1

We can make the function more flexible (and thus, do more work)
by parameterizing its arguments. That way, the user can decide
what numbers it gets to add instead of us:

int add (int x, int y) {
return x + y;

}

We call this argument parameterization, and it is a very useful
thing to have (in fact, programming would be pretty pointless
without it). But then, what if our user wants to add two floats
instead?



Example 1

We can make the function more flexible (and thus, do more work)
by parameterizing its arguments. That way, the user can decide
what numbers it gets to add instead of us:

int add (int x, int y) {
return x + y;

}

We call this argument parameterization, and it is a very useful
thing to have (in fact, programming would be pretty pointless
without it).

But then, what if our user wants to add two floats
instead?



Example 1

We can make the function more flexible (and thus, do more work)
by parameterizing its arguments. That way, the user can decide
what numbers it gets to add instead of us:

int add (int x, int y) {
return x + y;

}

We call this argument parameterization, and it is a very useful
thing to have (in fact, programming would be pretty pointless
without it). But then, what if our user wants to add two floats
instead?



Example 2

Consider this (partial) definition of a (singly) linked list:

struct node {
int data;
node* next;

};

struct list {
node* first;

};

list* list_new ();

What if our user wanted a list of floats instead? Does it really
matter for list operations what kind of data we’re storing?



Example 2

Consider this (partial) definition of a (singly) linked list:

struct node {
int data;
node* next;

};

struct list {
node* first;

};

list* list_new ();

What if our user wanted a list of floats instead? Does it really
matter for list operations what kind of data we’re storing?



Example 2

Consider this (partial) definition of a (singly) linked list:

struct node {
int data;
node* next;

};

struct list {
node* first;

};

list* list_new ();

What if our user wanted a list of floats instead?

Does it really
matter for list operations what kind of data we’re storing?



Example 2

Consider this (partial) definition of a (singly) linked list:

struct node {
int data;
node* next;

};

struct list {
node* first;

};

list* list_new ();

What if our user wanted a list of floats instead? Does it really
matter for list operations what kind of data we’re storing?



The problem

These are both examples of type restrictions.

Normally, these are a
good thing, as we wouldn’t want something like this to compile:

/* this won't compile */
sqrt("10");
/* but will *run* in JavaScript, sigh... */

However, in our two examples, type restrictions get in our way.
Wouldn’t it be nice if we could parameterize over types as well?



The problem

These are both examples of type restrictions. Normally, these are a
good thing, as we wouldn’t want something like this to compile:

/* this won't compile */
sqrt("10");
/* but will *run* in JavaScript, sigh... */

However, in our two examples, type restrictions get in our way.
Wouldn’t it be nice if we could parameterize over types as well?



The problem

These are both examples of type restrictions. Normally, these are a
good thing, as we wouldn’t want something like this to compile:

/* this won't compile */
sqrt("10");
/* but will *run* in JavaScript, sigh... */

However, in our two examples, type restrictions get in our way.
Wouldn’t it be nice if we could parameterize over types as well?



The problem

These are both examples of type restrictions. Normally, these are a
good thing, as we wouldn’t want something like this to compile:

/* this won't compile */
sqrt("10");
/* but will *run* in JavaScript, sigh... */

However, in our two examples, type restrictions get in our way.

Wouldn’t it be nice if we could parameterize over types as well?



The problem

These are both examples of type restrictions. Normally, these are a
good thing, as we wouldn’t want something like this to compile:

/* this won't compile */
sqrt("10");
/* but will *run* in JavaScript, sigh... */

However, in our two examples, type restrictions get in our way.
Wouldn’t it be nice if we could parameterize over types as well?



What would this look like?

struct node <T> {
T data;
node <T>* next;

};

struct list <T> {
node <T>* first;

};

list <T>* list_new ();

So now, if the user wants a list of ints, they will write
list <int>* foo = list_new();.
If they prefer a list of floats, they can write
list <float>* bar = list_new();.



