2%
Qe S

Yeab.

CONS cells

Or: start simple!

Glen Osborne

3rd August, 2017

[AUT CSC]

AUT Computer Science Club

<N +
S or

ROE

Ly

Outline

Introduction

The CONS cell

Building up other structures

Limitations and uses

Questions

All those data structures...

We have an embarassment of different data structures available to
us:

All those data structures...

We have an embarassment of different data structures available to
us:

» Lists

All those data structures...

We have an embarassment of different data structures available to
us:

» Lists

» Dictionaries

All those data structures...

We have an embarassment of different data structures available to
us:

» Lists
» Dictionaries

» Matrices (with arbitrary dimensions)

All those data structures...

We have an embarassment of different data structures available to
us:

v

Lists

v

Dictionaries

v

Matrices (with arbitrary dimensions)

» Trees

All those data structures...

We have an embarassment of different data structures available to
us:

Lists

v

v

Dictionaries

v

Matrices (with arbitrary dimensions)

» Trees

v

Graphs

All those data structures...

We have an embarassment of different data structures available to
us:

Lists

v

Dictionaries

v

v

Matrices (with arbitrary dimensions)
> Trees

v

Graphs

v

And so many more!

All those data structures...

We have an embarassment of different data structures available to
us:

Lists

v

Dictionaries

v

v

Matrices (with arbitrary dimensions)
> Trees

v

Graphs

v

And so many more!

These can be very complicated to understand and implement!

All those data structures...

We have an embarassment of different data structures available to
us:

Lists

v

Dictionaries

v

v

Matrices (with arbitrary dimensions)

» Trees

v

Graphs

» And so many more!

These can be very complicated to understand and implement!
They also often ‘lock you in’ to a fixed set of operations — and
whether these are the ones you need can be hard to determine
when initially solving a problem.

A ‘novel’ proposition

YRAT I 040 YL

k\ 1

ONE STRUCTURE MAKES THEM ALL

A ‘novel’ proposition

YRAT I 040 YL

\\ 1
)
ONE STRUCTURE MAKES%‘H_EM ALL

Yes, really!

A ‘novel’ proposition

YRAT I 040 YL

\\ 1
)
ONE STRUCTURE MAKES%‘H_EM ALL

Yes, really! Not a new idea by any means — first put forward in
the 1950s.

A ‘novel’ proposition

YRAT I 040 YL

\‘ ‘\:
)
ONE STRUCTURE MAKES%‘H_EM ALL

Yes, really! Not a new idea by any means — first put forward in
the 1950s. Let's see how this is possible..

Some definitions

Definition
A machine word is a fixed-size chunk of memory.

Some definitions

Definition
A machine word is a fixed-size chunk of memory.

What this ‘fixed size' is doesn't matter — most modern computers
have a 32 or 64-bit machine word.

Some definitions

Definition
A machine word is a fixed-size chunk of memory.

What this ‘fixed size' is doesn't matter — most modern computers
have a 32 or 64-bit machine word.

Definition
A piece of data (datum) is primitive if it fits into one machine
word. Otherwise, it is complex.

Some definitions

Definition
A machine word is a fixed-size chunk of memory.

What this ‘fixed size' is doesn't matter — most modern computers
have a 32 or 64-bit machine word.

Definition
A piece of data (datum) is primitive if it fits into one machine
word. Otherwise, it is complex.

Definition
A reference is a primitive datum, consisting of a memory address.

Some definitions

Definition
A machine word is a fixed-size chunk of memory.

What this ‘fixed size' is doesn't matter — most modern computers
have a 32 or 64-bit machine word.

Definition
A piece of data (datum) is primitive if it fits into one machine
word. Otherwise, it is complex.

Definition
A reference is a primitive datum, consisting of a memory address.

We can imagine a reference as ‘pointing’ to another piece of data
in memory.

Some definitions

Definition
A machine word is a fixed-size chunk of memory.

What this ‘fixed size' is doesn't matter — most modern computers
have a 32 or 64-bit machine word.

Definition
A piece of data (datum) is primitive if it fits into one machine
word. Otherwise, it is complex.

