
Functors
Or: why your abstractions are weak

Koz Ross

18th May, 2017

Outline

Introduction

Some formalisms

The functor revealed

Limitations of functors

Questions

Things we want to have when programming

When we write code, all the following are pretty vital:

I Error handling (unlabelled and labelled)
I Nondeterminism (multiple answers)
I Side effects (file handling, GUIs, database operations,…)
I Metadata handling (information about data)
I Containers (lists, dictionaries, trees,…)

These things are very different, aren’t they? Your programming
languages sure seem to think so…

Things we want to have when programming

When we write code, all the following are pretty vital:

I Error handling (unlabelled and labelled)

I Nondeterminism (multiple answers)
I Side effects (file handling, GUIs, database operations,…)
I Metadata handling (information about data)
I Containers (lists, dictionaries, trees,…)

These things are very different, aren’t they? Your programming
languages sure seem to think so…

Things we want to have when programming

When we write code, all the following are pretty vital:

I Error handling (unlabelled and labelled)
I Nondeterminism (multiple answers)

I Side effects (file handling, GUIs, database operations,…)
I Metadata handling (information about data)
I Containers (lists, dictionaries, trees,…)

These things are very different, aren’t they? Your programming
languages sure seem to think so…

Things we want to have when programming

When we write code, all the following are pretty vital:

I Error handling (unlabelled and labelled)
I Nondeterminism (multiple answers)
I Side effects (file handling, GUIs, database operations,…)

I Metadata handling (information about data)
I Containers (lists, dictionaries, trees,…)

These things are very different, aren’t they? Your programming
languages sure seem to think so…

Things we want to have when programming

When we write code, all the following are pretty vital:

I Error handling (unlabelled and labelled)
I Nondeterminism (multiple answers)
I Side effects (file handling, GUIs, database operations,…)
I Metadata handling (information about data)

I Containers (lists, dictionaries, trees,…)

These things are very different, aren’t they? Your programming
languages sure seem to think so…

Things we want to have when programming

When we write code, all the following are pretty vital:

I Error handling (unlabelled and labelled)
I Nondeterminism (multiple answers)
I Side effects (file handling, GUIs, database operations,…)
I Metadata handling (information about data)
I Containers (lists, dictionaries, trees,…)

These things are very different, aren’t they? Your programming
languages sure seem to think so…

Things we want to have when programming

When we write code, all the following are pretty vital:

I Error handling (unlabelled and labelled)
I Nondeterminism (multiple answers)
I Side effects (file handling, GUIs, database operations,…)
I Metadata handling (information about data)
I Containers (lists, dictionaries, trees,…)

These things are very different, aren’t they?

Your programming
languages sure seem to think so…

Things we want to have when programming

When we write code, all the following are pretty vital:

I Error handling (unlabelled and labelled)
I Nondeterminism (multiple answers)
I Side effects (file handling, GUIs, database operations,…)
I Metadata handling (information about data)
I Containers (lists, dictionaries, trees,…)

These things are very different, aren’t they? Your programming
languages sure seem to think so…

The truth

Yes, your languages have been lying to you.

The truth

Yes, your languages have been lying to you.

The fantastic functor

The functor is an abstraction which unifies all of the above: we
can code to functors, and that code will provably work for every
single one of those cases.

Well, and plenty more besides…

Functors have been known about for over forty years, and have
been implemented in programming languages since 1990. They are
easy to understand, easy to use, and generally awesome.

If your ‘high-level’ language doesn’t have them, your language is
weak. If you haven’t been taught them, your instructors are weak
(pointing no fingers, of course).

Let’s fix this, shall we?

The fantastic functor

The functor is an abstraction which unifies all of the above: we
can code to functors, and that code will provably work for every
single one of those cases. Well, and plenty more besides…

Functors have been known about for over forty years, and have
been implemented in programming languages since 1990. They are
easy to understand, easy to use, and generally awesome.

If your ‘high-level’ language doesn’t have them, your language is
weak. If you haven’t been taught them, your instructors are weak
(pointing no fingers, of course).

Let’s fix this, shall we?

The fantastic functor

The functor is an abstraction which unifies all of the above: we
can code to functors, and that code will provably work for every
single one of those cases. Well, and plenty more besides…

Functors have been known about for over forty years, and have
been implemented in programming languages since 1990.

They are
easy to understand, easy to use, and generally awesome.

If your ‘high-level’ language doesn’t have them, your language is
weak. If you haven’t been taught them, your instructors are weak
(pointing no fingers, of course).

Let’s fix this, shall we?

The fantastic functor

The functor is an abstraction which unifies all of the above: we
can code to functors, and that code will provably work for every
single one of those cases. Well, and plenty more besides…

Functors have been known about for over forty years, and have
been implemented in programming languages since 1990. They are
easy to understand, easy to use, and generally awesome.

If your ‘high-level’ language doesn’t have them, your language is
weak. If you haven’t been taught them, your instructors are weak
(pointing no fingers, of course).

Let’s fix this, shall we?

The fantastic functor

The functor is an abstraction which unifies all of the above: we
can code to functors, and that code will provably work for every
single one of those cases. Well, and plenty more besides…

Functors have been known about for over forty years, and have
been implemented in programming languages since 1990. They are
easy to understand, easy to use, and generally awesome.

