
Hylomorphisms
Or: intermediate structures in a non-awful way

Koz Ross

14th September, 2017



Outline

Introduction

Hylomorphisms

Using hylomorphisms

Questions



Intermediate structures

Definition
We say that a data structure is intermediate if it is used in an
algorithm, but not given as an input or returned as an output.

Essentially, it’s a data structure which we use, but never see.



Intermediate structures

Definition
We say that a data structure is intermediate if it is used in an
algorithm, but not given as an input or returned as an output.

Essentially, it’s a data structure which we use, but never see.



Intermediate structures

Definition
We say that a data structure is intermediate if it is used in an
algorithm, but not given as an input or returned as an output.

Essentially, it’s a data structure which we use, but never see.



An example

Definition
The Fibonacci numbers (F0, F1, . . .) are a sequence of natural
numbers, such that:

I F0 = F1 = 1

I For any n > 1, Fn = Fn−1 + Fn−2

If we wanted to write an algorithm for computing Fn given an
input n, we can convert this definition directly:

function fib(n)
if n = 0 or n = 1 then

return 1
else

return fib(n− 1) + fib(n− 2)



An example

Definition
The Fibonacci numbers (F0, F1, . . .) are a sequence of natural
numbers, such that:

I F0 = F1 = 1

I For any n > 1, Fn = Fn−1 + Fn−2

If we wanted to write an algorithm for computing Fn given an
input n, we can convert this definition directly:

function fib(n)
if n = 0 or n = 1 then

return 1
else

return fib(n− 1) + fib(n− 2)



An example

Definition
The Fibonacci numbers (F0, F1, . . .) are a sequence of natural
numbers, such that:

I F0 = F1 = 1

I For any n > 1, Fn = Fn−1 + Fn−2

If we wanted to write an algorithm for computing Fn given an
input n, we can convert this definition directly:

function fib(n)
if n = 0 or n = 1 then

return 1
else

return fib(n− 1) + fib(n− 2)



An example

Definition
The Fibonacci numbers (F0, F1, . . .) are a sequence of natural
numbers, such that:

I F0 = F1 = 1

I For any n > 1, Fn = Fn−1 + Fn−2

If we wanted to write an algorithm for computing Fn given an
input n, we can convert this definition directly:

function fib(n)
if n = 0 or n = 1 then

return 1
else

return fib(n− 1) + fib(n− 2)



An example

Definition
The Fibonacci numbers (F0, F1, . . .) are a sequence of natural
numbers, such that:

I F0 = F1 = 1

I For any n > 1, Fn = Fn−1 + Fn−2

If we wanted to write an algorithm for computing Fn given an
input n, we can convert this definition directly:

function fib(n)
if n = 0 or n = 1 then

return 1
else

return fib(n− 1) + fib(n− 2)



Why this is awful

Let’s see what happens if we call fib(4):

1. fib(3) + fib(2)

2. fib(2) + fib(1) + fib(2)

3. fib(1) + fib(0) + fib(1) + fib(2)

4. 1 + fib(0) + fib(1) + fib(2)

5. 1 + 1 + fib(1) + fib(2)

6. 1 + 1 + 1 + fib(2)

7. 1 + 1 + 1 + fib(1) + fib(0)

8. 1 + 1 + 1 + 1 + fib(0)

9. 1 + 1 + 1 + 1 + 1

10. 5

That’s a lot of wasted effort — for example, we have to compute
fib(2) twice. Only gets worse for higher n!



Why this is awful

Let’s see what happens if we call fib(4):

1. fib(3) + fib(2)

2. fib(2) + fib(1) + fib(2)

3. fib(1) + fib(0) + fib(1) + fib(2)

4. 1 + fib(0) + fib(1) + fib(2)

5. 1 + 1 + fib(1) + fib(2)

6. 1 + 1 + 1 + fib(2)

7. 1 + 1 + 1 + fib(1) + fib(0)

8. 1 + 1 + 1 + 1 + fib(0)

9. 1 + 1 + 1 + 1 + 1

10. 5

That’s a lot of wasted effort — for example, we have to compute
fib(2) twice. Only gets worse for higher n!



Why this is awful

Let’s see what happens if we call fib(4):

1. fib(3) + fib(2)

2. fib(2) + fib(1) + fib(2)

3. fib(1) + fib(0) + fib(1) + fib(2)

4. 1 + fib(0) + fib(1) + fib(2)

5. 1 + 1 + fib(1) + fib(2)

6. 1 + 1 + 1 + fib(2)

7. 1 + 1 + 1 + fib(1) + fib(0)

8. 1 + 1 + 1 + 1 + fib(0)

9. 1 + 1 + 1 + 1 + 1

10. 5

That’s a lot of wasted effort — for example, we have to compute
fib(2) twice. Only gets worse for higher n!



Why this is awful

Let’s see what happens if we call fib(4):

1. fib(3) + fib(2)

2. fib(2) + fib(1) + fib(2)

3. fib(1) + fib(0) + fib(1) + fib(2)

4. 1 + fib(0) + fib(1) + fib(2)

5. 1 + 1 + fib(1) + fib(2)

6. 1 + 1 + 1 + fib(2)

7. 1 + 1 + 1 + fib(1) + fib(0)

8. 1 + 1 + 1 + 1 + fib(0)

9. 1 + 1 + 1 + 1 + 1

10. 5

That’s a lot of wasted effort — for example, we have to compute
fib(2) twice. Only gets worse for higher n!



Why this is awful

Let’s see what happens if we call fib(4):

1. fib(3) + fib(2)

2. fib(2) + fib(1) + fib(2)

3. fib(1) + fib(0) + fib(1) + fib(2)

4. 1 + fib(0) + fib(1) + fib(2)

5. 1 + 1 + fib(1) + fib(2)

6. 1 + 1 + 1 + fib(2)

7. 1 + 1 + 1 + fib(1) + fib(0)

8. 1 + 1 + 1 + 1 + fib(0)

9. 1 + 1 + 1 + 1 + 1

10. 5

That’s a lot of wasted effort — for example, we have to compute
fib(2) twice. Only gets worse for higher n!



Why this is awful

Let’s see what happens if we call fib(4):

1. fib(3) + fib(2)

2. fib(2) + fib(1) + fib(2)

3. fib(1) + fib(0) + fib(1) + fib(2)

4. 1 + fib(0) + fib(1) + fib(2)

5. 1 + 1 + fib(1) + fib(2)

6. 1 + 1 + 1 + fib(2)

7. 1 + 1 + 1 + fib(1) + fib(0)

8. 1 + 1 + 1 + 1 + fib(0)

9. 1 + 1 + 1 + 1 + 1

10. 5

That’s a lot of wasted effort — for example, we have to compute
fib(2) twice. Only gets worse for higher n!



Why this is awful

Let’s see what happens if we call fib(4):

1. fib(3) + fib(2)

2. fib(2) + fib(1) + fib(2)

3. fib(1) + fib(0) + fib(1) + fib(2)

4. 1 + fib(0) + fib(1) + fib(2)

5. 1 + 1 + fib(1) + fib(2)

6. 1 + 1 + 1 + fib(2)

7. 1 + 1 + 1 + fib(1) + fib(0)

8. 1 + 1 + 1 + 1 + fib(0)

9. 1 + 1 + 1 + 1 + 1

10. 5

That’s a lot of wasted effort — for example, we have to compute
fib(2) twice. Only gets worse for higher n!



