
Memory management
Or: why C++ is bad for your brain

Koz Ross

18th May, 2017



Outline

Introduction

Preliminaries

The three management approaches

Advantages and disadvantages

Questions



Why memory management?

I All programming ultimately comes back to memory

I Thanks to the memory wall getting ever higher, how we work
with memory is more important than ever

I New programming languages appear all the time — knowing
how memory is managed will give you an edge in deciding if
it’s any good

I If you ever have to implement a language, this stuff is worth
knowing!



Why memory management?

I All programming ultimately comes back to memory
I Thanks to the memory wall getting ever higher, how we work

with memory is more important than ever

I New programming languages appear all the time — knowing
how memory is managed will give you an edge in deciding if
it’s any good

I If you ever have to implement a language, this stuff is worth
knowing!



Why memory management?

I All programming ultimately comes back to memory
I Thanks to the memory wall getting ever higher, how we work

with memory is more important than ever
I New programming languages appear all the time — knowing

how memory is managed will give you an edge in deciding if
it’s any good

I If you ever have to implement a language, this stuff is worth
knowing!



Why memory management?

I All programming ultimately comes back to memory
I Thanks to the memory wall getting ever higher, how we work

with memory is more important than ever
I New programming languages appear all the time — knowing

how memory is managed will give you an edge in deciding if
it’s any good

I If you ever have to implement a language, this stuff is worth
knowing!



Some terminology

I When we talk about memory here, we refer to memory which
is:

I Volatile (i.e. lasts only as long as the program)
I Writeable (i.e. we can change it, possibly several times)

I When we allocate memory, we reserve it for our use
I When we don’t need it anymore, we deallocate it, releasing it

for someone else to play with (possibly even ourselves, for
later)

I A reference is a marker for a location in memory (basically, a
C pointer)



Some terminology

I When we talk about memory here, we refer to memory which
is:

I Volatile (i.e. lasts only as long as the program)

I Writeable (i.e. we can change it, possibly several times)
I When we allocate memory, we reserve it for our use
I When we don’t need it anymore, we deallocate it, releasing it

for someone else to play with (possibly even ourselves, for
later)

I A reference is a marker for a location in memory (basically, a
C pointer)



Some terminology

I When we talk about memory here, we refer to memory which
is:

I Volatile (i.e. lasts only as long as the program)
I Writeable (i.e. we can change it, possibly several times)

I When we allocate memory, we reserve it for our use
I When we don’t need it anymore, we deallocate it, releasing it

for someone else to play with (possibly even ourselves, for
later)

I A reference is a marker for a location in memory (basically, a
C pointer)



Some terminology

I When we talk about memory here, we refer to memory which
is:

I Volatile (i.e. lasts only as long as the program)
I Writeable (i.e. we can change it, possibly several times)

I When we allocate memory, we reserve it for our use

I When we don’t need it anymore, we deallocate it, releasing it
for someone else to play with (possibly even ourselves, for
later)

I A reference is a marker for a location in memory (basically, a
C pointer)



Some terminology

I When we talk about memory here, we refer to memory which
is:

I Volatile (i.e. lasts only as long as the program)
I Writeable (i.e. we can change it, possibly several times)

I When we allocate memory, we reserve it for our use
I When we don’t need it anymore, we deallocate it, releasing it

for someone else to play with (possibly even ourselves, for
later)

I A reference is a marker for a location in memory (basically, a
C pointer)



Some terminology

I When we talk about memory here, we refer to memory which
is:

I Volatile (i.e. lasts only as long as the program)
I Writeable (i.e. we can change it, possibly several times)

I When we allocate memory, we reserve it for our use
I When we don’t need it anymore, we deallocate it, releasing it

for someone else to play with (possibly even ourselves, for
later)

I A reference is a marker for a location in memory (basically, a
C pointer)