What would this look like?

struct node <T> {
T data;
node <T>* next;

};

struct list <T> {
node <T>* first;

};

list <T>* list_new ();

So now, if the user wants a list of ints, they will write
list <int>* foo = list_new();.
If they prefer a list of floats, they can write
list <float>* bar = list_new();.



What would this look like?

struct node <T> {
T data;
node <T>* next;

};

struct list <T> {
node <T>* first;

};

list <T>* list_new ();

So now, if the user wants a list of ints, they will write
list <int>* foo = list_new();.
If they prefer a list of floats, they can write
list <float>* bar = list_new();.



Why do we care?

I Write the code for a list once, and it will be able to store
anything a user could want.

I Still have protection against things like this:
list <int>* foo = list_new();
/* won't compile */
list_insert(foo, "bar");

I Can write very useful things:
struct pair <T,U> {
T left;
U right;

}; /* a pair of anything! */

In short: Type parameterization makes our code more flexible,
more concise, and generally better.



Why do we care?

I Write the code for a list once, and it will be able to store
anything a user could want.

I Still have protection against things like this:
list <int>* foo = list_new();
/* won't compile */
list_insert(foo, "bar");

I Can write very useful things:
struct pair <T,U> {
T left;
U right;

}; /* a pair of anything! */

In short: Type parameterization makes our code more flexible,
more concise, and generally better.



Why do we care?

I Write the code for a list once, and it will be able to store
anything a user could want.

I Still have protection against things like this:
list <int>* foo = list_new();
/* won't compile */
list_insert(foo, "bar");

I Can write very useful things:
struct pair <T,U> {
T left;
U right;

}; /* a pair of anything! */

In short: Type parameterization makes our code more flexible,
more concise, and generally better.



Why do we care?

I Write the code for a list once, and it will be able to store
anything a user could want.

I Still have protection against things like this:
list <int>* foo = list_new();
/* won't compile */
list_insert(foo, "bar");

I Can write very useful things:
struct pair <T,U> {
T left;
U right;

}; /* a pair of anything! */

In short: Type parameterization makes our code more flexible,
more concise, and generally better.



Why do we care?

I Write the code for a list once, and it will be able to store
anything a user could want.

I Still have protection against things like this:
list <int>* foo = list_new();
/* won't compile */
list_insert(foo, "bar");

I Can write very useful things:
struct pair <T,U> {
T left;
U right;

}; /* a pair of anything! */

In short: Type parameterization makes our code more flexible,
more concise, and generally better.



Some terminology

A type parameter is a placeholder type.

When we mention it in a
definition (like a structure or a function), we call this a declaration:

struct pair <T,U> { /* declaration */
T left;
U right;

}

Later, when we actually use the structure of function, we have to
provide an actual type for the type parameter (instantiation):

pair <float, int> foo; /* instantiation */



Some terminology

A type parameter is a placeholder type. When we mention it in a
definition (like a structure or a function), we call this a declaration:

struct pair <T,U> { /* declaration */
T left;
U right;

}

Later, when we actually use the structure of function, we have to
provide an actual type for the type parameter (instantiation):

pair <float, int> foo; /* instantiation */



Some terminology

A type parameter is a placeholder type. When we mention it in a
definition (like a structure or a function), we call this a declaration:

struct pair <T,U> { /* declaration */
T left;
U right;

}

Later, when we actually use the structure of function, we have to
provide an actual type for the type parameter (instantiation):

pair <float, int> foo; /* instantiation */



Some terminology

A type parameter is a placeholder type. When we mention it in a
definition (like a structure or a function), we call this a declaration:

struct pair <T,U> { /* declaration */
T left;
U right;

}

Later, when we actually use the structure of function, we have to
provide an actual type for the type parameter (instantiation):

pair <float, int> foo; /* instantiation */



Some terminology

A type parameter is a placeholder type. When we mention it in a
definition (like a structure or a function), we call this a declaration:

struct pair <T,U> { /* declaration */
T left;
U right;

}

Later, when we actually use the structure of function, we have to
provide an actual type for the type parameter (instantiation):

pair <float, int> foo; /* instantiation */



Homogenous translation

I Type parameter declarations (and anything using them) get
promoted to some specific type and compiled on the spot.