If your ‘high-level’ language doesn’t have them, your language is
weak.

If you haven’t been taught them, your instructors are weak
(pointing no fingers, of course).

Let’s fix this, shall we?

The fantastic functor

The functor is an abstraction which unifies all of the above: we
can code to functors, and that code will provably work for every
single one of those cases. Well, and plenty more besides…

Functors have been known about for over forty years, and have
been implemented in programming languages since 1990. They are
easy to understand, easy to use, and generally awesome.

If your ‘high-level’ language doesn’t have them, your language is
weak. If you haven’t been taught them, your instructors are weak
(pointing no fingers, of course).

Let’s fix this, shall we?

The fantastic functor

The functor is an abstraction which unifies all of the above: we
can code to functors, and that code will provably work for every
single one of those cases. Well, and plenty more besides…

Functors have been known about for over forty years, and have
been implemented in programming languages since 1990. They are
easy to understand, easy to use, and generally awesome.

If your ‘high-level’ language doesn’t have them, your language is
weak. If you haven’t been taught them, your instructors are weak
(pointing no fingers, of course).

Let’s fix this, shall we?

Types

A type is a set of rules.

Values can have types (which indicate
what we can do with them), but variables can have them too (and
that tells us what values they can hold).

-- I'm a comment!
1 :: Int -- we're asserting that 1 is an Int
1 :: Real -- same look, different meaning
(3, 2.5) :: (Int, Real) -- a pair
["foo", "bar", "baz"] :: [String] --a list

x :: Int -- the variable x holds ints (declaration)
x = 10 -- specifically this one (definition)

plus :: Int -> Int -> Int -- functions have types too!
plus x y = x + y -- and definitions

Types

A type is a set of rules. Values can have types (which indicate
what we can do with them), but variables can have them too (and
that tells us what values they can hold).

-- I'm a comment!
1 :: Int -- we're asserting that 1 is an Int
1 :: Real -- same look, different meaning
(3, 2.5) :: (Int, Real) -- a pair
["foo", "bar", "baz"] :: [String] --a list

x :: Int -- the variable x holds ints (declaration)
x = 10 -- specifically this one (definition)

plus :: Int -> Int -> Int -- functions have types too!
plus x y = x + y -- and definitions

Types

A type is a set of rules. Values can have types (which indicate
what we can do with them), but variables can have them too (and
that tells us what values they can hold).

-- I'm a comment!
1 :: Int -- we're asserting that 1 is an Int
1 :: Real -- same look, different meaning
(3, 2.5) :: (Int, Real) -- a pair
["foo", "bar", "baz"] :: [String] --a list

x :: Int -- the variable x holds ints (declaration)
x = 10 -- specifically this one (definition)

plus :: Int -> Int -> Int -- functions have types too!
plus x y = x + y -- and definitions

Types

A type is a set of rules. Values can have types (which indicate
what we can do with them), but variables can have them too (and
that tells us what values they can hold).

-- I'm a comment!
1 :: Int -- we're asserting that 1 is an Int
1 :: Real -- same look, different meaning
(3, 2.5) :: (Int, Real) -- a pair
["foo", "bar", "baz"] :: [String] --a list

x :: Int -- the variable x holds ints (declaration)
x = 10 -- specifically this one (definition)

plus :: Int -> Int -> Int -- functions have types too!
plus x y = x + y -- and definitions

Types

A type is a set of rules. Values can have types (which indicate
what we can do with them), but variables can have them too (and
that tells us what values they can hold).

-- I'm a comment!
1 :: Int -- we're asserting that 1 is an Int
1 :: Real -- same look, different meaning
(3, 2.5) :: (Int, Real) -- a pair
["foo", "bar", "baz"] :: [String] --a list

x :: Int -- the variable x holds ints (declaration)
x = 10 -- specifically this one (definition)

plus :: Int -> Int -> Int -- functions have types too!
plus x y = x + y -- and definitions

Type parameterization

Instead of giving a type, we can use a type parameter :

-- take a value of any type, return one of the same
id :: a -> a
id x = x -- we're gonna see this one too!

-- we can have as many type parameters as we want!
swap :: (a, b) -> (b, a)
swap (x,y) = (y,x) -- just like you expected

We will typically use a,b for type parameters.

Type parameterization

Instead of giving a type, we can use a type parameter :

-- take a value of any type, return one of the same
id :: a -> a
id x = x -- we're gonna see this one too!

-- we can have as many type parameters as we want!
swap :: (a, b) -> (b, a)
swap (x,y) = (y,x) -- just like you expected

We will typically use a,b for type parameters.

Type parameterization

Instead of giving a type, we can use a type parameter :

-- take a value of any type, return one of the same
id :: a -> a
id x = x -- we're gonna see this one too!

-- we can have as many type parameters as we want!
swap :: (a, b) -> (b, a)
swap (x,y) = (y,x) -- just like you expected

We will typically use a,b for type parameters.

Type parameterization

Instead of giving a type, we can use a type parameter :

-- take a value of any type, return one of the same
id :: a -> a
id x = x -- we're gonna see this one too!