Two kinds of memory

I Scoped:
I Tied to the scope in which it was allocated; once we leave that

scope, the memory gets deallocated immediately
I Smaller (relatively); used for single variables or small data

structures which aren’t needed for long
I Sometimes called ‘automatic’, or ‘stack’, memory (but we

won’t use those terms)
I Non-scoped:

I Can persist past the scope in which it was allocated
I Larger (again, relatively); used for bigger structures that need

to be around for a long time
I Sometimes called ‘manual’, or ‘heap’, memory (but we won’t

use those terms either)

Out of the two, scoped memory is usually quite simple. For
non-scoped memory, there are a few added challenges and
trade-offs…



Two kinds of memory

I Scoped:

I Tied to the scope in which it was allocated; once we leave that
scope, the memory gets deallocated immediately

I Smaller (relatively); used for single variables or small data
structures which aren’t needed for long

I Sometimes called ‘automatic’, or ‘stack’, memory (but we
won’t use those terms)

I Non-scoped:
I Can persist past the scope in which it was allocated
I Larger (again, relatively); used for bigger structures that need

to be around for a long time
I Sometimes called ‘manual’, or ‘heap’, memory (but we won’t

use those terms either)

Out of the two, scoped memory is usually quite simple. For
non-scoped memory, there are a few added challenges and
trade-offs…



Two kinds of memory

I Scoped:
I Tied to the scope in which it was allocated; once we leave that

scope, the memory gets deallocated immediately

I Smaller (relatively); used for single variables or small data
structures which aren’t needed for long

I Sometimes called ‘automatic’, or ‘stack’, memory (but we
won’t use those terms)

I Non-scoped:
I Can persist past the scope in which it was allocated
I Larger (again, relatively); used for bigger structures that need

to be around for a long time
I Sometimes called ‘manual’, or ‘heap’, memory (but we won’t

use those terms either)

Out of the two, scoped memory is usually quite simple. For
non-scoped memory, there are a few added challenges and
trade-offs…



Two kinds of memory

I Scoped:
I Tied to the scope in which it was allocated; once we leave that

scope, the memory gets deallocated immediately
I Smaller (relatively); used for single variables or small data

structures which aren’t needed for long

I Sometimes called ‘automatic’, or ‘stack’, memory (but we
won’t use those terms)

I Non-scoped:
I Can persist past the scope in which it was allocated
I Larger (again, relatively); used for bigger structures that need

to be around for a long time
I Sometimes called ‘manual’, or ‘heap’, memory (but we won’t

use those terms either)

Out of the two, scoped memory is usually quite simple. For
non-scoped memory, there are a few added challenges and
trade-offs…



Two kinds of memory

I Scoped:
I Tied to the scope in which it was allocated; once we leave that

scope, the memory gets deallocated immediately
I Smaller (relatively); used for single variables or small data

structures which aren’t needed for long
I Sometimes called ‘automatic’, or ‘stack’, memory (but we

won’t use those terms)

I Non-scoped:
I Can persist past the scope in which it was allocated
I Larger (again, relatively); used for bigger structures that need

to be around for a long time
I Sometimes called ‘manual’, or ‘heap’, memory (but we won’t

use those terms either)

Out of the two, scoped memory is usually quite simple. For
non-scoped memory, there are a few added challenges and
trade-offs…



Two kinds of memory

I Scoped:
I Tied to the scope in which it was allocated; once we leave that

scope, the memory gets deallocated immediately
I Smaller (relatively); used for single variables or small data

structures which aren’t needed for long
I Sometimes called ‘automatic’, or ‘stack’, memory (but we

won’t use those terms)
I Non-scoped:

I Can persist past the scope in which it was allocated
I Larger (again, relatively); used for bigger structures that need

to be around for a long time
I Sometimes called ‘manual’, or ‘heap’, memory (but we won’t

use those terms either)

Out of the two, scoped memory is usually quite simple. For
non-scoped memory, there are a few added challenges and
trade-offs…