I Type parameter instantiations are first checked for
consistency; if no problems are found, their types are simply
ignored where appropriate.

Thus, at runtime, a pair <int, float> is no different to a
pair <float, char*> — might as well be pair <wtf, wtf> for
all we care.



Homogenous translation

I Type parameter declarations (and anything using them) get
promoted to some specific type and compiled on the spot.

I Type parameter instantiations are first checked for
consistency; if no problems are found, their types are simply
ignored where appropriate.

Thus, at runtime, a pair <int, float> is no different to a
pair <float, char*> — might as well be pair <wtf, wtf> for
all we care.



Homogenous translation

I Type parameter declarations (and anything using them) get
promoted to some specific type and compiled on the spot.

I Type parameter instantiations are first checked for
consistency; if no problems are found, their types are simply
ignored where appropriate.

Thus, at runtime, a pair <int, float> is no different to a
pair <float, char*> — might as well be pair <wtf, wtf> for
all we care.



Homogenous translation

I Type parameter declarations (and anything using them) get
promoted to some specific type and compiled on the spot.

I Type parameter instantiations are first checked for
consistency; if no problems are found, their types are simply
ignored where appropriate.

Thus, at runtime, a pair <int, float> is no different to a
pair <float, char*> — might as well be pair <wtf, wtf> for
all we care.



Heterogenous translation

I Type parameter declarations (and anything using them) get
turned into a ‘template’, with gaps where the type parameters
should go. Nothing gets compiled yet.

I When the compiler sees a type parameter instantiation, it
copy-pastes the types into the template, compiles the result,
and uses the result for all identical future cases.

This, when the compiler sees pair<int, float> for the first
time, it will compile a special version for just those types; if it later
sees pair<float, char*>, it’ll compile a special version for those
types; and so on.



Heterogenous translation

I Type parameter declarations (and anything using them) get
turned into a ‘template’, with gaps where the type parameters
should go. Nothing gets compiled yet.

I When the compiler sees a type parameter instantiation, it
copy-pastes the types into the template, compiles the result,
and uses the result for all identical future cases.

This, when the compiler sees pair<int, float> for the first
time, it will compile a special version for just those types; if it later
sees pair<float, char*>, it’ll compile a special version for those
types; and so on.



Heterogenous translation

I Type parameter declarations (and anything using them) get
turned into a ‘template’, with gaps where the type parameters
should go. Nothing gets compiled yet.

I When the compiler sees a type parameter instantiation, it
copy-pastes the types into the template, compiles the result,
and uses the result for all identical future cases.

This, when the compiler sees pair<int, float> for the first
time, it will compile a special version for just those types; if it later
sees pair<float, char*>, it’ll compile a special version for those
types; and so on.



Heterogenous translation

I Type parameter declarations (and anything using them) get
turned into a ‘template’, with gaps where the type parameters
should go. Nothing gets compiled yet.

I When the compiler sees a type parameter instantiation, it
copy-pastes the types into the template, compiles the result,
and uses the result for all identical future cases.

This, when the compiler sees pair<int, float> for the first
time, it will compile a special version for just those types; if it later
sees pair<float, char*>, it’ll compile a special version for those
types; and so on.