-- we can have as many type parameters as we want!
swap :: (a, b) -> (b, a)
swap (x,y) = (y,x) -- just like you expected

We will typically use a,b for type parameters.

Our own types

We can define our own types by putting together descriptions of
what they contain, based on existing types:

-- similar to a struct
-- type name on left, constructor name on right
data Name = Name { first :: String, last :: String }

-- similar to an enum
data Colour = Red | Green | Blue

-- we can mix these two forms

-- can be parametrized by type(s) if we wish
data Maybe a = Nothing | Just a
data Either a b = Left a | Right b

Our own types

We can define our own types by putting together descriptions of
what they contain, based on existing types:

-- similar to a struct
-- type name on left, constructor name on right
data Name = Name { first :: String, last :: String }

-- similar to an enum
data Colour = Red | Green | Blue

-- we can mix these two forms

-- can be parametrized by type(s) if we wish
data Maybe a = Nothing | Just a
data Either a b = Left a | Right b

Our own types

We can define our own types by putting together descriptions of
what they contain, based on existing types:

-- similar to a struct
-- type name on left, constructor name on right
data Name = Name { first :: String, last :: String }

-- similar to an enum
data Colour = Red | Green | Blue

-- we can mix these two forms

-- can be parametrized by type(s) if we wish
data Maybe a = Nothing | Just a
data Either a b = Left a | Right b

Our own types

We can define our own types by putting together descriptions of
what they contain, based on existing types:

-- similar to a struct
-- type name on left, constructor name on right
data Name = Name { first :: String, last :: String }

-- similar to an enum
data Colour = Red | Green | Blue

-- we can mix these two forms

-- can be parametrized by type(s) if we wish
data Maybe a = Nothing | Just a
data Either a b = Left a | Right b

Our own types

We can define our own types by putting together descriptions of
what they contain, based on existing types:

-- similar to a struct
-- type name on left, constructor name on right
data Name = Name { first :: String, last :: String }

-- similar to an enum
data Colour = Red | Green | Blue

-- we can mix these two forms

-- can be parametrized by type(s) if we wish
data Maybe a = Nothing | Just a
data Either a b = Left a | Right b

Type classes

Similar to interfaces or protocols — define some operations which
might exist on different types, but should behave similarly.

Like
interfaces, also tend to have additional rules about what they
should do which the compiler cannot check:

-- a type class for things which can be compared
class Eq a where
-- instances must have these defined for them
== :: a -> a -> Bool
/= :: a -> a -> Bool

instance Eq Int where
== x y = -- fill in whatever
/= x y = -- same here

Type classes

Similar to interfaces or protocols — define some operations which
might exist on different types, but should behave similarly. Like
interfaces, also tend to have additional rules about what they
should do which the compiler cannot check:

-- a type class for things which can be compared
class Eq a where
-- instances must have these defined for them
== :: a -> a -> Bool
/= :: a -> a -> Bool

instance Eq Int where
== x y = -- fill in whatever
/= x y = -- same here

Type classes

Similar to interfaces or protocols — define some operations which
might exist on different types, but should behave similarly. Like
interfaces, also tend to have additional rules about what they
should do which the compiler cannot check:

-- a type class for things which can be compared
class Eq a where
-- instances must have these defined for them

== :: a -> a -> Bool
/= :: a -> a -> Bool

instance Eq Int where
== x y = -- fill in whatever
/= x y = -- same here

Type classes

Similar to interfaces or protocols — define some operations which
might exist on different types, but should behave similarly. Like
interfaces, also tend to have additional rules about what they
should do which the compiler cannot check:

-- a type class for things which can be compared
class Eq a where
-- instances must have these defined for them

== :: a -> a -> Bool
/= :: a -> a -> Bool

instance Eq Int where
== x y = -- fill in whatever
/= x y = -- same here

Type classes

Similar to interfaces or protocols — define some operations which
might exist on different types, but should behave similarly. Like
interfaces, also tend to have additional rules about what they
should do which the compiler cannot check:

-- a type class for things which can be compared
class Eq a where
-- instances must have these defined for them

== :: a -> a -> Bool
/= :: a -> a -> Bool

instance Eq Int where
== x y = -- fill in whatever
/= x y = -- same here

Pure and impure code

Code is pure if it always returns the same result when given the
same arguments, and has no side effects.

For example, the +
function is pure, but something like print or random aren’t.
Code which is not pure is impure (or side-effecting).

Most languages default to everything being as impure as possible
— any line of code can do anything at all, and it’s up to us to
make sure they all behave. This is a huge pain:

I We have to keep it straight in our heads
I No telling what an arbitrary function will do
I No guarantees that our impurity is limited in any way!

This seems rather strange — why not have pure code be the
default, and then use the type system to state what other
behaviour we want to have?

Pure and impure code

Code is pure if it always returns the same result when given the
same arguments, and has no side effects. For example, the +
function is pure, but something like print or random aren’t.

Code which is not pure is impure (or side-effecting).

Most languages default to everything being as impure as possible
— any line of code can do anything at all, and it’s up to us to
make sure they all behave. This is a huge pain:

I We have to keep it straight in our heads
I No telling what an arbitrary function will do
I No guarantees that our impurity is limited in any way!

