
Memory management
Or: why C++ is bad for your brain

Koz Ross

18th May, 2017



Outline

Introduction

Preliminaries

The three management approaches

Advantages and disadvantages

Questions



Why memory management?

I All programming ultimately comes back to memory

I Thanks to the memory wall getting ever higher, how we work
with memory is more important than ever

I New programming languages appear all the time — knowing
how memory is managed will give you an edge in deciding if
it’s any good

I If you ever have to implement a language, this stuff is worth
knowing!
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Some terminology

I When we talk about memory here, we refer to memory which
is:

I Volatile (i.e. lasts only as long as the program)
I Writeable (i.e. we can change it, possibly several times)

I When we allocate memory, we reserve it for our use
I When we don’t need it anymore, we deallocate it, releasing it

for someone else to play with (possibly even ourselves, for
later)

I A reference is a marker for a location in memory (basically, a
C pointer)



Some terminology

I When we talk about memory here, we refer to memory which
is:

I Volatile (i.e. lasts only as long as the program)

I Writeable (i.e. we can change it, possibly several times)
I When we allocate memory, we reserve it for our use
I When we don’t need it anymore, we deallocate it, releasing it

for someone else to play with (possibly even ourselves, for
later)

I A reference is a marker for a location in memory (basically, a
C pointer)



Some terminology

I When we talk about memory here, we refer to memory which
is:

I Volatile (i.e. lasts only as long as the program)
I Writeable (i.e. we can change it, possibly several times)

I When we allocate memory, we reserve it for our use
I When we don’t need it anymore, we deallocate it, releasing it

for someone else to play with (possibly even ourselves, for
later)

I A reference is a marker for a location in memory (basically, a
C pointer)



Some terminology

I When we talk about memory here, we refer to memory which
is:

I Volatile (i.e. lasts only as long as the program)
I Writeable (i.e. we can change it, possibly several times)

I When we allocate memory, we reserve it for our use

I When we don’t need it anymore, we deallocate it, releasing it
for someone else to play with (possibly even ourselves, for
later)

I A reference is a marker for a location in memory (basically, a
C pointer)



Some terminology

I When we talk about memory here, we refer to memory which
is:

I Volatile (i.e. lasts only as long as the program)
I Writeable (i.e. we can change it, possibly several times)

I When we allocate memory, we reserve it for our use
I When we don’t need it anymore, we deallocate it, releasing it

for someone else to play with (possibly even ourselves, for
later)

I A reference is a marker for a location in memory (basically, a
C pointer)



Some terminology

I When we talk about memory here, we refer to memory which
is:

I Volatile (i.e. lasts only as long as the program)
I Writeable (i.e. we can change it, possibly several times)

I When we allocate memory, we reserve it for our use
I When we don’t need it anymore, we deallocate it, releasing it

for someone else to play with (possibly even ourselves, for
later)

I A reference is a marker for a location in memory (basically, a
C pointer)



Two kinds of memory

I Scoped:
I Tied to the scope in which it was allocated; once we leave that

scope, the memory gets deallocated immediately
I Smaller (relatively); used for single variables or small data

structures which aren’t needed for long
I Sometimes called ‘automatic’, or ‘stack’, memory (but we

won’t use those terms)
I Non-scoped:

I Can persist past the scope in which it was allocated
I Larger (again, relatively); used for bigger structures that need

to be around for a long time
I Sometimes called ‘manual’, or ‘heap’, memory (but we won’t

use those terms either)

Out of the two, scoped memory is usually quite simple. For
non-scoped memory, there are a few added challenges and
trade-offs…
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Challenges with non-scoped memory

I How much of the responsibility for deallocating the memory is
on the programmer?

I How predictable should it be?
I What costs are we willing to pay for it?

Programming languages have converged on three different
approaches to non-scoped memory management.
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Manual management

I The programmer must explicitly deallocate all non-scoped
memory themselves (and deal with all the attendant issues)

I Made famous by the C programming language, although C
wasn’t the first to use that method

I Also a major reason why people hate writing C
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Reference counting

I When we allocate a block of non-scoped memory, we also
make a counter for the number of references we have to that
block (a refcount)

I Every time we take a new reference to a block of non-scoped
memory, we increment that block’s refcount; when that
reference goes away, we decrement the correspoding refcount

I When a block’s refcount reaches 0, we know that we can’t
reach it anymore, and the block gets deallocated
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Garbage collection

I Every reference, and all memory, is tracked by the
programming language runtime automatically

I When the runtime determines that a block of non-scoped
memory has no references left to it, it will mark it as unused

I At some later point, the runtime will deallocate all the unused
blocks that exist at the time
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Answering the challenges

Responsibility Predictability Relative cost

Manual All programmer Total Low
Refcounting Some programmer Moderate Moderate

GC All language Low High

This is a bit non-specific — let’s consider each one separately.
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Manual management tradeoffs

I Benefits:

I Lowest resource cost (basically none)
I Simplest for the language implementation and runtime
I Completely predictable (thus, can be very heavily

hand-optimized)
I Drawbacks:

I Painfully tedious and error-prone (memory leaks, dangling
pointers, wild pointers,…)

I Vulnerable to external memory fragmentation
I Requires manual tuning to be effective (whether you know

how or not)

Unsurprisingly, manual management is unpopular — no
programming language invented since the eighties uses it by
default. It was used more frequently before, as we had fewer
alternatives and much more constrained computing resources (the
computer C was designed on had 16K of RAM!).
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Reference counting tradeoffs

I Benefits:

I Much less tedious
I Deterministic and fairly predictable
I Imposes very little overhead
I Fairly simple for the language implementation and runtime

I Drawbacks:
I Vulnerable to cyclic references
I Vulnerable to external memory fragmentation
I Very bad in heavily-concurrent environments

Refcounting was first made famous by C++: initially, it had to be
done by hand, but now has language-level support. Surprisingly
unpopular — mostly used by pure functional languages like Haskell
or C++ derivatives like Swift and Rust.
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Garbage collection tradeoffs

I Benefits:

I Very easy on the programmer (basically never have to think
about memory management)

I Can deal with external memory fragmentation and high
contention without programmer intervention

I Drawbacks:
I Trickiest for the runtime (especially for more modern garbage

collectors)
I Very unpredictable in general
I (Relatively) resource-intensive

GC has maintained a rabid cult of detractors since it was invented
in the 1950s (most of whom write C++). Many of their critiques
are hilariously outdated or irrelevant today. However, there are still
cases where the cost of GC is too high, or where its
unpredictability is an issue.
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So, which should we use?

I Popularity-contest-wise, GC wins by a landslide:

I Out of the TIOBE index’s top 20 languages, twelve use GC as
their default method for managing non-scoped memory

I Out of all the languages invented in the last 10 years, all but
two (Swift and Rust) use GC by default

I Even Bjarne Stroustrup (inventor of C++) admitted C++
should have garbage collection (optionally)… nearly twenty
years ago (take that, C++ cultists!)

I However, hype-following is never a good idea; a better plan is
to consider your specific case and problem and go from there

I The costs to GC are getting lower every day, partly because of
better hardware, and partly because of better collectors

I In short: know your tradeoffs! (Well, I guess don’t be a cultist
also suits…)
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