Why this is awful

Let’s see what happens if we call fib(4):

1. fib(3) + fib(2)

2. fib(2) + fib(1) + fib(2)

3. fib(1) + fib(0) + fib(1) + fib(2)

4. 1 + fib(0) + fib(1) + fib(2)

5. 1 + 1 + fib(1) + fib(2)

6. 1 + 1 + 1 + fib(2)

7. 1 + 1 + 1 + fib(1) + fib(0)

8. 1 + 1 + 1 + 1 + fib(0)

9. 1 + 1 + 1 + 1 + 1

10. 5

That’s a lot of wasted effort — for example, we have to compute
fib(2) twice. Only gets worse for higher n!



Why this is awful

Let’s see what happens if we call fib(4):

1. fib(3) + fib(2)

2. fib(2) + fib(1) + fib(2)

3. fib(1) + fib(0) + fib(1) + fib(2)

4. 1 + fib(0) + fib(1) + fib(2)

5. 1 + 1 + fib(1) + fib(2)

6. 1 + 1 + 1 + fib(2)

7. 1 + 1 + 1 + fib(1) + fib(0)

8. 1 + 1 + 1 + 1 + fib(0)

9. 1 + 1 + 1 + 1 + 1

10. 5

That’s a lot of wasted effort — for example, we have to compute
fib(2) twice. Only gets worse for higher n!



Why this is awful

Let’s see what happens if we call fib(4):

1. fib(3) + fib(2)

2. fib(2) + fib(1) + fib(2)

3. fib(1) + fib(0) + fib(1) + fib(2)

4. 1 + fib(0) + fib(1) + fib(2)

5. 1 + 1 + fib(1) + fib(2)

6. 1 + 1 + 1 + fib(2)

7. 1 + 1 + 1 + fib(1) + fib(0)

8. 1 + 1 + 1 + 1 + fib(0)

9. 1 + 1 + 1 + 1 + 1

10. 5

That’s a lot of wasted effort — for example, we have to compute
fib(2) twice. Only gets worse for higher n!



Why this is awful

Let’s see what happens if we call fib(4):

1. fib(3) + fib(2)

2. fib(2) + fib(1) + fib(2)

3. fib(1) + fib(0) + fib(1) + fib(2)

4. 1 + fib(0) + fib(1) + fib(2)

5. 1 + 1 + fib(1) + fib(2)

6. 1 + 1 + 1 + fib(2)

7. 1 + 1 + 1 + fib(1) + fib(0)

8. 1 + 1 + 1 + 1 + fib(0)

9. 1 + 1 + 1 + 1 + 1

10. 5

That’s a lot of wasted effort — for example, we have to compute
fib(2) twice. Only gets worse for higher n!



Why this is awful

Let’s see what happens if we call fib(4):

1. fib(3) + fib(2)

2. fib(2) + fib(1) + fib(2)

3. fib(1) + fib(0) + fib(1) + fib(2)

4. 1 + fib(0) + fib(1) + fib(2)

5. 1 + 1 + fib(1) + fib(2)

6. 1 + 1 + 1 + fib(2)

7. 1 + 1 + 1 + fib(1) + fib(0)

8. 1 + 1 + 1 + 1 + fib(0)

9. 1 + 1 + 1 + 1 + 1

10. 5

That’s a lot of wasted effort — for example, we have to compute
fib(2) twice.

Only gets worse for higher n!



Why this is awful

Let’s see what happens if we call fib(4):

1. fib(3) + fib(2)

2. fib(2) + fib(1) + fib(2)

3. fib(1) + fib(0) + fib(1) + fib(2)

4. 1 + fib(0) + fib(1) + fib(2)

5. 1 + 1 + fib(1) + fib(2)

6. 1 + 1 + 1 + fib(2)

7. 1 + 1 + 1 + fib(1) + fib(0)

8. 1 + 1 + 1 + 1 + fib(0)

9. 1 + 1 + 1 + 1 + 1

10. 5

That’s a lot of wasted effort — for example, we have to compute
fib(2) twice. Only gets worse for higher n!



How awful is it?

Every call to fib(n) produces two recursive calls: one to fib(n− 1)
and another to fib(n− 2). We stop when n = 0, 1.

That means
that fib(n) requires 2n−2 + 2n−3 recursive calls. This means our
algorithm is O(2n). This is atrocious.

One reason why it’s so bad is because we waste a lot of work — in
order to compute fib(n− 1), we have to compute fib(n− 2), only
to throw it away and do it again! If only we kept a hold of
fib(n− 2), we could reduce the number of recursive calls required
from 2 to 1. Let’s try using an intermediate data structure for
that…



How awful is it?

Every call to fib(n) produces two recursive calls: one to fib(n− 1)
and another to fib(n− 2). We stop when n = 0, 1. That means
that fib(n) requires 2n−2 + 2n−3 recursive calls.

This means our
algorithm is O(2n). This is atrocious.

One reason why it’s so bad is because we waste a lot of work — in
order to compute fib(n− 1), we have to compute fib(n− 2), only
to throw it away and do it again! If only we kept a hold of
fib(n− 2), we could reduce the number of recursive calls required
from 2 to 1. Let’s try using an intermediate data structure for
that…



How awful is it?

Every call to fib(n) produces two recursive calls: one to fib(n− 1)
and another to fib(n− 2). We stop when n = 0, 1. That means
that fib(n) requires 2n−2 + 2n−3 recursive calls. This means our
algorithm is O(2n).

This is atrocious.

One reason why it’s so bad is because we waste a lot of work — in
order to compute fib(n− 1), we have to compute fib(n− 2), only
to throw it away and do it again! If only we kept a hold of
fib(n− 2), we could reduce the number of recursive calls required
from 2 to 1. Let’s try using an intermediate data structure for
that…



How awful is it?

Every call to fib(n) produces two recursive calls: one to fib(n− 1)
and another to fib(n− 2). We stop when n = 0, 1. That means
that fib(n) requires 2n−2 + 2n−3 recursive calls. This means our
algorithm is O(2n). This is atrocious.

One reason why it’s so bad is because we waste a lot of work — in
order to compute fib(n− 1), we have to compute fib(n− 2), only
to throw it away and do it again! If only we kept a hold of
fib(n− 2), we could reduce the number of recursive calls required
from 2 to 1. Let’s try using an intermediate data structure for
that…



How awful is it?

Every call to fib(n) produces two recursive calls: one to fib(n− 1)
and another to fib(n− 2). We stop when n = 0, 1. That means
that fib(n) requires 2n−2 + 2n−3 recursive calls. This means our
algorithm is O(2n). This is atrocious.

One reason why it’s so bad is because we waste a lot of work — in
order to compute fib(n− 1), we have to compute fib(n− 2), only
to throw it away and do it again!

If only we kept a hold of
fib(n− 2), we could reduce the number of recursive calls required
from 2 to 1. Let’s try using an intermediate data structure for
that…



How awful is it?

Every call to fib(n) produces two recursive calls: one to fib(n− 1)
and another to fib(n− 2). We stop when n = 0, 1. That means
that fib(n) requires 2n−2 + 2n−3 recursive calls. This means our
algorithm is O(2n). This is atrocious.