Two kinds of memory

I Scoped:
I Tied to the scope in which it was allocated; once we leave that

scope, the memory gets deallocated immediately
I Smaller (relatively); used for single variables or small data

structures which aren’t needed for long
I Sometimes called ‘automatic’, or ‘stack’, memory (but we

won’t use those terms)
I Non-scoped:

I Can persist past the scope in which it was allocated

I Larger (again, relatively); used for bigger structures that need
to be around for a long time

I Sometimes called ‘manual’, or ‘heap’, memory (but we won’t
use those terms either)

Out of the two, scoped memory is usually quite simple. For
non-scoped memory, there are a few added challenges and
trade-offs…



Two kinds of memory

I Scoped:
I Tied to the scope in which it was allocated; once we leave that

scope, the memory gets deallocated immediately
I Smaller (relatively); used for single variables or small data

structures which aren’t needed for long
I Sometimes called ‘automatic’, or ‘stack’, memory (but we

won’t use those terms)
I Non-scoped:

I Can persist past the scope in which it was allocated
I Larger (again, relatively); used for bigger structures that need

to be around for a long time

I Sometimes called ‘manual’, or ‘heap’, memory (but we won’t
use those terms either)

Out of the two, scoped memory is usually quite simple. For
non-scoped memory, there are a few added challenges and
trade-offs…



Two kinds of memory

I Scoped:
I Tied to the scope in which it was allocated; once we leave that

scope, the memory gets deallocated immediately
I Smaller (relatively); used for single variables or small data

structures which aren’t needed for long
I Sometimes called ‘automatic’, or ‘stack’, memory (but we

won’t use those terms)
I Non-scoped:

I Can persist past the scope in which it was allocated
I Larger (again, relatively); used for bigger structures that need

to be around for a long time
I Sometimes called ‘manual’, or ‘heap’, memory (but we won’t

use those terms either)

Out of the two, scoped memory is usually quite simple. For
non-scoped memory, there are a few added challenges and
trade-offs…



Two kinds of memory

I Scoped:
I Tied to the scope in which it was allocated; once we leave that

scope, the memory gets deallocated immediately
I Smaller (relatively); used for single variables or small data

structures which aren’t needed for long
I Sometimes called ‘automatic’, or ‘stack’, memory (but we

won’t use those terms)
I Non-scoped:

I Can persist past the scope in which it was allocated
I Larger (again, relatively); used for bigger structures that need

to be around for a long time
I Sometimes called ‘manual’, or ‘heap’, memory (but we won’t

use those terms either)

Out of the two, scoped memory is usually quite simple. For
non-scoped memory, there are a few added challenges and
trade-offs…



Challenges with non-scoped memory

I How much of the responsibility for deallocating the memory is
on the programmer?

I How predictable should it be?
I What costs are we willing to pay for it?

Programming languages have converged on three different
approaches to non-scoped memory management.



Challenges with non-scoped memory

I How much of the responsibility for deallocating the memory is
on the programmer?

I How predictable should it be?

I What costs are we willing to pay for it?

Programming languages have converged on three different
approaches to non-scoped memory management.



Challenges with non-scoped memory

I How much of the responsibility for deallocating the memory is
on the programmer?

I How predictable should it be?
I What costs are we willing to pay for it?

Programming languages have converged on three different
approaches to non-scoped memory management.



Challenges with non-scoped memory

I How much of the responsibility for deallocating the memory is
on the programmer?

I How predictable should it be?
I What costs are we willing to pay for it?

Programming languages have converged on three different
approaches to non-scoped memory management.