This seems rather strange — why not have pure code be the
default, and then use the type system to state what other
behaviour we want to have?

Pure and impure code

Code is pure if it always returns the same result when given the
same arguments, and has no side effects. For example, the +
function is pure, but something like print or random aren’t.
Code which is not pure is impure (or side-effecting).

Most languages default to everything being as impure as possible
— any line of code can do anything at all, and it’s up to us to
make sure they all behave. This is a huge pain:

I We have to keep it straight in our heads
I No telling what an arbitrary function will do
I No guarantees that our impurity is limited in any way!

This seems rather strange — why not have pure code be the
default, and then use the type system to state what other
behaviour we want to have?

Pure and impure code

Code is pure if it always returns the same result when given the
same arguments, and has no side effects. For example, the +
function is pure, but something like print or random aren’t.
Code which is not pure is impure (or side-effecting).

Most languages default to everything being as impure as possible
— any line of code can do anything at all, and it’s up to us to
make sure they all behave.

This is a huge pain:
I We have to keep it straight in our heads
I No telling what an arbitrary function will do
I No guarantees that our impurity is limited in any way!

This seems rather strange — why not have pure code be the
default, and then use the type system to state what other
behaviour we want to have?

Pure and impure code

Code is pure if it always returns the same result when given the
same arguments, and has no side effects. For example, the +
function is pure, but something like print or random aren’t.
Code which is not pure is impure (or side-effecting).

Most languages default to everything being as impure as possible
— any line of code can do anything at all, and it’s up to us to
make sure they all behave. This is a huge pain:

I We have to keep it straight in our heads
I No telling what an arbitrary function will do
I No guarantees that our impurity is limited in any way!

This seems rather strange — why not have pure code be the
default, and then use the type system to state what other
behaviour we want to have?

Pure and impure code

Code is pure if it always returns the same result when given the
same arguments, and has no side effects. For example, the +
function is pure, but something like print or random aren’t.
Code which is not pure is impure (or side-effecting).

Most languages default to everything being as impure as possible
— any line of code can do anything at all, and it’s up to us to
make sure they all behave. This is a huge pain:

I We have to keep it straight in our heads

I No telling what an arbitrary function will do
I No guarantees that our impurity is limited in any way!

This seems rather strange — why not have pure code be the
default, and then use the type system to state what other
behaviour we want to have?

Pure and impure code

Code is pure if it always returns the same result when given the
same arguments, and has no side effects. For example, the +
function is pure, but something like print or random aren’t.
Code which is not pure is impure (or side-effecting).

Most languages default to everything being as impure as possible
— any line of code can do anything at all, and it’s up to us to
make sure they all behave. This is a huge pain:

I We have to keep it straight in our heads
I No telling what an arbitrary function will do

I No guarantees that our impurity is limited in any way!

This seems rather strange — why not have pure code be the
default, and then use the type system to state what other
behaviour we want to have?

Pure and impure code

Code is pure if it always returns the same result when given the
same arguments, and has no side effects. For example, the +
function is pure, but something like print or random aren’t.
Code which is not pure is impure (or side-effecting).

Most languages default to everything being as impure as possible
— any line of code can do anything at all, and it’s up to us to
make sure they all behave. This is a huge pain:

I We have to keep it straight in our heads
I No telling what an arbitrary function will do
I No guarantees that our impurity is limited in any way!

This seems rather strange — why not have pure code be the
default, and then use the type system to state what other
behaviour we want to have?

Pure and impure code

Code is pure if it always returns the same result when given the
same arguments, and has no side effects. For example, the +
function is pure, but something like print or random aren’t.
Code which is not pure is impure (or side-effecting).

Most languages default to everything being as impure as possible
— any line of code can do anything at all, and it’s up to us to
make sure they all behave. This is a huge pain:

I We have to keep it straight in our heads
I No telling what an arbitrary function will do
I No guarantees that our impurity is limited in any way!

This seems rather strange — why not have pure code be the
default, and then use the type system to state what other
behaviour we want to have?

Marking impurity using the type system

-- unlabelled error (divide by zero)
divide :: Real -> Real -> Maybe Real

-- labelled error (lots can go wrong)
parseInt :: String -> Either ParseError Int

-- nondeterminism (from zero to two roots)
sqrt :: Real -> [Real]

-- or whatever the hell (probably web-based here...)
getMeme :: URL -> MemeType -> IO Meme

-- we know these functions' side effects
-- and we *didn't even have to read them*!

Marking impurity using the type system

-- unlabelled error (divide by zero)
divide :: Real -> Real -> Maybe Real

-- labelled error (lots can go wrong)
parseInt :: String -> Either ParseError Int

-- nondeterminism (from zero to two roots)
sqrt :: Real -> [Real]

-- or whatever the hell (probably web-based here...)
getMeme :: URL -> MemeType -> IO Meme

-- we know these functions' side effects
-- and we *didn't even have to read them*!

Marking impurity using the type system

-- unlabelled error (divide by zero)
divide :: Real -> Real -> Maybe Real

-- labelled error (lots can go wrong)
parseInt :: String -> Either ParseError Int

-- nondeterminism (from zero to two roots)
sqrt :: Real -> [Real]

-- or whatever the hell (probably web-based here...)
getMeme :: URL -> MemeType -> IO Meme

-- we know these functions' side effects
-- and we *didn't even have to read them*!