One reason why it’s so bad is because we waste a lot of work — in
order to compute fib(n− 1), we have to compute fib(n− 2), only
to throw it away and do it again! If only we kept a hold of
fib(n− 2), we could reduce the number of recursive calls required
from 2 to 1.

Let’s try using an intermediate data structure for
that…



How awful is it?

Every call to fib(n) produces two recursive calls: one to fib(n− 1)
and another to fib(n− 2). We stop when n = 0, 1. That means
that fib(n) requires 2n−2 + 2n−3 recursive calls. This means our
algorithm is O(2n). This is atrocious.

One reason why it’s so bad is because we waste a lot of work — in
order to compute fib(n− 1), we have to compute fib(n− 2), only
to throw it away and do it again! If only we kept a hold of
fib(n− 2), we could reduce the number of recursive calls required
from 2 to 1. Let’s try using an intermediate data structure for
that…



Take 2

Let’s use an array to hold the intermediate computations:

function fib′(n)
arr← an empty array of length n
arr[0] = 1
arr[1] = 1
for i ∈ 2, 3, . . . , n− 1 do

arr[i]← arr[i− 1] + arr[i− 2]

return arr[n− 1]

Since we have a (nearly) n-length loop in fib′(n), this is clearly
O(n) — much better! All thanks to the intermediate array.



Take 2

Let’s use an array to hold the intermediate computations:

function fib′(n)
arr← an empty array of length n
arr[0] = 1
arr[1] = 1
for i ∈ 2, 3, . . . , n− 1 do

arr[i]← arr[i− 1] + arr[i− 2]

return arr[n− 1]

Since we have a (nearly) n-length loop in fib′(n), this is clearly
O(n) — much better! All thanks to the intermediate array.



Take 2

Let’s use an array to hold the intermediate computations:

function fib′(n)
arr← an empty array of length n
arr[0] = 1
arr[1] = 1
for i ∈ 2, 3, . . . , n− 1 do

arr[i]← arr[i− 1] + arr[i− 2]

return arr[n− 1]

Since we have a (nearly) n-length loop in fib′(n), this is clearly
O(n) — much better! All thanks to the intermediate array.



Intermediate structures are everywhere

I Graph processing algorithms (DFS, BFS, Dijkstra’s, Prim’s,
Kruskal’s, …)

I Graphics pipeline (rasterization, translations, shading, …)
I Compilers (of any sort)
I Every time you do recursion (implicitly)
I And so many more…

However, it’s not all brilliant — intermediate structures have two
major issues.



Intermediate structures are everywhere

I Graph processing algorithms (DFS, BFS, Dijkstra’s, Prim’s,
Kruskal’s, …)

I Graphics pipeline (rasterization, translations, shading, …)
I Compilers (of any sort)
I Every time you do recursion (implicitly)
I And so many more…

However, it’s not all brilliant — intermediate structures have two
major issues.



Intermediate structures are everywhere

I Graph processing algorithms (DFS, BFS, Dijkstra’s, Prim’s,
Kruskal’s, …)

I Graphics pipeline (rasterization, translations, shading, …)

I Compilers (of any sort)
I Every time you do recursion (implicitly)
I And so many more…

However, it’s not all brilliant — intermediate structures have two
major issues.



Intermediate structures are everywhere

I Graph processing algorithms (DFS, BFS, Dijkstra’s, Prim’s,
Kruskal’s, …)

I Graphics pipeline (rasterization, translations, shading, …)
I Compilers (of any sort)

I Every time you do recursion (implicitly)
I And so many more…

However, it’s not all brilliant — intermediate structures have two
major issues.



Intermediate structures are everywhere

I Graph processing algorithms (DFS, BFS, Dijkstra’s, Prim’s,
Kruskal’s, …)

I Graphics pipeline (rasterization, translations, shading, …)
I Compilers (of any sort)
I Every time you do recursion (implicitly)

I And so many more…

However, it’s not all brilliant — intermediate structures have two
major issues.



Intermediate structures are everywhere

I Graph processing algorithms (DFS, BFS, Dijkstra’s, Prim’s,
Kruskal’s, …)

I Graphics pipeline (rasterization, translations, shading, …)
I Compilers (of any sort)
I Every time you do recursion (implicitly)
I And so many more…

However, it’s not all brilliant — intermediate structures have two
major issues.



Intermediate structures are everywhere

I Graph processing algorithms (DFS, BFS, Dijkstra’s, Prim’s,
Kruskal’s, …)

I Graphics pipeline (rasterization, translations, shading, …)
I Compilers (of any sort)
I Every time you do recursion (implicitly)
I And so many more…

However, it’s not all brilliant — intermediate structures have two
major issues.



Issue One: ad-hoc-ism

Every time we employ an intermediate data structure, we have to
devise the algorithm ‘from first principles’. This has several
downsides:

I Correctness is harder to determine
I Structure and content are entangled (no general treatment)
I Incidental complexity from the structure adds to the

complexity of the algorithm

This is mostly because we’re being forced to consider a specific
solution every time we want an intermediate structure to be built
up, then torn down.



Issue One: ad-hoc-ism

Every time we employ an intermediate data structure, we have to
devise the algorithm ‘from first principles’. This has several
downsides:

I Correctness is harder to determine

I Structure and content are entangled (no general treatment)
I Incidental complexity from the structure adds to the

complexity of the algorithm

This is mostly because we’re being forced to consider a specific
solution every time we want an intermediate structure to be built
up, then torn down.



Issue One: ad-hoc-ism

Every time we employ an intermediate data structure, we have to
devise the algorithm ‘from first principles’. This has several
downsides:

I Correctness is harder to determine
I Structure and content are entangled (no general treatment)

I Incidental complexity from the structure adds to the
complexity of the algorithm

This is mostly because we’re being forced to consider a specific
solution every time we want an intermediate structure to be built
up, then torn down.



Issue One: ad-hoc-ism

Every time we employ an intermediate data structure, we have to
devise the algorithm ‘from first principles’. This has several
downsides:

I Correctness is harder to determine
I Structure and content are entangled (no general treatment)
I Incidental complexity from the structure adds to the

complexity of the algorithm

This is mostly because we’re being forced to consider a specific
solution every time we want an intermediate structure to be built
up, then torn down.



Issue One: ad-hoc-ism

Every time we employ an intermediate data structure, we have to
devise the algorithm ‘from first principles’. This has several
downsides:

I Correctness is harder to determine
I Structure and content are entangled (no general treatment)
I Incidental complexity from the structure adds to the

complexity of the algorithm

This is mostly because we’re being forced to consider a specific
solution every time we want an intermediate structure to be built
up, then torn down.



Issue Two: efficiency

Let’s look at fib′ again:

function fib′(n)
arr← an empty array of length n
arr[0] = 1
arr[1] = 1
for i ∈ 2, 3, . . . , n− 1 do

arr[i]← arr[i− 1] + arr[i− 2]

return arr[n− 1]

At no point in the algorithm are we interested in the whole array —
just the last two elements. However, we can’t get rid of any part of
the structure until the very end, even though it’s useless to us!



Issue Two: efficiency

Let’s look at fib′ again:

function fib′(n)
arr← an empty array of length n
arr[0] = 1
arr[1] = 1
for i ∈ 2, 3, . . . , n− 1 do

arr[i]← arr[i− 1] + arr[i− 2]

return arr[n− 1]

At no point in the algorithm are we interested in the whole array —
just the last two elements. However, we can’t get rid of any part of
the structure until the very end, even though it’s useless to us!