Manual management

I The programmer must explicitly deallocate all non-scoped
memory themselves (and deal with all the attendant issues)

I Made famous by the C programming language, although C
wasn’t the first to use that method

I Also a major reason why people hate writing C



Manual management

I The programmer must explicitly deallocate all non-scoped
memory themselves (and deal with all the attendant issues)

I Made famous by the C programming language, although C
wasn’t the first to use that method

I Also a major reason why people hate writing C



Manual management

I The programmer must explicitly deallocate all non-scoped
memory themselves (and deal with all the attendant issues)

I Made famous by the C programming language, although C
wasn’t the first to use that method

I Also a major reason why people hate writing C



Manual management

I The programmer must explicitly deallocate all non-scoped
memory themselves (and deal with all the attendant issues)

I Made famous by the C programming language, although C
wasn’t the first to use that method

I Also a major reason why people hate writing C



Reference counting

I When we allocate a block of non-scoped memory, we also
make a counter for the number of references we have to that
block (a refcount)

I Every time we take a new reference to a block of non-scoped
memory, we increment that block’s refcount; when that
reference goes away, we decrement the correspoding refcount

I When a block’s refcount reaches 0, we know that we can’t
reach it anymore, and the block gets deallocated



Reference counting

I When we allocate a block of non-scoped memory, we also
make a counter for the number of references we have to that
block (a refcount)

I Every time we take a new reference to a block of non-scoped
memory, we increment that block’s refcount; when that
reference goes away, we decrement the correspoding refcount

I When a block’s refcount reaches 0, we know that we can’t
reach it anymore, and the block gets deallocated



Reference counting

I When we allocate a block of non-scoped memory, we also
make a counter for the number of references we have to that
block (a refcount)

I Every time we take a new reference to a block of non-scoped
memory, we increment that block’s refcount; when that
reference goes away, we decrement the correspoding refcount

I When a block’s refcount reaches 0, we know that we can’t
reach it anymore, and the block gets deallocated



Reference counting

I When we allocate a block of non-scoped memory, we also
make a counter for the number of references we have to that
block (a refcount)

I Every time we take a new reference to a block of non-scoped
memory, we increment that block’s refcount; when that
reference goes away, we decrement the correspoding refcount

I When a block’s refcount reaches 0, we know that we can’t
reach it anymore, and the block gets deallocated



Garbage collection

I Every reference, and all memory, is tracked by the
programming language runtime automatically

I When the runtime determines that a block of non-scoped
memory has no references left to it, it will mark it as unused

I At some later point, the runtime will deallocate all the unused
blocks that exist at the time



Garbage collection

I Every reference, and all memory, is tracked by the
programming language runtime automatically

I When the runtime determines that a block of non-scoped
memory has no references left to it, it will mark it as unused

I At some later point, the runtime will deallocate all the unused
blocks that exist at the time



Garbage collection

I Every reference, and all memory, is tracked by the
programming language runtime automatically

I When the runtime determines that a block of non-scoped
memory has no references left to it, it will mark it as unused

I At some later point, the runtime will deallocate all the unused
blocks that exist at the time



Garbage collection

I Every reference, and all memory, is tracked by the
programming language runtime automatically

I When the runtime determines that a block of non-scoped
memory has no references left to it, it will mark it as unused

I At some later point, the runtime will deallocate all the unused
blocks that exist at the time



Answering the challenges

Responsibility Predictability Relative cost

Manual All programmer Total Low
Refcounting Some programmer Moderate Moderate

GC All language Low High

This is a bit non-specific — let’s consider each one separately.



Answering the challenges

Responsibility Predictability Relative cost

Manual All programmer Total Low
Refcounting Some programmer Moderate Moderate

GC All language Low High

This is a bit non-specific — let’s consider each one separately.



Manual management tradeoffs

I Benefits:

I Lowest resource cost (basically none)
I Simplest for the language implementation and runtime
I Completely predictable (thus, can be very heavily

hand-optimized)
I Drawbacks:

I Painfully tedious and error-prone (memory leaks, dangling
pointers, wild pointers,…)

I Vulnerable to external memory fragmentation
I Requires manual tuning to be effective (whether you know

how or not)

Unsurprisingly, manual management is unpopular — no
programming language invented since the eighties uses it by
default. It was used more frequently before, as we had fewer
alternatives and much more constrained computing resources (the
computer C was designed on had 16K of RAM!).