Marking impurity using the type system

-- unlabelled error (divide by zero)
divide :: Real -> Real -> Maybe Real

-- labelled error (lots can go wrong)
parseInt :: String -> Either ParseError Int

-- nondeterminism (from zero to two roots)
sqrt :: Real -> [Real]

-- or whatever the hell (probably web-based here...)
getMeme :: URL -> MemeType -> IO Meme

-- we know these functions' side effects
-- and we *didn't even have to read them*!

Marking impurity using the type system

-- unlabelled error (divide by zero)
divide :: Real -> Real -> Maybe Real

-- labelled error (lots can go wrong)
parseInt :: String -> Either ParseError Int

-- nondeterminism (from zero to two roots)
sqrt :: Real -> [Real]

-- or whatever the hell (probably web-based here...)
getMeme :: URL -> MemeType -> IO Meme

-- we know these functions' side effects
-- and we *didn't even have to read them*!

Marking impurity using the type system

-- unlabelled error (divide by zero)
divide :: Real -> Real -> Maybe Real

-- labelled error (lots can go wrong)
parseInt :: String -> Either ParseError Int

-- nondeterminism (from zero to two roots)
sqrt :: Real -> [Real]

-- or whatever the hell (probably web-based here...)
getMeme :: URL -> MemeType -> IO Meme

-- we know these functions' side effects

-- and we *didn't even have to read them*!

Marking impurity using the type system

-- unlabelled error (divide by zero)
divide :: Real -> Real -> Maybe Real

-- labelled error (lots can go wrong)
parseInt :: String -> Either ParseError Int

-- nondeterminism (from zero to two roots)
sqrt :: Real -> [Real]

-- or whatever the hell (probably web-based here...)
getMeme :: URL -> MemeType -> IO Meme

-- we know these functions' side effects
-- and we *didn't even have to read them*!

A problem

-- suppose we have this eminently-sensible function
square :: Real -> Real
square x = x * x

-- we want to do this, but it won't work
lifeTheUniverseAndEverything = square(sqrt(42))

-- this is because sqrt gives us a [Real]
-- but square wants a plain Real

It seems all we can do is re-write every single thing to handle every
single condition possible, which is ridiculous and impossible. We
deserve better from our languages!

A problem

-- suppose we have this eminently-sensible function
square :: Real -> Real
square x = x * x

-- we want to do this, but it won't work
lifeTheUniverseAndEverything = square(sqrt(42))

-- this is because sqrt gives us a [Real]
-- but square wants a plain Real

It seems all we can do is re-write every single thing to handle every
single condition possible, which is ridiculous and impossible. We
deserve better from our languages!

A problem

-- suppose we have this eminently-sensible function
square :: Real -> Real
square x = x * x

-- we want to do this, but it won't work
lifeTheUniverseAndEverything = square(sqrt(42))

-- this is because sqrt gives us a [Real]
-- but square wants a plain Real

It seems all we can do is re-write every single thing to handle every
single condition possible, which is ridiculous and impossible. We
deserve better from our languages!

A problem

-- suppose we have this eminently-sensible function
square :: Real -> Real
square x = x * x

-- we want to do this, but it won't work
lifeTheUniverseAndEverything = square(sqrt(42))

-- this is because sqrt gives us a [Real]
-- but square wants a plain Real

It seems all we can do is re-write every single thing to handle every
single condition possible, which is ridiculous and impossible. We
deserve better from our languages!

A problem

-- suppose we have this eminently-sensible function
square :: Real -> Real
square x = x * x

-- we want to do this, but it won't work
lifeTheUniverseAndEverything = square(sqrt(42))

-- this is because sqrt gives us a [Real]
-- but square wants a plain Real

It seems all we can do is re-write every single thing to handle every
single condition possible, which is ridiculous and impossible.

We
deserve better from our languages!

A problem

-- suppose we have this eminently-sensible function
square :: Real -> Real
square x = x * x

-- we want to do this, but it won't work
lifeTheUniverseAndEverything = square(sqrt(42))

-- this is because sqrt gives us a [Real]
-- but square wants a plain Real

It seems all we can do is re-write every single thing to handle every
single condition possible, which is ridiculous and impossible. We
deserve better from our languages!

What you’re probably thinking now

What a functor really is

class Functor f where
map :: a -> b -> f a -> f b

Furthermore, we require that the following hold for any functor:

--compiler can't check this, sadly, so we must
map id == id

We call this the functor law.

What a functor really is

class Functor f where
map :: a -> b -> f a -> f b

Furthermore, we require that the following hold for any functor:

--compiler can't check this, sadly, so we must
map id == id

We call this the functor law.

What a functor really is

class Functor f where
map :: a -> b -> f a -> f b

Furthermore, we require that the following hold for any functor:

--compiler can't check this, sadly, so we must
map id == id

We call this the functor law.

What a functor really is

class Functor f where
map :: a -> b -> f a -> f b

Furthermore, we require that the following hold for any functor:

--compiler can't check this, sadly, so we must
map id == id

We call this the functor law.