Issue Two: efficiency

Let’s look at fib′ again:

function fib′(n)
arr← an empty array of length n
arr[0] = 1
arr[1] = 1
for i ∈ 2, 3, . . . , n− 1 do

arr[i]← arr[i− 1] + arr[i− 2]

return arr[n− 1]

At no point in the algorithm are we interested in the whole array —
just the last two elements.

However, we can’t get rid of any part of
the structure until the very end, even though it’s useless to us!



Issue Two: efficiency

Let’s look at fib′ again:

function fib′(n)
arr← an empty array of length n
arr[0] = 1
arr[1] = 1
for i ∈ 2, 3, . . . , n− 1 do

arr[i]← arr[i− 1] + arr[i− 2]

return arr[n− 1]

At no point in the algorithm are we interested in the whole array —
just the last two elements. However, we can’t get rid of any part of
the structure until the very end, even though it’s useless to us!



Can we do better?

What we really want is:

I A general way of handling any algorithm which involves
intermediate structures

I A guarantee of some correctness properties (from a
formal/mathematical point of view)

I Some way of automatically only building up as much structure
as we need

Sounds impossible, right? However: there’s a morphism for that!



Can we do better?

What we really want is:
I A general way of handling any algorithm which involves

intermediate structures

I A guarantee of some correctness properties (from a
formal/mathematical point of view)

I Some way of automatically only building up as much structure
as we need

Sounds impossible, right? However: there’s a morphism for that!



Can we do better?

What we really want is:
I A general way of handling any algorithm which involves

intermediate structures
I A guarantee of some correctness properties (from a

formal/mathematical point of view)

I Some way of automatically only building up as much structure
as we need

Sounds impossible, right? However: there’s a morphism for that!



Can we do better?

What we really want is:
I A general way of handling any algorithm which involves

intermediate structures
I A guarantee of some correctness properties (from a

formal/mathematical point of view)
I Some way of automatically only building up as much structure

as we need

Sounds impossible, right? However: there’s a morphism for that!



Can we do better?

What we really want is:
I A general way of handling any algorithm which involves

intermediate structures
I A guarantee of some correctness properties (from a

formal/mathematical point of view)
I Some way of automatically only building up as much structure

as we need

Sounds impossible, right?

However: there’s a morphism for that!



Can we do better?

What we really want is:
I A general way of handling any algorithm which involves

intermediate structures
I A guarantee of some correctness properties (from a

formal/mathematical point of view)
I Some way of automatically only building up as much structure

as we need

Sounds impossible, right? However: there’s a morphism for that!



Where we last left recursion schemes…

-- our knotting hack
data Knot f = Tie { untie :: f (Knot f) }

-- pronounced `then', for easier composition
>>> :: (a -> b) -> (b -> c) -> (a -> c)
f >>> g = g ◦ f

type Algebra f a = f a -> a

-- catamorphism - tears structures down
cata :: Functor f => Algebra f a -> Knot f -> a
cata f = untie >>> map (cata f) >>> f

type Coalgebra f a = a -> f a

-- anamorphism - builds structures up
ana :: Functor f => Coalgebra f a -> a -> Knot f
ana f = f >>> map (ana f) >>> Tie



Where we last left recursion schemes…

-- our knotting hack
data Knot f = Tie { untie :: f (Knot f) }

-- pronounced `then', for easier composition
>>> :: (a -> b) -> (b -> c) -> (a -> c)
f >>> g = g ◦ f

type Algebra f a = f a -> a

-- catamorphism - tears structures down
cata :: Functor f => Algebra f a -> Knot f -> a
cata f = untie >>> map (cata f) >>> f

type Coalgebra f a = a -> f a

-- anamorphism - builds structures up
ana :: Functor f => Coalgebra f a -> a -> Knot f
ana f = f >>> map (ana f) >>> Tie



Trying to use recursion schemes

When we use an intermediate structure, we first build it up, then
tear it down. What would happen if we tried to write this using
recursion schemes?

-- what's the type of this?
huh coalg alg = ana coalg >>> cata alg
huh :: Functor f => (a -> f a) -> (f b -> b) -> a -> b
-- remember, (a -> f a) is Coalgebra f a
-- and (f b -> b) is Algebra f b

Now, huh is a very silly name. We should really fix our terminology
again…



Trying to use recursion schemes

When we use an intermediate structure, we first build it up, then
tear it down. What would happen if we tried to write this using
recursion schemes?
-- what's the type of this?
huh coalg alg = ana coalg >>> cata alg

huh :: Functor f => (a -> f a) -> (f b -> b) -> a -> b
-- remember, (a -> f a) is Coalgebra f a
-- and (f b -> b) is Algebra f b

Now, huh is a very silly name. We should really fix our terminology
again…



Trying to use recursion schemes

When we use an intermediate structure, we first build it up, then
tear it down. What would happen if we tried to write this using
recursion schemes?
-- what's the type of this?
huh coalg alg = ana coalg >>> cata alg
huh :: Functor f => (a -> f a) -> (f b -> b) -> a -> b
-- remember, (a -> f a) is Coalgebra f a
-- and (f b -> b) is Algebra f b

Now, huh is a very silly name. We should really fix our terminology
again…



Trying to use recursion schemes

When we use an intermediate structure, we first build it up, then
tear it down. What would happen if we tried to write this using
recursion schemes?
-- what's the type of this?
huh coalg alg = ana coalg >>> cata alg
huh :: Functor f => (a -> f a) -> (f b -> b) -> a -> b
-- remember, (a -> f a) is Coalgebra f a
-- and (f b -> b) is Algebra f b

Now, huh is a very silly name. We should really fix our terminology
again…



The humble hylomorphism

hylo :: Functor f => Coalgebra f a -> Algebra f b -> a -> b
hylo f g = ana f >>> cata g

The term ‘hylomorphism’ comes from the Greek root hylo
(meaning ‘tree’), as its behaviour can be seen as tree-like (building
up is like the tree growing, and tearing down is like the tree being
turned into matches).

Note: The intermediate structure being operated on by the algebra
and coalgebra must be the same, but the data can be different.



The humble hylomorphism

hylo :: Functor f => Coalgebra f a -> Algebra f b -> a -> b
hylo f g = ana f >>> cata g

The term ‘hylomorphism’ comes from the Greek root hylo
(meaning ‘tree’), as its behaviour can be seen as tree-like (building
up is like the tree growing, and tearing down is like the tree being
turned into matches).

Note: The intermediate structure being operated on by the algebra
and coalgebra must be the same, but the data can be different.