Tradeoffs for homogenous translation

Advantages
I Simple:

I Compiles faster
I Simpler compiler logic

I Smaller binaries:
I Less space required
I Can use instruction cache

effectively

Disadvantages
I No type information at

runtime
I Indirection:

I Overhead for a pointer to
the data

I Extra pointer chasing



Tradeoffs for homogenous translation

Advantages
I Simple:

I Compiles faster
I Simpler compiler logic

I Smaller binaries:
I Less space required
I Can use instruction cache

effectively

Disadvantages
I No type information at

runtime
I Indirection:

I Overhead for a pointer to
the data

I Extra pointer chasing



Tradeoffs for homogenous translation

Advantages
I Simple:

I Compiles faster

I Simpler compiler logic
I Smaller binaries:

I Less space required
I Can use instruction cache

effectively

Disadvantages
I No type information at

runtime
I Indirection:

I Overhead for a pointer to
the data

I Extra pointer chasing



Tradeoffs for homogenous translation

Advantages
I Simple:

I Compiles faster
I Simpler compiler logic

I Smaller binaries:
I Less space required
I Can use instruction cache

effectively

Disadvantages
I No type information at

runtime
I Indirection:

I Overhead for a pointer to
the data

I Extra pointer chasing



Tradeoffs for homogenous translation

Advantages
I Simple:

I Compiles faster
I Simpler compiler logic

I Smaller binaries:

I Less space required
I Can use instruction cache

effectively

Disadvantages
I No type information at

runtime
I Indirection:

I Overhead for a pointer to
the data

I Extra pointer chasing



Tradeoffs for homogenous translation

Advantages
I Simple:

I Compiles faster
I Simpler compiler logic

I Smaller binaries:
I Less space required

I Can use instruction cache
effectively

Disadvantages
I No type information at

runtime
I Indirection:

I Overhead for a pointer to
the data

I Extra pointer chasing



Tradeoffs for homogenous translation

Advantages
I Simple:

I Compiles faster
I Simpler compiler logic

I Smaller binaries:
I Less space required
I Can use instruction cache

effectively

Disadvantages
I No type information at

runtime
I Indirection:

I Overhead for a pointer to
the data

I Extra pointer chasing



Tradeoffs for homogenous translation

Advantages
I Simple:

I Compiles faster
I Simpler compiler logic

I Smaller binaries:
I Less space required
I Can use instruction cache

effectively

Disadvantages
I No type information at

runtime

I Indirection:
I Overhead for a pointer to

the data
I Extra pointer chasing



Tradeoffs for homogenous translation

Advantages
I Simple:

I Compiles faster
I Simpler compiler logic

I Smaller binaries:
I Less space required
I Can use instruction cache

effectively

Disadvantages
I No type information at

runtime
I Indirection:

I Overhead for a pointer to
the data

I Extra pointer chasing



Tradeoffs for homogenous translation

Advantages
I Simple:

I Compiles faster
I Simpler compiler logic

I Smaller binaries:
I Less space required
I Can use instruction cache

effectively

Disadvantages
I No type information at

runtime
I Indirection:

I Overhead for a pointer to
the data

I Extra pointer chasing



Tradeoffs for homogenous translation

Advantages
I Simple:

I Compiles faster
I Simpler compiler logic

I Smaller binaries:
I Less space required
I Can use instruction cache

effectively

Disadvantages
I No type information at

runtime
I Indirection:

I Overhead for a pointer to
the data

I Extra pointer chasing



Tradeoffs for heterogenous translation

Advantages
I Type information available

at runtime
I No extra indirection

Disadvantages
I Bigger binaries:

I More space needed
I No hope for instruction

cache
I Complex:

I Compiles slower
I More complex compiler

logic



Tradeoffs for heterogenous translation

Advantages
I Type information available

at runtime

I No extra indirection

Disadvantages
I Bigger binaries:

I More space needed
I No hope for instruction

cache
I Complex:

I Compiles slower
I More complex compiler

logic



Tradeoffs for heterogenous translation

Advantages
I Type information available

at runtime
I No extra indirection

Disadvantages
I Bigger binaries:

I More space needed
I No hope for instruction

cache
I Complex:

I Compiles slower
I More complex compiler

logic



Tradeoffs for heterogenous translation

Advantages
I Type information available

at runtime
I No extra indirection

Disadvantages
I Bigger binaries:

I More space needed
I No hope for instruction

cache
I Complex:

I Compiles slower
I More complex compiler

logic



Tradeoffs for heterogenous translation

Advantages
I Type information available

at runtime
I No extra indirection

Disadvantages
I Bigger binaries:

I More space needed

I No hope for instruction
cache

I Complex:
I Compiles slower
I More complex compiler

logic



Tradeoffs for heterogenous translation

Advantages
I Type information available

at runtime
I No extra indirection

Disadvantages
I Bigger binaries:

I More space needed
I No hope for instruction

cache

I Complex:
I Compiles slower
I More complex compiler

logic



Tradeoffs for heterogenous translation

Advantages
I Type information available

at runtime
I No extra indirection

Disadvantages
I Bigger binaries:

I More space needed
I No hope for instruction

cache
I Complex:

I Compiles slower
I More complex compiler

logic



Tradeoffs for heterogenous translation

Advantages
I Type information available

at runtime
I No extra indirection

Disadvantages
I Bigger binaries:

I More space needed
I No hope for instruction

cache
I Complex:

I Compiles slower

I More complex compiler
logic



Tradeoffs for heterogenous translation

Advantages
I Type information available

at runtime
I No extra indirection

Disadvantages
I Bigger binaries:

I More space needed
I No hope for instruction

cache
I Complex:

I Compiles slower
I More complex compiler

logic



So which is better?

I No single answer — both have various tradeoffs in general
I Need to be viewed in the context of a particular language
I Let’s see some examples!

We will have rating indicators:

‘This is good (or not a problem)!’ ‘This is bad (or a real problem)!’



So which is better?

I No single answer — both have various tradeoffs in general

I Need to be viewed in the context of a particular language
I Let’s see some examples!

We will have rating indicators:

‘This is good (or not a problem)!’ ‘This is bad (or a real problem)!’



So which is better?

I No single answer — both have various tradeoffs in general
I Need to be viewed in the context of a particular language

I Let’s see some examples!

We will have rating indicators:

‘This is good (or not a problem)!’ ‘This is bad (or a real problem)!’



So which is better?

I No single answer — both have various tradeoffs in general
I Need to be viewed in the context of a particular language
I Let’s see some examples!

We will have rating indicators:

‘This is good (or not a problem)!’ ‘This is bad (or a real problem)!’



So which is better?

I No single answer — both have various tradeoffs in general
I Need to be viewed in the context of a particular language
I Let’s see some examples!

We will have rating indicators:

‘This is good (or not a problem)!’ ‘This is bad (or a real problem)!’



So which is better?

I No single answer — both have various tradeoffs in general
I Need to be viewed in the context of a particular language
I Let’s see some examples!

We will have rating indicators:

‘This is good (or not a problem)!’

‘This is bad (or a real problem)!’



So which is better?

I No single answer — both have various tradeoffs in general
I Need to be viewed in the context of a particular language
I Let’s see some examples!

We will have rating indicators:

‘This is good (or not a problem)!’ ‘This is bad (or a real problem)!’



Homogenous translation done well: C

Honesty note: C doesn’t technically have homogenous translation
built-in. We have to fake it with void*.

Advantages
I Simple
I Smaller binaries

Disadvantages
I No type information at

runtime
I Indirection

Overall verdict: 3

4
(a B).



Homogenous translation done well: C

Honesty note: C doesn’t technically have homogenous translation
built-in. We have to fake it with void*.

Advantages
I Simple
I Smaller binaries

Disadvantages
I No type information at

runtime
I Indirection

Overall verdict: 3

4
(a B).



Homogenous translation done well: C

Honesty note: C doesn’t technically have homogenous translation
built-in. We have to fake it with void*.

Advantages
I Simple

I Smaller binaries

Disadvantages
I No type information at

runtime
I Indirection

Overall verdict: 3

4
(a B).



Homogenous translation done well: C

Honesty note: C doesn’t technically have homogenous translation
built-in. We have to fake it with void*.

Advantages
I Simple

I Smaller binaries

Disadvantages
I No type information at

runtime
I Indirection

Overall verdict: 3

4
(a B).