Manual management tradeoffs

I Benefits:
I Lowest resource cost (basically none)

I Simplest for the language implementation and runtime
I Completely predictable (thus, can be very heavily

hand-optimized)
I Drawbacks:

I Painfully tedious and error-prone (memory leaks, dangling
pointers, wild pointers,…)

I Vulnerable to external memory fragmentation
I Requires manual tuning to be effective (whether you know

how or not)

Unsurprisingly, manual management is unpopular — no
programming language invented since the eighties uses it by
default. It was used more frequently before, as we had fewer
alternatives and much more constrained computing resources (the
computer C was designed on had 16K of RAM!).



Manual management tradeoffs

I Benefits:
I Lowest resource cost (basically none)
I Simplest for the language implementation and runtime

I Completely predictable (thus, can be very heavily
hand-optimized)

I Drawbacks:
I Painfully tedious and error-prone (memory leaks, dangling

pointers, wild pointers,…)
I Vulnerable to external memory fragmentation
I Requires manual tuning to be effective (whether you know

how or not)

Unsurprisingly, manual management is unpopular — no
programming language invented since the eighties uses it by
default. It was used more frequently before, as we had fewer
alternatives and much more constrained computing resources (the
computer C was designed on had 16K of RAM!).



Manual management tradeoffs

I Benefits:
I Lowest resource cost (basically none)
I Simplest for the language implementation and runtime
I Completely predictable (thus, can be very heavily

hand-optimized)

I Drawbacks:
I Painfully tedious and error-prone (memory leaks, dangling

pointers, wild pointers,…)
I Vulnerable to external memory fragmentation
I Requires manual tuning to be effective (whether you know

how or not)

Unsurprisingly, manual management is unpopular — no
programming language invented since the eighties uses it by
default. It was used more frequently before, as we had fewer
alternatives and much more constrained computing resources (the
computer C was designed on had 16K of RAM!).



Manual management tradeoffs

I Benefits:
I Lowest resource cost (basically none)
I Simplest for the language implementation and runtime
I Completely predictable (thus, can be very heavily

hand-optimized)
I Drawbacks:

I Painfully tedious and error-prone (memory leaks, dangling
pointers, wild pointers,…)

I Vulnerable to external memory fragmentation
I Requires manual tuning to be effective (whether you know

how or not)

Unsurprisingly, manual management is unpopular — no
programming language invented since the eighties uses it by
default. It was used more frequently before, as we had fewer
alternatives and much more constrained computing resources (the
computer C was designed on had 16K of RAM!).



Manual management tradeoffs

I Benefits:
I Lowest resource cost (basically none)
I Simplest for the language implementation and runtime
I Completely predictable (thus, can be very heavily

hand-optimized)
I Drawbacks:

I Painfully tedious and error-prone (memory leaks, dangling
pointers, wild pointers,…)

I Vulnerable to external memory fragmentation
I Requires manual tuning to be effective (whether you know

how or not)

Unsurprisingly, manual management is unpopular — no
programming language invented since the eighties uses it by
default. It was used more frequently before, as we had fewer
alternatives and much more constrained computing resources (the
computer C was designed on had 16K of RAM!).



Manual management tradeoffs

I Benefits:
I Lowest resource cost (basically none)
I Simplest for the language implementation and runtime
I Completely predictable (thus, can be very heavily

hand-optimized)
I Drawbacks:

I Painfully tedious and error-prone (memory leaks, dangling
pointers, wild pointers,…)

I Vulnerable to external memory fragmentation

I Requires manual tuning to be effective (whether you know
how or not)

Unsurprisingly, manual management is unpopular — no
programming language invented since the eighties uses it by
default. It was used more frequently before, as we had fewer
alternatives and much more constrained computing resources (the
computer C was designed on had 16K of RAM!).



Manual management tradeoffs

I Benefits:
I Lowest resource cost (basically none)
I Simplest for the language implementation and runtime
I Completely predictable (thus, can be very heavily

hand-optimized)
I Drawbacks:

I Painfully tedious and error-prone (memory leaks, dangling
pointers, wild pointers,…)

I Vulnerable to external memory fragmentation
I Requires manual tuning to be effective (whether you know

how or not)

Unsurprisingly, manual management is unpopular — no
programming language invented since the eighties uses it by
default.