Example: mergesort

I A well-known comparison-sorting algorithm for arrays
I An example of a divide-and-conquer algorithm
I Relies on the following two principles:

1. An array of length 1 is always sorted
2. We can merge two sorted arrays into one sorted array

I Relies on a three-step merge procedure:
1. Create an array big enough to hold the contents of both inputs
2. Walk over the new array, inserting the smallest element from

either input at each stage
3. When we’ve finished, return the result

I Implicitly builds up a binary tree of deferred sort operations



Example: mergesort

I A well-known comparison-sorting algorithm for arrays

I An example of a divide-and-conquer algorithm
I Relies on the following two principles:

1. An array of length 1 is always sorted
2. We can merge two sorted arrays into one sorted array

I Relies on a three-step merge procedure:
1. Create an array big enough to hold the contents of both inputs
2. Walk over the new array, inserting the smallest element from

either input at each stage
3. When we’ve finished, return the result

I Implicitly builds up a binary tree of deferred sort operations



Example: mergesort

I A well-known comparison-sorting algorithm for arrays
I An example of a divide-and-conquer algorithm

I Relies on the following two principles:
1. An array of length 1 is always sorted
2. We can merge two sorted arrays into one sorted array

I Relies on a three-step merge procedure:
1. Create an array big enough to hold the contents of both inputs
2. Walk over the new array, inserting the smallest element from

either input at each stage
3. When we’ve finished, return the result

I Implicitly builds up a binary tree of deferred sort operations



Example: mergesort

I A well-known comparison-sorting algorithm for arrays
I An example of a divide-and-conquer algorithm
I Relies on the following two principles:

1. An array of length 1 is always sorted
2. We can merge two sorted arrays into one sorted array

I Relies on a three-step merge procedure:
1. Create an array big enough to hold the contents of both inputs
2. Walk over the new array, inserting the smallest element from

either input at each stage
3. When we’ve finished, return the result

I Implicitly builds up a binary tree of deferred sort operations



Example: mergesort

I A well-known comparison-sorting algorithm for arrays
I An example of a divide-and-conquer algorithm
I Relies on the following two principles:

1. An array of length 1 is always sorted

2. We can merge two sorted arrays into one sorted array
I Relies on a three-step merge procedure:

1. Create an array big enough to hold the contents of both inputs
2. Walk over the new array, inserting the smallest element from

either input at each stage
3. When we’ve finished, return the result

I Implicitly builds up a binary tree of deferred sort operations



Example: mergesort

I A well-known comparison-sorting algorithm for arrays
I An example of a divide-and-conquer algorithm
I Relies on the following two principles:

1. An array of length 1 is always sorted
2. We can merge two sorted arrays into one sorted array

I Relies on a three-step merge procedure:
1. Create an array big enough to hold the contents of both inputs
2. Walk over the new array, inserting the smallest element from

either input at each stage
3. When we’ve finished, return the result

I Implicitly builds up a binary tree of deferred sort operations



Example: mergesort

I A well-known comparison-sorting algorithm for arrays
I An example of a divide-and-conquer algorithm
I Relies on the following two principles:

1. An array of length 1 is always sorted
2. We can merge two sorted arrays into one sorted array

I Relies on a three-step merge procedure:

1. Create an array big enough to hold the contents of both inputs
2. Walk over the new array, inserting the smallest element from

either input at each stage
3. When we’ve finished, return the result

I Implicitly builds up a binary tree of deferred sort operations



Example: mergesort

I A well-known comparison-sorting algorithm for arrays
I An example of a divide-and-conquer algorithm
I Relies on the following two principles:

1. An array of length 1 is always sorted
2. We can merge two sorted arrays into one sorted array

I Relies on a three-step merge procedure:
1. Create an array big enough to hold the contents of both inputs

2. Walk over the new array, inserting the smallest element from
either input at each stage

3. When we’ve finished, return the result
I Implicitly builds up a binary tree of deferred sort operations



Example: mergesort

I A well-known comparison-sorting algorithm for arrays
I An example of a divide-and-conquer algorithm
I Relies on the following two principles:

1. An array of length 1 is always sorted
2. We can merge two sorted arrays into one sorted array

I Relies on a three-step merge procedure:
1. Create an array big enough to hold the contents of both inputs
2. Walk over the new array, inserting the smallest element from

either input at each stage

3. When we’ve finished, return the result
I Implicitly builds up a binary tree of deferred sort operations



Example: mergesort

I A well-known comparison-sorting algorithm for arrays
I An example of a divide-and-conquer algorithm
I Relies on the following two principles:

1. An array of length 1 is always sorted
2. We can merge two sorted arrays into one sorted array

I Relies on a three-step merge procedure:
1. Create an array big enough to hold the contents of both inputs
2. Walk over the new array, inserting the smallest element from

either input at each stage
3. When we’ve finished, return the result

I Implicitly builds up a binary tree of deferred sort operations



Example: mergesort

I A well-known comparison-sorting algorithm for arrays
I An example of a divide-and-conquer algorithm
I Relies on the following two principles:

1. An array of length 1 is always sorted
2. We can merge two sorted arrays into one sorted array

I Relies on a three-step merge procedure:
1. Create an array big enough to hold the contents of both inputs
2. Walk over the new array, inserting the smallest element from

either input at each stage
3. When we’ve finished, return the result

I Implicitly builds up a binary tree of deferred sort operations



The merge procedure, in detail

function merge(a1, a2)
n← len(a1) + len(a2)
a← a new array of length n
f1, f2 ← 0
for i ∈ 0, 1, . . . , n− 1 do

if f1 = len(a1) then
a[i] = a2[f2]
f2 ← f2 + 1

else if f2 = len(a2) then
a[i]← a1[f1]
f1 ← f1 + 1

else
e←min{a1[f1], a2[f2]}
a[i]← e
Increment corresponding f

return a



Viewing mergesort as a hylomorphism

I When we do the ‘divide’ step of mergesort, we build up a
binary tree:

I The leaves are singleton arrays
I The internal nodes are deferred merges of the children

I Once we’ve built up this tree, we can tear it down bottom-up
by realizing the deferred computations based on their children

I At the end, we have a single, sorted array, and the tree is gone

Let’s see how this works in practice: we will sort the array [4, 2,
6, 1].



Viewing mergesort as a hylomorphism

I When we do the ‘divide’ step of mergesort, we build up a
binary tree:

I The leaves are singleton arrays

I The internal nodes are deferred merges of the children
I Once we’ve built up this tree, we can tear it down bottom-up

by realizing the deferred computations based on their children
I At the end, we have a single, sorted array, and the tree is gone

Let’s see how this works in practice: we will sort the array [4, 2,
6, 1].



Viewing mergesort as a hylomorphism

I When we do the ‘divide’ step of mergesort, we build up a
binary tree:

I The leaves are singleton arrays
I The internal nodes are deferred merges of the children

I Once we’ve built up this tree, we can tear it down bottom-up
by realizing the deferred computations based on their children

I At the end, we have a single, sorted array, and the tree is gone

Let’s see how this works in practice: we will sort the array [4, 2,
6, 1].



Viewing mergesort as a hylomorphism

I When we do the ‘divide’ step of mergesort, we build up a
binary tree:

I The leaves are singleton arrays
I The internal nodes are deferred merges of the children

I Once we’ve built up this tree, we can tear it down bottom-up
by realizing the deferred computations based on their children

I At the end, we have a single, sorted array, and the tree is gone

Let’s see how this works in practice: we will sort the array [4, 2,
6, 1].



Viewing mergesort as a hylomorphism

I When we do the ‘divide’ step of mergesort, we build up a
binary tree:

I The leaves are singleton arrays
I The internal nodes are deferred merges of the children

I Once we’ve built up this tree, we can tear it down bottom-up
by realizing the deferred computations based on their children

I At the end, we have a single, sorted array, and the tree is gone

Let’s see how this works in practice: we will sort the array [4, 2,
6, 1].