Definition
A reference is a primitive datum, consisting of a memory address.
We can imagine a reference as ‘pointing’ to another piece of data

in memory. Besides references, we also have integers and floats as
primitive data (and possibly others as well).

Gettin' visual with it

10

We will use drawings like this one to represent data in memory.

Gettin' visual with it

10

We represent machine words using boxes. Adjacent boxes are adja-
cent machine words in memory (these two are not).

Gettin' visual with it

10

Non-reference primitive data will be drawn inside the box represent-
ing its machine word.

Gettin' visual with it

10

References will be drawn as arrows to the data they ‘point’ to (this
one isn't pointing anywhere useful).

The CONS cell

CAR CDR

The CONS cell

CAR CDR

» Consists of two adjacent machine words

The CONS cell

CAR CDR

» Consists of two adjacent machine words

» A CONS cell’s first word is called its CAR (pronounced like
‘motor vehicle’)

The CONS cell

CAR CDR

» Consists of two adjacent machine words

» A CONS cell’s first word is called its CAR (pronounced like
‘motor vehicle’)

» A CONS cell's second word is called its CDR (pronounced like
‘COULD-ruh’)

The CONS cell

CAR CDR

v

Consists of two adjacent machine words

A CONS cell’s first word is called its CAR (pronounced like
‘motor vehicle’)

A CONS cell's second word is called its CDR (pronounced like
‘COULD-ruh’)

Either the CAR or the CDR can store reference, or primitive
non-reference, data as needed

v

v

v

The CONS cell

CAR CDR

v

Consists of two adjacent machine words

A CONS cell’s first word is called its CAR (pronounced like
‘motor vehicle’)

A CONS cell's second word is called its CDR (pronounced like
‘COULD-ruh’)

Either the CAR or the CDR can store reference, or primitive
non-reference, data as needed

v

v

v

v

Can implement every single one of the data structures
mentioned at the start of this talk!

What you're probably thinking right now

explain

e

What you're probably thinking right now

| SURMISE THAT YOUR PERSONAGE

IS PERVADED WITH EXCREMENT

Lists

Definition
NIL refers to a unique machine word representing ‘no useful data’.

Lists

Definition
NIL refers to a unique machine word representing ‘no useful data’.

Initially, we'll assume that lists only store primitive data. We'll
later show how to overcome this.

Lists

Definition
NIL refers to a unique machine word representing ‘no useful data’.

Initially, we'll assume that lists only store primitive data. We'll
later show how to overcome this.

The intuition here is based on the fact that a CONS cell looks a
lot like a singly-linked list node.

Lists

Definition
NIL refers to a unique machine word representing ‘no useful data’.

Initially, we'll assume that lists only store primitive data. We'll
later show how to overcome this.

The intuition here is based on the fact that a CONS cell looks a
lot like a singly-linked list node. More precisely, we can store each
node’s data in the CAR, and ‘next’ reference in the CDR.

Lists

Definition
NIL refers to a unique machine word representing ‘no useful data’.

Initially, we'll assume that lists only store primitive data. We'll
later show how to overcome this.

The intuition here is based on the fact that a CONS cell looks a
lot like a singly-linked list node. More precisely, we can store each
node's data in the CAR, and ‘next’ reference in the CDR. For the
last node, we can have its ‘next’ reference 'point to’ NIL to mark
the end of the list.

Lists

Definition
NIL refers to a unique machine word representing ‘no useful data’.

Initially, we'll assume that lists only store primitive data. We'll
later show how to overcome this.

The intuition here is based on the fact that a CONS cell looks a
lot like a singly-linked list node. More precisely, we can store each
node's data in the CAR, and ‘next’ reference in the CDR. For the
last node, we can have its ‘next’ reference 'point to’ NIL to mark
the end of the list.

Using this approach, we can define all the usual list operations in a
straightforward way.

Visualizing CONS cell lists

CAR CDR

CAR CDR

CAR CDR

10

20

Y

30

—>NIL

This is the in-memory representation of the list [10, 20, 30]

using CONS cells.

Visualizing CONS cell lists

CAR CDR

CAR CDR

CAR CDR

10

20

30

—>NIL

This is the in-memory representation of the list [10, 20, 30]
using CONS cells. Each CONS cell is one list node.