It was used more frequently before, as we had fewer
alternatives and much more constrained computing resources (the
computer C was designed on had 16K of RAM!).



Manual management tradeoffs

I Benefits:
I Lowest resource cost (basically none)
I Simplest for the language implementation and runtime
I Completely predictable (thus, can be very heavily

hand-optimized)
I Drawbacks:

I Painfully tedious and error-prone (memory leaks, dangling
pointers, wild pointers,…)

I Vulnerable to external memory fragmentation
I Requires manual tuning to be effective (whether you know

how or not)

Unsurprisingly, manual management is unpopular — no
programming language invented since the eighties uses it by
default. It was used more frequently before, as we had fewer
alternatives and much more constrained computing resources (the
computer C was designed on had 16K of RAM!).



Reference counting tradeoffs

I Benefits:

I Much less tedious
I Deterministic and fairly predictable
I Imposes very little overhead
I Fairly simple for the language implementation and runtime

I Drawbacks:
I Vulnerable to cyclic references
I Vulnerable to external memory fragmentation
I Very bad in heavily-concurrent environments

Refcounting was first made famous by C++: initially, it had to be
done by hand, but now has language-level support. Surprisingly
unpopular — mostly used by pure functional languages like Haskell
or C++ derivatives like Swift and Rust.



Reference counting tradeoffs

I Benefits:
I Much less tedious

I Deterministic and fairly predictable
I Imposes very little overhead
I Fairly simple for the language implementation and runtime

I Drawbacks:
I Vulnerable to cyclic references
I Vulnerable to external memory fragmentation
I Very bad in heavily-concurrent environments

Refcounting was first made famous by C++: initially, it had to be
done by hand, but now has language-level support. Surprisingly
unpopular — mostly used by pure functional languages like Haskell
or C++ derivatives like Swift and Rust.



Reference counting tradeoffs

I Benefits:
I Much less tedious
I Deterministic and fairly predictable

I Imposes very little overhead
I Fairly simple for the language implementation and runtime

I Drawbacks:
I Vulnerable to cyclic references
I Vulnerable to external memory fragmentation
I Very bad in heavily-concurrent environments

Refcounting was first made famous by C++: initially, it had to be
done by hand, but now has language-level support. Surprisingly
unpopular — mostly used by pure functional languages like Haskell
or C++ derivatives like Swift and Rust.



Reference counting tradeoffs

I Benefits:
I Much less tedious
I Deterministic and fairly predictable
I Imposes very little overhead

I Fairly simple for the language implementation and runtime
I Drawbacks:

I Vulnerable to cyclic references
I Vulnerable to external memory fragmentation
I Very bad in heavily-concurrent environments

Refcounting was first made famous by C++: initially, it had to be
done by hand, but now has language-level support. Surprisingly
unpopular — mostly used by pure functional languages like Haskell
or C++ derivatives like Swift and Rust.



Reference counting tradeoffs

I Benefits:
I Much less tedious
I Deterministic and fairly predictable
I Imposes very little overhead
I Fairly simple for the language implementation and runtime

I Drawbacks:
I Vulnerable to cyclic references
I Vulnerable to external memory fragmentation
I Very bad in heavily-concurrent environments

Refcounting was first made famous by C++: initially, it had to be
done by hand, but now has language-level support. Surprisingly
unpopular — mostly used by pure functional languages like Haskell
or C++ derivatives like Swift and Rust.



Reference counting tradeoffs

I Benefits:
I Much less tedious
I Deterministic and fairly predictable
I Imposes very little overhead
I Fairly simple for the language implementation and runtime

I Drawbacks:

I Vulnerable to cyclic references
I Vulnerable to external memory fragmentation
I Very bad in heavily-concurrent environments

Refcounting was first made famous by C++: initially, it had to be
done by hand, but now has language-level support. Surprisingly
unpopular — mostly used by pure functional languages like Haskell
or C++ derivatives like Swift and Rust.