Viewing mergesort as a hylomorphism

I When we do the ‘divide’ step of mergesort, we build up a
binary tree:

I The leaves are singleton arrays
I The internal nodes are deferred merges of the children

I Once we’ve built up this tree, we can tear it down bottom-up
by realizing the deferred computations based on their children

I At the end, we have a single, sorted array, and the tree is gone

Let’s see how this works in practice: we will sort the array [4, 2,
6, 1].



Worked example

sort [4,2,6,1]



Worked example

sort [2,4] sort [1,6]



Worked example

sort [4] sort [2] sort [6] sort [1]



Worked example

[4] [2] [6] [1]



Worked example

merge [4] [2] merge [6] [1]



Worked example

[2, 4] [1, 6]



Worked example

merge [2, 4] [1, 6]



Worked example

[1, 2, 4, 6]



Putting it into a hylo

First, we will need an intermediate tree structure:

data Tree a = Leaf a | Internal (Tree a) (Tree a)

It then needs a slight change so we can use it with recursion
schemes:

data ITree a s = Leaf a | Internal s s

Lastly, we need a Functor instance for it. This can be derived
automatically (both in theory and practice).

instance Functor (ITree a) where
map :: (s -> t) -> ITree a s -> ITree a t
map _ (Leaf a) = Leaf a -- nothing to do
map f (Internal l r) = Internal (f l) (f r)



Putting it into a hylo

First, we will need an intermediate tree structure:

data Tree a = Leaf a | Internal (Tree a) (Tree a)

It then needs a slight change so we can use it with recursion
schemes:

data ITree a s = Leaf a | Internal s s

Lastly, we need a Functor instance for it. This can be derived
automatically (both in theory and practice).

instance Functor (ITree a) where
map :: (s -> t) -> ITree a s -> ITree a t
map _ (Leaf a) = Leaf a -- nothing to do
map f (Internal l r) = Internal (f l) (f r)



Putting it into a hylo

First, we will need an intermediate tree structure:

data Tree a = Leaf a | Internal (Tree a) (Tree a)

It then needs a slight change so we can use it with recursion
schemes:

data ITree a s = Leaf a | Internal s s

Lastly, we need a Functor instance for it. This can be derived
automatically (both in theory and practice).

instance Functor (ITree a) where
map :: (s -> t) -> ITree a s -> ITree a t
map _ (Leaf a) = Leaf a -- nothing to do
map f (Internal l r) = Internal (f l) (f r)



Putting it into a hylo

First, we will need an intermediate tree structure:

data Tree a = Leaf a | Internal (Tree a) (Tree a)

It then needs a slight change so we can use it with recursion
schemes:

data ITree a s = Leaf a | Internal s s

Lastly, we need a Functor instance for it. This can be derived
automatically (both in theory and practice).

instance Functor (ITree a) where
map :: (s -> t) -> ITree a s -> ITree a t
map _ (Leaf a) = Leaf a -- nothing to do
map f (Internal l r) = Internal (f l) (f r)



Putting it into a hylo

First, we will need an intermediate tree structure:

data Tree a = Leaf a | Internal (Tree a) (Tree a)

It then needs a slight change so we can use it with recursion
schemes:

data ITree a s = Leaf a | Internal s s

Lastly, we need a Functor instance for it. This can be derived
automatically (both in theory and practice).

instance Functor (ITree a) where
map :: (s -> t) -> ITree a s -> ITree a t
map _ (Leaf a) = Leaf a -- nothing to do
map f (Internal l r) = Internal (f l) (f r)



Putting it into a hylo

First, we will need an intermediate tree structure:

data Tree a = Leaf a | Internal (Tree a) (Tree a)

It then needs a slight change so we can use it with recursion
schemes:

data ITree a s = Leaf a | Internal s s

Lastly, we need a Functor instance for it. This can be derived
automatically (both in theory and practice).

instance Functor (ITree a) where

map :: (s -> t) -> ITree a s -> ITree a t
map _ (Leaf a) = Leaf a -- nothing to do
map f (Internal l r) = Internal (f l) (f r)



Putting it into a hylo

First, we will need an intermediate tree structure:

data Tree a = Leaf a | Internal (Tree a) (Tree a)

It then needs a slight change so we can use it with recursion
schemes:

data ITree a s = Leaf a | Internal s s

Lastly, we need a Functor instance for it. This can be derived
automatically (both in theory and practice).

instance Functor (ITree a) where
map :: (s -> t) -> ITree a s -> ITree a t

map _ (Leaf a) = Leaf a -- nothing to do
map f (Internal l r) = Internal (f l) (f r)



Putting it into a hylo

First, we will need an intermediate tree structure:

data Tree a = Leaf a | Internal (Tree a) (Tree a)

It then needs a slight change so we can use it with recursion
schemes:

data ITree a s = Leaf a | Internal s s

Lastly, we need a Functor instance for it. This can be derived
automatically (both in theory and practice).

instance Functor (ITree a) where
map :: (s -> t) -> ITree a s -> ITree a t
map _ (Leaf a) = Leaf a -- nothing to do

map f (Internal l r) = Internal (f l) (f r)



Putting it into a hylo

First, we will need an intermediate tree structure:

data Tree a = Leaf a | Internal (Tree a) (Tree a)

It then needs a slight change so we can use it with recursion
schemes:

data ITree a s = Leaf a | Internal s s

Lastly, we need a Functor instance for it. This can be derived
automatically (both in theory and practice).

instance Functor (ITree a) where
map :: (s -> t) -> ITree a s -> ITree a t
map _ (Leaf a) = Leaf a -- nothing to do
map f (Internal l r) = Internal (f l) (f r)



A suitable coalgebra

Our coalgebra will represent one ‘step’ in the dividing process:

I If we get given an array of length 1, we just make a Leaf
storing it

I Otherwise, we make an Internal, and send half of the array
into each child

-- Vector a is an array of a
breakDown :: Coalgebra (ITree (Vector a)) (Vector a)
-- breakDown :: Vector a -> ITree (Vector a)
breakDown v = case (length v) of

1 -> Leaf v
x -> let half = x `div` 2 in

Internal (slice v 0 half) (slice v half (x - half))



A suitable coalgebra

Our coalgebra will represent one ‘step’ in the dividing process:
I If we get given an array of length 1, we just make a Leaf

storing it

I Otherwise, we make an Internal, and send half of the array
into each child

-- Vector a is an array of a
breakDown :: Coalgebra (ITree (Vector a)) (Vector a)
-- breakDown :: Vector a -> ITree (Vector a)
breakDown v = case (length v) of

1 -> Leaf v
x -> let half = x `div` 2 in

Internal (slice v 0 half) (slice v half (x - half))



A suitable coalgebra

Our coalgebra will represent one ‘step’ in the dividing process:
I If we get given an array of length 1, we just make a Leaf

storing it
I Otherwise, we make an Internal, and send half of the array

into each child

-- Vector a is an array of a
breakDown :: Coalgebra (ITree (Vector a)) (Vector a)
-- breakDown :: Vector a -> ITree (Vector a)
breakDown v = case (length v) of

1 -> Leaf v
x -> let half = x `div` 2 in

Internal (slice v 0 half) (slice v half (x - half))