Visualizing CONS cell lists

CAR CDR

CAR CDR

CAR CDR

10

20

Y

30

—>NIL

This is the in-memory representation of the list [10, 20, 30]
using CONS cells. Each CONS cell is one list node. CARs contain

the data.

Visualizing CONS cell lists

CAR CDR

CAR CDR

CAR CDR

10

Y

20

30

—+——>NIL

This is the in-memory representation of the list [10, 20, 30]
using CONS cells. Each CONS cell is one list node. CARs contain
the data. CDRs contain references to the next list node, or NIL for

the end.

Lists with complex data

> Most interesting data won't fit into a single machine word.

Lists with complex data

> Most interesting data won't fit into a single machine word.

» To have lists storing complex data, we have the CARS of our
list node CONS cells be references to the data elsewhere in
memory.

Lists with complex data

> Most interesting data won't fit into a single machine word.

» To have lists storing complex data, we have the CARS of our
list node CONS cells be references to the data elsewhere in
memory.

» We can even mix-and-match the two!

Visualizing lists with complex data

CAR CDR CAR CDR CAR CDR
| > 10 " | ——>NIL
||My|| "SOHS"

This is the in-memory representation of the list ["My", 10,
"sons"] using CONS cells.

Visualizing lists with complex data

CAR CDR CAR CDR CAR CDR
| » 10 " | ——>NIL
"My" "sons"

This is the in-memory representation of the list ["My", 10,
"sons"] using CONS cells. Primitive data is stored in the CAR of
the relevant cell as before.

Visualizing lists with complex data

CAR CDR

CAR CDR

CAR CDR

10

Y

——>NIL

l

IIMyII

l

"sons"

This is the in-memory representation of the list ["My", 10,
"sons"] using CONS cells. Primitive data is stored in the CAR of
the relevant cell as before. Complex data is stored elsewhere, and
the CDRs of the relevant cells store references to that data instead.

Dictionaries

Definition
A dictionary stores a set of key-value pairs, such that keys in the
dictionary are unique.

Dictionaries

Definition
A dictionary stores a set of key-value pairs, such that keys in the
dictionary are unique.

We can represent a key-value pair by using a CONS cell where
both the CAR and CDR store data (or a reference to data).

Dictionaries

Definition
A dictionary stores a set of key-value pairs, such that keys in the
dictionary are unique.

We can represent a key-value pair by using a CONS cell where
both the CAR and CDR store data (or a reference to data). We
can then create a list of these as complex data.

Dictionaries

Definition
A dictionary stores a set of key-value pairs, such that keys in the
dictionary are unique.

We can represent a key-value pair by using a CONS cell where
both the CAR and CDR store data (or a reference to data). We
can then create a list of these as complex data. To ensure that we
don’t end up with key duplication, we do two things:

Dictionaries

Definition
A dictionary stores a set of key-value pairs, such that keys in the
dictionary are unique.

We can represent a key-value pair by using a CONS cell where
both the CAR and CDR store data (or a reference to data). We
can then create a list of these as complex data. To ensure that we
don’t end up with key duplication, we do two things:

» Ensure that queries always start from the first CONS cell in
the list

Dictionaries

Definition
A dictionary stores a set of key-value pairs, such that keys in the
dictionary are unique.

We can represent a key-value pair by using a CONS cell where
both the CAR and CDR store data (or a reference to data). We
can then create a list of these as complex data. To ensure that we
don’t end up with key duplication, we do two things:

» Ensure that queries always start from the first CONS cell in
the list

» Put inserts at the front of the list (so they'll be found before
any previous entries with the same key)

Example of CONS cell-based dictionary

CAR CDR CAR CDR CAR CDR
> —+——NIL
CAR y CDR CAR y CDR CAR v CDR
10 ‘ ‘ 20 ‘
||f00|| Ilbarll IIbaZII IlqquII

This is the in-memory representation of the dictionary
{(10, "foo™), ("bar",20), ("baz", "quux")}.