Reference counting tradeoffs

I Benefits:
I Much less tedious
I Deterministic and fairly predictable
I Imposes very little overhead
I Fairly simple for the language implementation and runtime

I Drawbacks:
I Vulnerable to cyclic references

I Vulnerable to external memory fragmentation
I Very bad in heavily-concurrent environments

Refcounting was first made famous by C++: initially, it had to be
done by hand, but now has language-level support. Surprisingly
unpopular — mostly used by pure functional languages like Haskell
or C++ derivatives like Swift and Rust.



Reference counting tradeoffs

I Benefits:
I Much less tedious
I Deterministic and fairly predictable
I Imposes very little overhead
I Fairly simple for the language implementation and runtime

I Drawbacks:
I Vulnerable to cyclic references
I Vulnerable to external memory fragmentation

I Very bad in heavily-concurrent environments

Refcounting was first made famous by C++: initially, it had to be
done by hand, but now has language-level support. Surprisingly
unpopular — mostly used by pure functional languages like Haskell
or C++ derivatives like Swift and Rust.



Reference counting tradeoffs

I Benefits:
I Much less tedious
I Deterministic and fairly predictable
I Imposes very little overhead
I Fairly simple for the language implementation and runtime

I Drawbacks:
I Vulnerable to cyclic references
I Vulnerable to external memory fragmentation
I Very bad in heavily-concurrent environments

Refcounting was first made famous by C++: initially, it had to be
done by hand, but now has language-level support. Surprisingly
unpopular — mostly used by pure functional languages like Haskell
or C++ derivatives like Swift and Rust.



Reference counting tradeoffs

I Benefits:
I Much less tedious
I Deterministic and fairly predictable
I Imposes very little overhead
I Fairly simple for the language implementation and runtime

I Drawbacks:
I Vulnerable to cyclic references
I Vulnerable to external memory fragmentation
I Very bad in heavily-concurrent environments

Refcounting was first made famous by C++: initially, it had to be
done by hand, but now has language-level support.

Surprisingly
unpopular — mostly used by pure functional languages like Haskell
or C++ derivatives like Swift and Rust.



Reference counting tradeoffs

I Benefits:
I Much less tedious
I Deterministic and fairly predictable
I Imposes very little overhead
I Fairly simple for the language implementation and runtime

I Drawbacks:
I Vulnerable to cyclic references
I Vulnerable to external memory fragmentation
I Very bad in heavily-concurrent environments

Refcounting was first made famous by C++: initially, it had to be
done by hand, but now has language-level support. Surprisingly
unpopular — mostly used by pure functional languages like Haskell
or C++ derivatives like Swift and Rust.



Garbage collection tradeoffs

I Benefits:

I Very easy on the programmer (basically never have to think
about memory management)

I Can deal with external memory fragmentation and high
contention without programmer intervention

I Drawbacks:
I Trickiest for the runtime (especially for more modern garbage

collectors)
I Very unpredictable in general
I (Relatively) resource-intensive

GC has maintained a rabid cult of detractors since it was invented
in the 1950s (most of whom write C++). Many of their critiques
are hilariously outdated or irrelevant today. However, there are still
cases where the cost of GC is too high, or where its
unpredictability is an issue.



Garbage collection tradeoffs

I Benefits:
I Very easy on the programmer (basically never have to think

about memory management)

I Can deal with external memory fragmentation and high
contention without programmer intervention

I Drawbacks:
I Trickiest for the runtime (especially for more modern garbage

collectors)
I Very unpredictable in general
I (Relatively) resource-intensive

GC has maintained a rabid cult of detractors since it was invented
in the 1950s (most of whom write C++). Many of their critiques
are hilariously outdated or irrelevant today. However, there are still
cases where the cost of GC is too high, or where its
unpredictability is an issue.