A suitable coalgebra

Our coalgebra will represent one ‘step’ in the dividing process:
I If we get given an array of length 1, we just make a Leaf

storing it
I Otherwise, we make an Internal, and send half of the array

into each child

-- Vector a is an array of a
breakDown :: Coalgebra (ITree (Vector a)) (Vector a)

-- breakDown :: Vector a -> ITree (Vector a)
breakDown v = case (length v) of

1 -> Leaf v
x -> let half = x `div` 2 in

Internal (slice v 0 half) (slice v half (x - half))



A suitable coalgebra

Our coalgebra will represent one ‘step’ in the dividing process:
I If we get given an array of length 1, we just make a Leaf

storing it
I Otherwise, we make an Internal, and send half of the array

into each child

-- Vector a is an array of a
breakDown :: Coalgebra (ITree (Vector a)) (Vector a)
-- breakDown :: Vector a -> ITree (Vector a)

breakDown v = case (length v) of
1 -> Leaf v
x -> let half = x `div` 2 in

Internal (slice v 0 half) (slice v half (x - half))



A suitable coalgebra

Our coalgebra will represent one ‘step’ in the dividing process:
I If we get given an array of length 1, we just make a Leaf

storing it
I Otherwise, we make an Internal, and send half of the array

into each child

-- Vector a is an array of a
breakDown :: Coalgebra (ITree (Vector a)) (Vector a)
-- breakDown :: Vector a -> ITree (Vector a)
breakDown v = case (length v) of

1 -> Leaf v
x -> let half = x `div` 2 in

Internal (slice v 0 half) (slice v half (x - half))



A suitable coalgebra

Our coalgebra will represent one ‘step’ in the dividing process:
I If we get given an array of length 1, we just make a Leaf

storing it
I Otherwise, we make an Internal, and send half of the array

into each child

-- Vector a is an array of a
breakDown :: Coalgebra (ITree (Vector a)) (Vector a)
-- breakDown :: Vector a -> ITree (Vector a)
breakDown v = case (length v) of

1 -> Leaf v

x -> let half = x `div` 2 in
Internal (slice v 0 half) (slice v half (x - half))



A suitable coalgebra

Our coalgebra will represent one ‘step’ in the dividing process:
I If we get given an array of length 1, we just make a Leaf

storing it
I Otherwise, we make an Internal, and send half of the array

into each child

-- Vector a is an array of a
breakDown :: Coalgebra (ITree (Vector a)) (Vector a)
-- breakDown :: Vector a -> ITree (Vector a)
breakDown v = case (length v) of

1 -> Leaf v
x -> let half = x `div` 2 in

Internal (slice v 0 half) (slice v half (x - half))



A suitable algebra

Our algebra will represent one ‘step’ in the conquering process:

I If we have a Leaf, we just return the array as-is
I If we have an Internal, merge the arrays in its left and right

children

We will assume we have merge defined appropriately — its details
don’t matter for this.

mergeAlg :: Ord a => Algebra (ITree (Vector a)) (Vector a)
-- mergeAlg :: Ord a => ITree (Vector a) -> Vector a
mergeAlg (Leaf v) = v
mergeAlg (Internal v1 v2) = merge v1 v2



A suitable algebra

Our algebra will represent one ‘step’ in the conquering process:
I If we have a Leaf, we just return the array as-is

I If we have an Internal, merge the arrays in its left and right
children

We will assume we have merge defined appropriately — its details
don’t matter for this.

mergeAlg :: Ord a => Algebra (ITree (Vector a)) (Vector a)
-- mergeAlg :: Ord a => ITree (Vector a) -> Vector a
mergeAlg (Leaf v) = v
mergeAlg (Internal v1 v2) = merge v1 v2



A suitable algebra

Our algebra will represent one ‘step’ in the conquering process:
I If we have a Leaf, we just return the array as-is
I If we have an Internal, merge the arrays in its left and right

children

We will assume we have merge defined appropriately — its details
don’t matter for this.

mergeAlg :: Ord a => Algebra (ITree (Vector a)) (Vector a)
-- mergeAlg :: Ord a => ITree (Vector a) -> Vector a
mergeAlg (Leaf v) = v
mergeAlg (Internal v1 v2) = merge v1 v2



A suitable algebra

Our algebra will represent one ‘step’ in the conquering process:
I If we have a Leaf, we just return the array as-is
I If we have an Internal, merge the arrays in its left and right

children

We will assume we have merge defined appropriately — its details
don’t matter for this.

mergeAlg :: Ord a => Algebra (ITree (Vector a)) (Vector a)
-- mergeAlg :: Ord a => ITree (Vector a) -> Vector a
mergeAlg (Leaf v) = v
mergeAlg (Internal v1 v2) = merge v1 v2



A suitable algebra

Our algebra will represent one ‘step’ in the conquering process:
I If we have a Leaf, we just return the array as-is
I If we have an Internal, merge the arrays in its left and right

children

We will assume we have merge defined appropriately — its details
don’t matter for this.

mergeAlg :: Ord a => Algebra (ITree (Vector a)) (Vector a)

-- mergeAlg :: Ord a => ITree (Vector a) -> Vector a
mergeAlg (Leaf v) = v
mergeAlg (Internal v1 v2) = merge v1 v2



A suitable algebra

Our algebra will represent one ‘step’ in the conquering process:
I If we have a Leaf, we just return the array as-is
I If we have an Internal, merge the arrays in its left and right

children

We will assume we have merge defined appropriately — its details
don’t matter for this.

mergeAlg :: Ord a => Algebra (ITree (Vector a)) (Vector a)
-- mergeAlg :: Ord a => ITree (Vector a) -> Vector a

mergeAlg (Leaf v) = v
mergeAlg (Internal v1 v2) = merge v1 v2



A suitable algebra

Our algebra will represent one ‘step’ in the conquering process:
I If we have a Leaf, we just return the array as-is
I If we have an Internal, merge the arrays in its left and right

children

We will assume we have merge defined appropriately — its details
don’t matter for this.

mergeAlg :: Ord a => Algebra (ITree (Vector a)) (Vector a)
-- mergeAlg :: Ord a => ITree (Vector a) -> Vector a
mergeAlg (Leaf v) = v

mergeAlg (Internal v1 v2) = merge v1 v2



A suitable algebra

Our algebra will represent one ‘step’ in the conquering process:
I If we have a Leaf, we just return the array as-is
I If we have an Internal, merge the arrays in its left and right

children

We will assume we have merge defined appropriately — its details
don’t matter for this.

mergeAlg :: Ord a => Algebra (ITree (Vector a)) (Vector a)
-- mergeAlg :: Ord a => ITree (Vector a) -> Vector a
mergeAlg (Leaf v) = v
mergeAlg (Internal v1 v2) = merge v1 v2



Putting it all together

mergeSort :: Ord a => Vector a -> Vector a
mergeSort v

| length v == 0 = v -- no point sorting an empty array
| otherwise = hylo breakDown mergeAlg v

Yay!



Putting it all together

mergeSort :: Ord a => Vector a -> Vector a
mergeSort v

| length v == 0 = v -- no point sorting an empty array

| otherwise = hylo breakDown mergeAlg v

Yay!



Putting it all together

mergeSort :: Ord a => Vector a -> Vector a
mergeSort v

| length v == 0 = v -- no point sorting an empty array
| otherwise = hylo breakDown mergeAlg v

Yay!