Homogenous translation done well: C

Honesty note: C doesn’t technically have homogenous translation
built-in. We have to fake it with void*.

Advantages
I Simple
I Smaller binaries

Disadvantages
I No type information at

runtime
I Indirection

Overall verdict: 3

4
(a B).



Homogenous translation done well: C

Honesty note: C doesn’t technically have homogenous translation
built-in. We have to fake it with void*.

Advantages
I Simple
I Smaller binaries

Disadvantages
I No type information at

runtime
I Indirection

Overall verdict: 3

4
(a B).



Homogenous translation done well: C

Honesty note: C doesn’t technically have homogenous translation
built-in. We have to fake it with void*.

Advantages
I Simple
I Smaller binaries

Disadvantages
I No type information at

runtime

I Indirection

Overall verdict: 3

4
(a B).



Homogenous translation done well: C

Honesty note: C doesn’t technically have homogenous translation
built-in. We have to fake it with void*.

Advantages
I Simple
I Smaller binaries

Disadvantages
I No type information at

runtime

I Indirection

Overall verdict: 3

4
(a B).



Homogenous translation done well: C

Honesty note: C doesn’t technically have homogenous translation
built-in. We have to fake it with void*.

Advantages
I Simple
I Smaller binaries

Disadvantages
I No type information at

runtime
I Indirection

Overall verdict: 3

4
(a B).



Homogenous translation done well: C

Honesty note: C doesn’t technically have homogenous translation
built-in. We have to fake it with void*.

Advantages
I Simple
I Smaller binaries

Disadvantages
I No type information at

runtime
I Indirection

Overall verdict: 3

4
(a B).



Homogenous translation done well: C

Honesty note: C doesn’t technically have homogenous translation
built-in. We have to fake it with void*.

Advantages
I Simple
I Smaller binaries

Disadvantages
I No type information at

runtime
I Indirection

Overall verdict: 3

4

(a B).



Homogenous translation done well: C

Honesty note: C doesn’t technically have homogenous translation
built-in. We have to fake it with void*.

Advantages
I Simple
I Smaller binaries

Disadvantages
I No type information at

runtime
I Indirection

Overall verdict: 3

4
(a B).



Homogenous translation done badly: Java

Advantages
I Simple
I Smaller binaries

Disadvantages
I No type information at

runtime
I Indirection

Overall verdict: 1

4
(drop out of university Java, you’re drunk)



Homogenous translation done badly: Java

Advantages
I Simple

I Smaller binaries

Disadvantages
I No type information at

runtime
I Indirection

Overall verdict: 1

4
(drop out of university Java, you’re drunk)



Homogenous translation done badly: Java

Advantages
I Simple

I Smaller binaries

Disadvantages
I No type information at

runtime
I Indirection

Overall verdict: 1

4
(drop out of university Java, you’re drunk)



Homogenous translation done badly: Java

Advantages
I Simple
I Smaller binaries

Disadvantages
I No type information at

runtime
I Indirection

Overall verdict: 1

4
(drop out of university Java, you’re drunk)



Homogenous translation done badly: Java

Advantages
I Simple
I Smaller binaries

Disadvantages
I No type information at

runtime
I Indirection

Overall verdict: 1

4
(drop out of university Java, you’re drunk)



Homogenous translation done badly: Java

Advantages
I Simple
I Smaller binaries

Disadvantages
I No type information at

runtime

I Indirection

Overall verdict: 1

4
(drop out of university Java, you’re drunk)



Homogenous translation done badly: Java

Advantages
I Simple
I Smaller binaries

Disadvantages
I No type information at

runtime

I Indirection

Overall verdict: 1

4
(drop out of university Java, you’re drunk)



Homogenous translation done badly: Java

Advantages
I Simple
I Smaller binaries

Disadvantages
I No type information at

runtime
I Indirection

Overall verdict: 1

4
(drop out of university Java, you’re drunk)



Homogenous translation done badly: Java

Advantages
I Simple
I Smaller binaries

Disadvantages
I No type information at

runtime
I Indirection

Overall verdict: 1

4
(drop out of university Java, you’re drunk)