What a functor really is

class Functor f where
map :: a -> b -> f a -> f b

Furthermore, we require that the following hold for any functor:

--compiler can't check this, sadly, so we must
map id == id

We call this the functor law.

Wait, what?

Maybe this will help (it’s the same thing really):

class Functor f where
map :: (a -> b) -> (f a -> f b)

map transforms a pure function into a function with a side effect
described by the type of the functor. So as long as our type has a
functor definition, we can use any pure function with it.

We can define (correct) functor instances for Maybe, Either, [],
(,), IO, most container types,…

Wait, what?

Maybe this will help (it’s the same thing really):

class Functor f where
map :: (a -> b) -> (f a -> f b)

map transforms a pure function into a function with a side effect
described by the type of the functor. So as long as our type has a
functor definition, we can use any pure function with it.

We can define (correct) functor instances for Maybe, Either, [],
(,), IO, most container types,…

Wait, what?

Maybe this will help (it’s the same thing really):

class Functor f where
map :: (a -> b) -> (f a -> f b)

map transforms a pure function into a function with a side effect
described by the type of the functor.

So as long as our type has a
functor definition, we can use any pure function with it.

We can define (correct) functor instances for Maybe, Either, [],
(,), IO, most container types,…

Wait, what?

Maybe this will help (it’s the same thing really):

class Functor f where
map :: (a -> b) -> (f a -> f b)

map transforms a pure function into a function with a side effect
described by the type of the functor. So as long as our type has a
functor definition, we can use any pure function with it.

We can define (correct) functor instances for Maybe, Either, [],
(,), IO, most container types,…

Wait, what?

Maybe this will help (it’s the same thing really):

class Functor f where
map :: (a -> b) -> (f a -> f b)

map transforms a pure function into a function with a side effect
described by the type of the functor. So as long as our type has a
functor definition, we can use any pure function with it.

We can define (correct) functor instances for Maybe,

Either, [],
(,), IO, most container types,…

Wait, what?

Maybe this will help (it’s the same thing really):

class Functor f where
map :: (a -> b) -> (f a -> f b)

map transforms a pure function into a function with a side effect
described by the type of the functor. So as long as our type has a
functor definition, we can use any pure function with it.

We can define (correct) functor instances for Maybe, Either,

[],
(,), IO, most container types,…

Wait, what?

Maybe this will help (it’s the same thing really):

class Functor f where
map :: (a -> b) -> (f a -> f b)

map transforms a pure function into a function with a side effect
described by the type of the functor. So as long as our type has a
functor definition, we can use any pure function with it.

We can define (correct) functor instances for Maybe, Either, [],

(,), IO, most container types,…

Wait, what?

Maybe this will help (it’s the same thing really):

class Functor f where
map :: (a -> b) -> (f a -> f b)

map transforms a pure function into a function with a side effect
described by the type of the functor. So as long as our type has a
functor definition, we can use any pure function with it.

We can define (correct) functor instances for Maybe, Either, [],
(,),

IO, most container types,…

Wait, what?

Maybe this will help (it’s the same thing really):

class Functor f where
map :: (a -> b) -> (f a -> f b)

map transforms a pure function into a function with a side effect
described by the type of the functor. So as long as our type has a
functor definition, we can use any pure function with it.

We can define (correct) functor instances for Maybe, Either, [],
(,), IO,

most container types,…

Wait, what?

Maybe this will help (it’s the same thing really):

class Functor f where
map :: (a -> b) -> (f a -> f b)

map transforms a pure function into a function with a side effect
described by the type of the functor. So as long as our type has a
functor definition, we can use any pure function with it.

We can define (correct) functor instances for Maybe, Either, [],
(,), IO, most container types,…

Solving both our problems

Because of map, our original problems of ‘type incompatibility’ no
longer exist:

-- this now works!
lifeTheUniverseAndEverything = map square (sqrt 42)
-- what do you think its type would be?
lifeTheUniverseAndEverything :: [Real]

Furthermore, we can define (correct) functors for all the types
which describe all the effects we mentioned earlier. Now, we can
treat them all the same, just by writing functions against Functor
instead. What’s more, this requires no special support from the
language — if we can define the functor, we can do this!

Solving both our problems

Because of map, our original problems of ‘type incompatibility’ no
longer exist:

-- this now works!
lifeTheUniverseAndEverything = map square (sqrt 42)
-- what do you think its type would be?

lifeTheUniverseAndEverything :: [Real]

Furthermore, we can define (correct) functors for all the types
which describe all the effects we mentioned earlier. Now, we can
treat them all the same, just by writing functions against Functor
instead. What’s more, this requires no special support from the
language — if we can define the functor, we can do this!

Solving both our problems

Because of map, our original problems of ‘type incompatibility’ no
longer exist:

-- this now works!
lifeTheUniverseAndEverything = map square (sqrt 42)
-- what do you think its type would be?
lifeTheUniverseAndEverything :: [Real]

Furthermore, we can define (correct) functors for all the types
which describe all the effects we mentioned earlier. Now, we can
treat them all the same, just by writing functions against Functor
instead. What’s more, this requires no special support from the
language — if we can define the functor, we can do this!