Example of CONS cell-based dictionary

CAR CDR CAR CDR CAR CDR
> > —+——NIL
CAR y CDR CAR y CDR CAR v CDR
10 | | 20 |
IIfOOII IIbarll "baZ" IIqquII

This is the in-memory representation of the dictionary
{(10, "foo"), ("bar",20), ("baz", "quux")}. The entries form a list
of complex data (the spine of the dictionary).

A slight intermission

Given that we've now described how to define dictionaries using
CONS cells, we have the ability to define any other data structure
(as explained in the previous talk).

A slight intermission

Given that we've now described how to define dictionaries using
CONS cells, we have the ability to define any other data structure
(as explained in the previous talk). However, we can implement
some structures a bit better than this using CONS cells, including:

A slight intermission

Given that we've now described how to define dictionaries using
CONS cells, we have the ability to define any other data structure
(as explained in the previous talk). However, we can implement
some structures a bit better than this using CONS cells, including:

» Matrices

A slight intermission

Given that we've now described how to define dictionaries using
CONS cells, we have the ability to define any other data structure
(as explained in the previous talk). However, we can implement
some structures a bit better than this using CONS cells, including:

» Matrices

> Trees

A slight intermission

Given that we've now described how to define dictionaries using
CONS cells, we have the ability to define any other data structure
(as explained in the previous talk). However, we can implement
some structures a bit better than this using CONS cells, including:

» Matrices
> Trees

» Graphs

A slight intermission

Given that we've now described how to define dictionaries using
CONS cells, we have the ability to define any other data structure
(as explained in the previous talk). However, we can implement
some structures a bit better than this using CONS cells, including:

» Matrices
> Trees
» Graphs

To save time, we will only draw diagrams where useful.

A slight intermission

Given that we've now described how to define dictionaries using
CONS cells, we have the ability to define any other data structure
(as explained in the previous talk). However, we can implement
some structures a bit better than this using CONS cells, including:

» Matrices
> Trees
» Graphs

To save time, we will only draw diagrams where useful. If we refer
to lists or dictionaries anywhere, assume we mean ones based on
CONS cells as described previously.

Matrices

Definition
The rank of a matrix is the number of dimensions it has.

Matrices

Definition
The rank of a matrix is the number of dimensions it has.

A rank 1 ‘matrix’ is just a list.

Matrices

Definition
The rank of a matrix is the number of dimensions it has.

A rank 1 ‘matrix’ is just a list. A rank 2 matrix is a list of lists, a
rank 3 matrix is a list of rank 2 matrices, and so on, and so forth.

Matrices

Definition
The rank of a matrix is the number of dimensions it has.

A rank 1 ‘matrix’ is just a list. A rank 2 matrix is a list of lists, a
rank 3 matrix is a list of rank 2 matrices, and so on, and so forth.

We can define a rank n matrix (for n > 1) as a spine of rank n — 1
matrices.

Matrix example

Consider the following rank 2 matrix:

Matrix example

Consider the following rank 2 matrix:

1 2 3 4
5 6 7 8
9 10 11 12

We can represent it in two ways.

Matrix example

Consider the following rank 2 matrix:

1 2 3 4
5 6 7 8
9 10 11 12

We can represent it in two ways. We can have the spine go along
the columns:

tft1, 5, 91, [2, 6, 101, [3, 7, 111, [4, 8, 12]]

Matrix example

Consider the following rank 2 matrix:

1 2 3 4
5 6 7 8
9 10 11 12

We can represent it in two ways. We can have the spine go along
the columns:

(f1, 5, 91, [2, 6, 101, [3, 7, 11], [4, 8, 12]]
or along the rows:

(f1, 2, 3, 41, [5, 6, 7, 8], [9, 10, 11, 12]]

Trees

We will begin with a very simple kind of tree: a binary leaf tree.

Trees

We will begin with a very simple kind of tree: a binary leaf tree.
More precisely:

Definition
A binary leaf tree has data only in its leaf nodes, and its internal
nodes have a maximum of two children.

Trees

We will begin with a very simple kind of tree: a binary leaf tree.
More precisely:

Definition

A binary leaf tree has data only in its leaf nodes, and its internal

nodes have a maximum of two children.