Homogenous translation done badly: Java

Advantages
I Simple
I Smaller binaries

Disadvantages
I No type information at

runtime
I Indirection

Overall verdict: 1

4

(drop out of university Java, you’re drunk)



Homogenous translation done badly: Java

Advantages
I Simple
I Smaller binaries

Disadvantages
I No type information at

runtime
I Indirection

Overall verdict: 1

4
(drop out of university Java, you’re drunk)



Heterogenous translation done well: C#

Advantages
I Type information available

at runtime
I No extra indirection

Disadvantages
I Bigger binaries
I Complex

Overall verdict: 4

4
(I swear that Microsoft didn’t pay me!)



Heterogenous translation done well: C#

Advantages
I Type information available

at runtime

I No extra indirection

Disadvantages
I Bigger binaries
I Complex

Overall verdict: 4

4
(I swear that Microsoft didn’t pay me!)



Heterogenous translation done well: C#

Advantages
I Type information available

at runtime

I No extra indirection

Disadvantages
I Bigger binaries
I Complex

Overall verdict: 4

4
(I swear that Microsoft didn’t pay me!)



Heterogenous translation done well: C#

Advantages
I Type information available

at runtime
I No extra indirection

Disadvantages
I Bigger binaries
I Complex

Overall verdict: 4

4
(I swear that Microsoft didn’t pay me!)



Heterogenous translation done well: C#

Advantages
I Type information available

at runtime
I No extra indirection

Disadvantages
I Bigger binaries
I Complex

Overall verdict: 4

4
(I swear that Microsoft didn’t pay me!)



Heterogenous translation done well: C#

Advantages
I Type information available

at runtime
I No extra indirection

Disadvantages
I Bigger binaries

I Complex

Overall verdict: 4

4
(I swear that Microsoft didn’t pay me!)



Heterogenous translation done well: C#

Advantages
I Type information available

at runtime
I No extra indirection

Disadvantages
I Bigger binaries

I Complex

Overall verdict: 4

4
(I swear that Microsoft didn’t pay me!)



Heterogenous translation done well: C#

Advantages
I Type information available

at runtime
I No extra indirection

Disadvantages
I Bigger binaries
I Complex

Overall verdict: 4

4
(I swear that Microsoft didn’t pay me!)



Heterogenous translation done well: C#

Advantages
I Type information available

at runtime
I No extra indirection

Disadvantages
I Bigger binaries
I Complex

Overall verdict: 4

4
(I swear that Microsoft didn’t pay me!)



Heterogenous translation done well: C#

Advantages
I Type information available

at runtime
I No extra indirection

Disadvantages
I Bigger binaries
I Complex

Overall verdict: 4

4

(I swear that Microsoft didn’t pay me!)



Heterogenous translation done well: C#

Advantages
I Type information available

at runtime
I No extra indirection

Disadvantages
I Bigger binaries
I Complex

Overall verdict: 4

4
(I swear that Microsoft didn’t pay me!)



Heterogenous translation done badly: C++

Advantages
I Type information available

at runtime
I No extra indirection

Disadvantages
I Bigger binaries
I Complex

Overall verdict: 1

4
(bad idea in the 80s, bad idea now)



Heterogenous translation done badly: C++

Advantages
I Type information available

at runtime

I No extra indirection

Disadvantages
I Bigger binaries
I Complex

Overall verdict: 1

4
(bad idea in the 80s, bad idea now)



Heterogenous translation done badly: C++

Advantages
I Type information available

at runtime

I No extra indirection

Disadvantages
I Bigger binaries
I Complex

Overall verdict: 1

4
(bad idea in the 80s, bad idea now)



Heterogenous translation done badly: C++

Advantages
I Type information available

at runtime
I No extra indirection

Disadvantages
I Bigger binaries
I Complex

Overall verdict: 1

4
(bad idea in the 80s, bad idea now)