Putting it all together

mergeSort :: Ord a => Vector a -> Vector a
mergeSort v

| length v == 0 = v -- no point sorting an empty array
| otherwise = hylo breakDown mergeAlg v

Yay!



Reviewing our goals

I Generalization of all divide-and-conquer algorithms (and
almost all intermediate structure work!)

I Strong correctness guarantees:
I Won’t miss any items in the teardown
I No edge-cases for ‘lop-sided’ structures
I No ‘funny stuff’ — no side effects, no structural wrecking we

didn’t ask for
I Efficiency still a problem — until we finish ana f we can’t

start on cata g!

Luckily for us, Meijer and Hutton solved that last one in their
‘Bananas in Space’ paper in 1995:
hylo' :: Functor f => Coalgebra f a -> Algebra f b -> a -> b
hylo' f g = f >>> map (hylo' f g) >>> g

Result: We have everything we wanted, and recursion schemes still
rule!



Reviewing our goals

I Generalization of all divide-and-conquer algorithms (and
almost all intermediate structure work!)

I Strong correctness guarantees:
I Won’t miss any items in the teardown
I No edge-cases for ‘lop-sided’ structures
I No ‘funny stuff’ — no side effects, no structural wrecking we

didn’t ask for
I Efficiency still a problem — until we finish ana f we can’t

start on cata g!

Luckily for us, Meijer and Hutton solved that last one in their
‘Bananas in Space’ paper in 1995:
hylo' :: Functor f => Coalgebra f a -> Algebra f b -> a -> b
hylo' f g = f >>> map (hylo' f g) >>> g

Result: We have everything we wanted, and recursion schemes still
rule!



Reviewing our goals

I Generalization of all divide-and-conquer algorithms (and
almost all intermediate structure work!)

I Strong correctness guarantees:

I Won’t miss any items in the teardown
I No edge-cases for ‘lop-sided’ structures
I No ‘funny stuff’ — no side effects, no structural wrecking we

didn’t ask for
I Efficiency still a problem — until we finish ana f we can’t

start on cata g!

Luckily for us, Meijer and Hutton solved that last one in their
‘Bananas in Space’ paper in 1995:
hylo' :: Functor f => Coalgebra f a -> Algebra f b -> a -> b
hylo' f g = f >>> map (hylo' f g) >>> g

Result: We have everything we wanted, and recursion schemes still
rule!



Reviewing our goals

I Generalization of all divide-and-conquer algorithms (and
almost all intermediate structure work!)

I Strong correctness guarantees:
I Won’t miss any items in the teardown

I No edge-cases for ‘lop-sided’ structures
I No ‘funny stuff’ — no side effects, no structural wrecking we

didn’t ask for
I Efficiency still a problem — until we finish ana f we can’t

start on cata g!

Luckily for us, Meijer and Hutton solved that last one in their
‘Bananas in Space’ paper in 1995:
hylo' :: Functor f => Coalgebra f a -> Algebra f b -> a -> b
hylo' f g = f >>> map (hylo' f g) >>> g

Result: We have everything we wanted, and recursion schemes still
rule!



Reviewing our goals

I Generalization of all divide-and-conquer algorithms (and
almost all intermediate structure work!)

I Strong correctness guarantees:
I Won’t miss any items in the teardown
I No edge-cases for ‘lop-sided’ structures

I No ‘funny stuff’ — no side effects, no structural wrecking we
didn’t ask for

I Efficiency still a problem — until we finish ana f we can’t
start on cata g!

Luckily for us, Meijer and Hutton solved that last one in their
‘Bananas in Space’ paper in 1995:
hylo' :: Functor f => Coalgebra f a -> Algebra f b -> a -> b
hylo' f g = f >>> map (hylo' f g) >>> g

Result: We have everything we wanted, and recursion schemes still
rule!



Reviewing our goals

I Generalization of all divide-and-conquer algorithms (and
almost all intermediate structure work!)

I Strong correctness guarantees:
I Won’t miss any items in the teardown
I No edge-cases for ‘lop-sided’ structures
I No ‘funny stuff’ — no side effects, no structural wrecking we

didn’t ask for

I Efficiency still a problem — until we finish ana f we can’t
start on cata g!

Luckily for us, Meijer and Hutton solved that last one in their
‘Bananas in Space’ paper in 1995:
hylo' :: Functor f => Coalgebra f a -> Algebra f b -> a -> b
hylo' f g = f >>> map (hylo' f g) >>> g

Result: We have everything we wanted, and recursion schemes still
rule!



Reviewing our goals

I Generalization of all divide-and-conquer algorithms (and
almost all intermediate structure work!)

I Strong correctness guarantees:
I Won’t miss any items in the teardown
I No edge-cases for ‘lop-sided’ structures
I No ‘funny stuff’ — no side effects, no structural wrecking we

didn’t ask for
I Efficiency still a problem — until we finish ana f we can’t

start on cata g!

Luckily for us, Meijer and Hutton solved that last one in their
‘Bananas in Space’ paper in 1995:
hylo' :: Functor f => Coalgebra f a -> Algebra f b -> a -> b
hylo' f g = f >>> map (hylo' f g) >>> g

Result: We have everything we wanted, and recursion schemes still
rule!



Reviewing our goals

I Generalization of all divide-and-conquer algorithms (and
almost all intermediate structure work!)

I Strong correctness guarantees:
I Won’t miss any items in the teardown
I No edge-cases for ‘lop-sided’ structures
I No ‘funny stuff’ — no side effects, no structural wrecking we

didn’t ask for
I Efficiency still a problem — until we finish ana f we can’t

start on cata g!

Luckily for us, Meijer and Hutton solved that last one in their
‘Bananas in Space’ paper in 1995:

hylo' :: Functor f => Coalgebra f a -> Algebra f b -> a -> b
hylo' f g = f >>> map (hylo' f g) >>> g

Result: We have everything we wanted, and recursion schemes still
rule!



Reviewing our goals

I Generalization of all divide-and-conquer algorithms (and
almost all intermediate structure work!)

I Strong correctness guarantees:
I Won’t miss any items in the teardown
I No edge-cases for ‘lop-sided’ structures
I No ‘funny stuff’ — no side effects, no structural wrecking we

didn’t ask for
I Efficiency still a problem — until we finish ana f we can’t

start on cata g!

Luckily for us, Meijer and Hutton solved that last one in their
‘Bananas in Space’ paper in 1995:
hylo' :: Functor f => Coalgebra f a -> Algebra f b -> a -> b
hylo' f g = f >>> map (hylo' f g) >>> g

Result: We have everything we wanted, and recursion schemes still
rule!



Reviewing our goals

I Generalization of all divide-and-conquer algorithms (and
almost all intermediate structure work!)

I Strong correctness guarantees:
I Won’t miss any items in the teardown
I No edge-cases for ‘lop-sided’ structures
I No ‘funny stuff’ — no side effects, no structural wrecking we

didn’t ask for
I Efficiency still a problem — until we finish ana f we can’t

start on cata g!

Luckily for us, Meijer and Hutton solved that last one in their
‘Bananas in Space’ paper in 1995:
hylo' :: Functor f => Coalgebra f a -> Algebra f b -> a -> b
hylo' f g = f >>> map (hylo' f g) >>> g

Result: We have everything we wanted, and recursion schemes still
rule!



Questions?


	Introduction
	Hylomorphisms
	Using hylomorphisms
	Questions