We can represent a binary leaf tree using CONS cells as follows:

Trees

We will begin with a very simple kind of tree: a binary leaf tree.
More precisely:

Definition
A binary leaf tree has data only in its leaf nodes, and its internal

nodes have a maximum of two children.

We can represent a binary leaf tree using CONS cells as follows:

» An internal node is represented by a CONS cell whose CAR
stores a reference to its left child (or NIL if none) and whose
CDR stores a reference to its right child (or NIL if none)

Trees

We will begin with a very simple kind of tree: a binary leaf tree.
More precisely:

Definition
A binary leaf tree has data only in its leaf nodes, and its internal
nodes have a maximum of two children.

We can represent a binary leaf tree using CONS cells as follows:

» An internal node is represented by a CONS cell whose CAR
stores a reference to its left child (or NIL if none) and whose
CDR stores a reference to its right child (or NIL if none)

> A leaf node is represented by a CONS cell storing the same
data (or reference) in both its CAR and CDR

Example binary leaf tree and its CONS cell representation

CAR CDR

CAR CDR CAR CDR

10|10

CAR CDR NIL
| 1]

"foo

Rose trees

If we need trees of arbitrary branching factor (number of children),
or where data has to be stored in the leaves as well, we can instead
use a rose tree representation:

Rose trees

If we need trees of arbitrary branching factor (number of children),
or where data has to be stored in the leaves as well, we can instead
use a rose tree representation:

» A leaf node is represented the same way as for binary leaf trees

Rose trees

If we need trees of arbitrary branching factor (number of children),
or where data has to be stored in the leaves as well, we can instead
use a rose tree representation:

» A leaf node is represented the same way as for binary leaf trees

» An internal node is represented by a CONS cell whose CAR
stores the data for that node (or a reference to the data), and
whose CDR stores a list of references to its children in
left-to-right order

Rose trees

If we need trees of arbitrary branching factor (number of children),
or where data has to be stored in the leaves as well, we can instead
use a rose tree representation:

» A leaf node is represented the same way as for binary leaf trees

» An internal node is represented by a CONS cell whose CAR
stores the data for that node (or a reference to the data), and
whose CDR stores a list of references to its children in
left-to-right order

We can also include a parent reference in the list of children
(typically as the first element) if we want.

Graphs

Typically, graphs are stored as an adjacency matrix or an adjacency
list.

Graphs

Typically, graphs are stored as an adjacency matrix or an adjacency
list. The adjacency matrix is easy to represent using a rank 2
matrix as we defined before.

Graphs

Typically, graphs are stored as an adjacency matrix or an adjacency
list. The adjacency matrix is easy to represent using a rank 2
matrix as we defined before. The adjacency list is a bit trickier:

Graphs

Typically, graphs are stored as an adjacency matrix or an adjacency
list. The adjacency matrix is easy to represent using a rank 2
matrix as we defined before. The adjacency list is a bit trickier:

» An adjacency list is represented by an adjacency spine

Graphs

Typically, graphs are stored as an adjacency matrix or an adjacency
list. The adjacency matrix is easy to represent using a rank 2
matrix as we defined before. The adjacency list is a bit trickier:

» An adjacency list is represented by an adjacency spine

» An adjacency spine is made up of vertex cells

Graphs

Typically, graphs are stored as an adjacency matrix or an adjacency
list. The adjacency matrix is easy to represent using a rank 2
matrix as we defined before. The adjacency list is a bit trickier:

» An adjacency list is represented by an adjacency spine
» An adjacency spine is made up of vertex cells

» A vertex cell is a CONS cell whose CAR stores a reference to
the next vertex cell in the adjacency spine, and whose CDR
stores a vertex list

Graphs

Typically, graphs are stored as an adjacency matrix or an adjacency
list. The adjacency matrix is easy to represent using a rank 2
matrix as we defined before. The adjacency list is a bit trickier:

» An adjacency list is represented by an adjacency spine

v

An adjacency spine is made up of vertex cells

A vertex cell is a CONS cell whose CAR stores a reference to
the next vertex cell in the adjacency spine, and whose CDR
stores a vertex list

v

A vertex list is a CONS cell whose CAR stores the vertex's
label (or a reference to it), and whose CDR stores a reference
to a child list

v

Graphs

Typically, graphs are stored as an adjacency matrix or an adjacency
list. The adjacency matrix is easy to represent using a rank 2
matrix as we defined before. The adjacency list is a bit trickier:

» An adjacency list is represented by an adjacency spine

» An adjacency spine is made up of vertex cells

> A vertex cell is a CONS cell whose CAR stores a reference to
the next vertex cell in the adjacency spine, and whose CDR
stores a vertex list

» A vertex list is a CONS cell whose CAR stores the vertex's
label (or a reference to it), and whose CDR stores a reference
to a child list

> A child list's data are references to elements of the adjacency
spine, corresponding to the neighbours of that vertex

The bad news

All of these are really neat, but unfortunately, these
implementations can be slow, especially when we have a lot of
data, because:

The bad news

All of these are really neat, but unfortunately, these
implementations can be slow, especially when we have a lot of
data, because:

» Many operations involve scanning ‘chains’ of CONS cells,
which give us linear (or worse!) time complexity

The bad news

All of these are really neat, but unfortunately, these
implementations can be slow, especially when we have a lot of

data, because:

» Many operations involve scanning ‘chains’ of CONS cells,
which give us linear (or worse!) time complexity

» CONS cells are not cache-friendly; typically, we'll only cache
the cell itself, and not any data its CAR or CDR might hold

references to

The bad news

All of these are really neat, but unfortunately, these
implementations can be slow, especially when we have a lot of
data, because:

» Many operations involve scanning ‘chains’ of CONS cells,
which give us linear (or worse!) time complexity

» CONS cells are not cache-friendly; typically, we'll only cache
the cell itself, and not any data its CAR or CDR might hold
references to

» This means that we could potentially be getting cache misses
every time we follow a stored reference!

The bad news

All of these are really neat, but unfortunately, these
implementations can be slow, especially when we have a lot of
data, because:

» Many operations involve scanning ‘chains’ of CONS cells,
which give us linear (or worse!) time complexity

» CONS cells are not cache-friendly; typically, we'll only cache
the cell itself, and not any data its CAR or CDR might hold
references to

» This means that we could potentially be getting cache misses
every time we follow a stored reference!

> There are ways to make CONS cell-based structures more
cache-friendly, but they're usually more trouble than they're
worth

So why use them?

» When we initially set out to solve a problem, we don't often
know what operations we need, how much data we'll have, or
which operations need to be fast

So why use them?

» When we initially set out to solve a problem, we don't often
know what operations we need, how much data we'll have, or
which operations need to be fast

» CONS cell-based structures can be built and extended quickly

So why use them?

» When we initially set out to solve a problem, we don't often
know what operations we need, how much data we'll have, or
which operations need to be fast

» CONS cell-based structures can be built and extended quickly
» This makes them ideal for prototyping

So why use them?

» When we initially set out to solve a problem, we don't often
know what operations we need, how much data we'll have, or
which operations need to be fast

» CONS cell-based structures can be built and extended quickly
» This makes them ideal for prototyping

» There is no fast — only fast enough; you might find CONS
cells are good enough for your purposes!

So why use them?

» When we initially set out to solve a problem, we don't often
know what operations we need, how much data we'll have, or
which operations need to be fast

» CONS cell-based structures can be built and extended quickly
» This makes them ideal for prototyping

» There is no fast — only fast enough; you might find CONS
cells are good enough for your purposes!

» Once you know exactly what you need, you can always replace
some (or all) of the structure with something more efficient

So why use them?

» When we initially set out to solve a problem, we don't often
know what operations we need, how much data we'll have, or
which operations need to be fast

» CONS cell-based structures can be built and extended quickly
» This makes them ideal for prototyping

» There is no fast — only fast enough; you might find CONS
cells are good enough for your purposes!

» Once you know exactly what you need, you can always replace
some (or all) of the structure with something more efficient

In short, CONS cell-based structures can help you learn your
tradeoffs quickly and easily.

Questions?

ARE THERE ANY

QUESTIONS?

	Introduction
	The CONS cell
	Building up other structures
	Limitations and uses
	Questions