Solving both our problems

Because of map, our original problems of ‘type incompatibility’ no
longer exist:

-- this now works!
lifeTheUniverseAndEverything = map square (sqrt 42)
-- what do you think its type would be?
lifeTheUniverseAndEverything :: [Real]

Furthermore, we can define (correct) functors for all the types
which describe all the effects we mentioned earlier. Now, we can
treat them all the same, just by writing functions against Functor
instead.

What’s more, this requires no special support from the
language — if we can define the functor, we can do this!

Solving both our problems

Because of map, our original problems of ‘type incompatibility’ no
longer exist:

-- this now works!
lifeTheUniverseAndEverything = map square (sqrt 42)
-- what do you think its type would be?
lifeTheUniverseAndEverything :: [Real]

Furthermore, we can define (correct) functors for all the types
which describe all the effects we mentioned earlier. Now, we can
treat them all the same, just by writing functions against Functor
instead. What’s more, this requires no special support from the
language — if we can define the functor, we can do this!

An example functor: Maybe

instance Functor Maybe where
map :: (a -> b) -> (Maybe a -> Maybe b)
map g Nothing = Nothing -- no other choice
map g (Just x) = Just (g x) -- apply and rewrap

Of course, we now need to check that the functor law is obeyed.
We can prove that this is the case (and pretty easily too).

An example functor: Maybe

instance Functor Maybe where

map :: (a -> b) -> (Maybe a -> Maybe b)
map g Nothing = Nothing -- no other choice
map g (Just x) = Just (g x) -- apply and rewrap

Of course, we now need to check that the functor law is obeyed.
We can prove that this is the case (and pretty easily too).

An example functor: Maybe

instance Functor Maybe where
map :: (a -> b) -> (Maybe a -> Maybe b)

map g Nothing = Nothing -- no other choice
map g (Just x) = Just (g x) -- apply and rewrap

Of course, we now need to check that the functor law is obeyed.
We can prove that this is the case (and pretty easily too).

An example functor: Maybe

instance Functor Maybe where
map :: (a -> b) -> (Maybe a -> Maybe b)
map g Nothing =

Nothing -- no other choice
map g (Just x) = Just (g x) -- apply and rewrap

Of course, we now need to check that the functor law is obeyed.
We can prove that this is the case (and pretty easily too).

An example functor: Maybe

instance Functor Maybe where
map :: (a -> b) -> (Maybe a -> Maybe b)
map g Nothing = Nothing -- no other choice

map g (Just x) = Just (g x) -- apply and rewrap

Of course, we now need to check that the functor law is obeyed.
We can prove that this is the case (and pretty easily too).

An example functor: Maybe

instance Functor Maybe where
map :: (a -> b) -> (Maybe a -> Maybe b)
map g Nothing = Nothing -- no other choice
map g (Just x) =

Just (g x) -- apply and rewrap

Of course, we now need to check that the functor law is obeyed.
We can prove that this is the case (and pretty easily too).

An example functor: Maybe

instance Functor Maybe where
map :: (a -> b) -> (Maybe a -> Maybe b)
map g Nothing = Nothing -- no other choice
map g (Just x) = Just (g x) -- apply and rewrap

Of course, we now need to check that the functor law is obeyed.
We can prove that this is the case (and pretty easily too).

An example functor: Maybe

instance Functor Maybe where
map :: (a -> b) -> (Maybe a -> Maybe b)
map g Nothing = Nothing -- no other choice
map g (Just x) = Just (g x) -- apply and rewrap

Of course, we now need to check that the functor law is obeyed.

We can prove that this is the case (and pretty easily too).

An example functor: Maybe

instance Functor Maybe where
map :: (a -> b) -> (Maybe a -> Maybe b)
map g Nothing = Nothing -- no other choice
map g (Just x) = Just (g x) -- apply and rewrap

Of course, we now need to check that the functor law is obeyed.
We can prove that this is the case (and pretty easily too).

Proving the functor law for Maybe

Lemma
Our definition of Maybe follows the functor law.

Proof.
We must show that, for our definition of Maybe, we have:

map id == id
If Maybe a == Nothing, we have:

map id Nothing == id Nothing
=> Nothing == Nothing

Otherwise, Maybe a == Just x, and we have:
map id (Just x) == id (Just x)
=> Just (id x) == Just x
=> Just x == Just x

Thus, our definition of Maybe follows the functor law.

Proving the functor law for Maybe

Lemma
Our definition of Maybe follows the functor law.

Proof.
We must show that, for our definition of Maybe, we have:

map id == id

If Maybe a == Nothing, we have:
map id Nothing == id Nothing
=> Nothing == Nothing

Otherwise, Maybe a == Just x, and we have:
map id (Just x) == id (Just x)
=> Just (id x) == Just x
=> Just x == Just x

Thus, our definition of Maybe follows the functor law.

Proving the functor law for Maybe

Lemma
Our definition of Maybe follows the functor law.

Proof.
We must show that, for our definition of Maybe, we have:

map id == id
If Maybe a == Nothing, we have:

map id Nothing == id Nothing
=> Nothing == Nothing

Otherwise, Maybe a == Just x, and we have:
map id (Just x) == id (Just x)
=> Just (id x) == Just x
=> Just x == Just x

Thus, our definition of Maybe follows the functor law.