Heterogenous translation done badly: C++

Advantages
I Type information available

at runtime
I No extra indirection

Disadvantages
I Bigger binaries
I Complex

Overall verdict: 1

4
(bad idea in the 80s, bad idea now)



Heterogenous translation done badly: C++

Advantages
I Type information available

at runtime
I No extra indirection

Disadvantages
I Bigger binaries

I Complex

Overall verdict: 1

4
(bad idea in the 80s, bad idea now)



Heterogenous translation done badly: C++

Advantages
I Type information available

at runtime
I No extra indirection

Disadvantages
I Bigger binaries

I Complex

Overall verdict: 1

4
(bad idea in the 80s, bad idea now)



Heterogenous translation done badly: C++

Advantages
I Type information available

at runtime
I No extra indirection

Disadvantages
I Bigger binaries
I Complex

Overall verdict: 1

4
(bad idea in the 80s, bad idea now)



Heterogenous translation done badly: C++

Advantages
I Type information available

at runtime
I No extra indirection

Disadvantages
I Bigger binaries
I Complex

Overall verdict: 1

4
(bad idea in the 80s, bad idea now)



Heterogenous translation done badly: C++

Advantages
I Type information available

at runtime
I No extra indirection

Disadvantages
I Bigger binaries
I Complex

Overall verdict: 1

4

(bad idea in the 80s, bad idea now)



Heterogenous translation done badly: C++

Advantages
I Type information available

at runtime
I No extra indirection

Disadvantages
I Bigger binaries
I Complex

Overall verdict: 1

4
(bad idea in the 80s, bad idea now)



Conclusion

I Type parametrization is something we want (and language
designers have obliged)

I There’s more than one way to do it, and it must be viewed in
the context of the language they inhabit

I More work is still being done on this!
I Important to understand how something works (don’t just

blindly follow hype and buzzwords)

“In software development, abstraction is often used as a
synonym for indirection. Not so in mathematics.”

Susan Potter (@SusanPotter)



Conclusion

I Type parametrization is something we want (and language
designers have obliged)

I There’s more than one way to do it, and it must be viewed in
the context of the language they inhabit

I More work is still being done on this!
I Important to understand how something works (don’t just

blindly follow hype and buzzwords)

“In software development, abstraction is often used as a
synonym for indirection. Not so in mathematics.”

Susan Potter (@SusanPotter)



Conclusion

I Type parametrization is something we want (and language
designers have obliged)

I There’s more than one way to do it, and it must be viewed in
the context of the language they inhabit

I More work is still being done on this!
I Important to understand how something works (don’t just

blindly follow hype and buzzwords)

“In software development, abstraction is often used as a
synonym for indirection. Not so in mathematics.”

Susan Potter (@SusanPotter)



Conclusion

I Type parametrization is something we want (and language
designers have obliged)

I There’s more than one way to do it, and it must be viewed in
the context of the language they inhabit

I More work is still being done on this!

I Important to understand how something works (don’t just
blindly follow hype and buzzwords)

“In software development, abstraction is often used as a
synonym for indirection. Not so in mathematics.”

Susan Potter (@SusanPotter)



Conclusion

I Type parametrization is something we want (and language
designers have obliged)

I There’s more than one way to do it, and it must be viewed in
the context of the language they inhabit

I More work is still being done on this!
I Important to understand how something works (don’t just

blindly follow hype and buzzwords)

“In software development, abstraction is often used as a
synonym for indirection. Not so in mathematics.”

Susan Potter (@SusanPotter)



Conclusion

I Type parametrization is something we want (and language
designers have obliged)

I There’s more than one way to do it, and it must be viewed in
the context of the language they inhabit

I More work is still being done on this!
I Important to understand how something works (don’t just

blindly follow hype and buzzwords)

“In software development, abstraction is often used as a
synonym for indirection. Not so in mathematics.”

Susan Potter (@SusanPotter)



Question time!


	What is this, and why should I care?
	How do we implement this?
	How good are these?
	There's this one thing I don't get…