Proving the functor law for Maybe

Lemma
Our definition of Maybe follows the functor law.

Proof.
We must show that, for our definition of Maybe, we have:

map id == id
If Maybe a == Nothing, we have:

map id Nothing == id Nothing

=> Nothing == Nothing
Otherwise, Maybe a == Just x, and we have:

map id (Just x) == id (Just x)
=> Just (id x) == Just x
=> Just x == Just x

Thus, our definition of Maybe follows the functor law.

Proving the functor law for Maybe

Lemma
Our definition of Maybe follows the functor law.

Proof.
We must show that, for our definition of Maybe, we have:

map id == id
If Maybe a == Nothing, we have:

map id Nothing == id Nothing
=> Nothing == Nothing

Otherwise, Maybe a == Just x, and we have:
map id (Just x) == id (Just x)
=> Just (id x) == Just x
=> Just x == Just x

Thus, our definition of Maybe follows the functor law.

Proving the functor law for Maybe

Lemma
Our definition of Maybe follows the functor law.

Proof.
We must show that, for our definition of Maybe, we have:

map id == id
If Maybe a == Nothing, we have:

map id Nothing == id Nothing
=> Nothing == Nothing

Otherwise, Maybe a == Just x, and we have:

map id (Just x) == id (Just x)
=> Just (id x) == Just x
=> Just x == Just x

Thus, our definition of Maybe follows the functor law.

Proving the functor law for Maybe

Lemma
Our definition of Maybe follows the functor law.

Proof.
We must show that, for our definition of Maybe, we have:

map id == id
If Maybe a == Nothing, we have:

map id Nothing == id Nothing
=> Nothing == Nothing

Otherwise, Maybe a == Just x, and we have:
map id (Just x) == id (Just x)

=> Just (id x) == Just x
=> Just x == Just x

Thus, our definition of Maybe follows the functor law.

Proving the functor law for Maybe

Lemma
Our definition of Maybe follows the functor law.

Proof.
We must show that, for our definition of Maybe, we have:

map id == id
If Maybe a == Nothing, we have:

map id Nothing == id Nothing
=> Nothing == Nothing

Otherwise, Maybe a == Just x, and we have:
map id (Just x) == id (Just x)
=> Just (id x) == Just x

=> Just x == Just x
Thus, our definition of Maybe follows the functor law.

Proving the functor law for Maybe

Lemma
Our definition of Maybe follows the functor law.

Proof.
We must show that, for our definition of Maybe, we have:

map id == id
If Maybe a == Nothing, we have:

map id Nothing == id Nothing
=> Nothing == Nothing

Otherwise, Maybe a == Just x, and we have:
map id (Just x) == id (Just x)
=> Just (id x) == Just x
=> Just x == Just x

Thus, our definition of Maybe follows the functor law.

Proving the functor law for Maybe

Lemma
Our definition of Maybe follows the functor law.

Proof.
We must show that, for our definition of Maybe, we have:

map id == id
If Maybe a == Nothing, we have:

map id Nothing == id Nothing
=> Nothing == Nothing

Otherwise, Maybe a == Just x, and we have:
map id (Just x) == id (Just x)
=> Just (id x) == Just x
=> Just x == Just x

Thus, our definition of Maybe follows the functor law.

What functors can’t do

I Can’t apply functions with side-effect markers. If we want to
apply a Maybe (Int -> Int) to a Maybe Int, functors are
of no help.

I ‘Chaining together’ functors stacks markers instead of
collapsing them. If we tried do map sqrt (sqrt 42), we
probably want a [Real], but what we actually get is
[[Real]].

Luckily for us, there are other, more powerful abstractions built on
the functor which solve both of these problems.

What functors can’t do

I Can’t apply functions with side-effect markers. If we want to
apply a Maybe (Int -> Int) to a Maybe Int, functors are
of no help.

I ‘Chaining together’ functors stacks markers instead of
collapsing them. If we tried do map sqrt (sqrt 42), we
probably want a [Real], but what we actually get is
[[Real]].

Luckily for us, there are other, more powerful abstractions built on
the functor which solve both of these problems.

What functors can’t do

I Can’t apply functions with side-effect markers. If we want to
apply a Maybe (Int -> Int) to a Maybe Int, functors are
of no help.

I ‘Chaining together’ functors stacks markers instead of
collapsing them. If we tried do map sqrt (sqrt 42), we
probably want a [Real], but what we actually get is
[[Real]].

Luckily for us, there are other, more powerful abstractions built on
the functor which solve both of these problems.

What functors can’t do

I Can’t apply functions with side-effect markers. If we want to
apply a Maybe (Int -> Int) to a Maybe Int, functors are
of no help.

I ‘Chaining together’ functors stacks markers instead of
collapsing them. If we tried do map sqrt (sqrt 42), we
probably want a [Real], but what we actually get is
[[Real]].

Luckily for us, there are other, more powerful abstractions built on
the functor which solve both of these problems.

Questions?

	Introduction
	Some formalisms
	The functor revealed
	Limitations of functors
	Questions