Garbage collection tradeoffs

I Benefits:
I Very easy on the programmer (basically never have to think

about memory management)
I Can deal with external memory fragmentation and high

contention without programmer intervention

I Drawbacks:
I Trickiest for the runtime (especially for more modern garbage

collectors)
I Very unpredictable in general
I (Relatively) resource-intensive

GC has maintained a rabid cult of detractors since it was invented
in the 1950s (most of whom write C++). Many of their critiques
are hilariously outdated or irrelevant today. However, there are still
cases where the cost of GC is too high, or where its
unpredictability is an issue.



Garbage collection tradeoffs

I Benefits:
I Very easy on the programmer (basically never have to think

about memory management)
I Can deal with external memory fragmentation and high

contention without programmer intervention
I Drawbacks:

I Trickiest for the runtime (especially for more modern garbage
collectors)

I Very unpredictable in general
I (Relatively) resource-intensive

GC has maintained a rabid cult of detractors since it was invented
in the 1950s (most of whom write C++). Many of their critiques
are hilariously outdated or irrelevant today. However, there are still
cases where the cost of GC is too high, or where its
unpredictability is an issue.



Garbage collection tradeoffs

I Benefits:
I Very easy on the programmer (basically never have to think

about memory management)
I Can deal with external memory fragmentation and high

contention without programmer intervention
I Drawbacks:

I Trickiest for the runtime (especially for more modern garbage
collectors)

I Very unpredictable in general
I (Relatively) resource-intensive

GC has maintained a rabid cult of detractors since it was invented
in the 1950s (most of whom write C++). Many of their critiques
are hilariously outdated or irrelevant today. However, there are still
cases where the cost of GC is too high, or where its
unpredictability is an issue.



Garbage collection tradeoffs

I Benefits:
I Very easy on the programmer (basically never have to think

about memory management)
I Can deal with external memory fragmentation and high

contention without programmer intervention
I Drawbacks:

I Trickiest for the runtime (especially for more modern garbage
collectors)

I Very unpredictable in general

I (Relatively) resource-intensive

GC has maintained a rabid cult of detractors since it was invented
in the 1950s (most of whom write C++). Many of their critiques
are hilariously outdated or irrelevant today. However, there are still
cases where the cost of GC is too high, or where its
unpredictability is an issue.



Garbage collection tradeoffs

I Benefits:
I Very easy on the programmer (basically never have to think

about memory management)
I Can deal with external memory fragmentation and high

contention without programmer intervention
I Drawbacks:

I Trickiest for the runtime (especially for more modern garbage
collectors)

I Very unpredictable in general
I (Relatively) resource-intensive

GC has maintained a rabid cult of detractors since it was invented
in the 1950s (most of whom write C++). Many of their critiques
are hilariously outdated or irrelevant today. However, there are still
cases where the cost of GC is too high, or where its
unpredictability is an issue.



Garbage collection tradeoffs

I Benefits:
I Very easy on the programmer (basically never have to think

about memory management)
I Can deal with external memory fragmentation and high

contention without programmer intervention
I Drawbacks:

I Trickiest for the runtime (especially for more modern garbage
collectors)

I Very unpredictable in general
I (Relatively) resource-intensive

GC has maintained a rabid cult of detractors since it was invented
in the 1950s (most of whom write C++).

Many of their critiques
are hilariously outdated or irrelevant today. However, there are still
cases where the cost of GC is too high, or where its
unpredictability is an issue.



Garbage collection tradeoffs

I Benefits:
I Very easy on the programmer (basically never have to think

about memory management)
I Can deal with external memory fragmentation and high

contention without programmer intervention
I Drawbacks:

I Trickiest for the runtime (especially for more modern garbage
collectors)

I Very unpredictable in general
I (Relatively) resource-intensive

GC has maintained a rabid cult of detractors since it was invented
in the 1950s (most of whom write C++). Many of their critiques
are hilariously outdated or irrelevant today.

However, there are still
cases where the cost of GC is too high, or where its
unpredictability is an issue.



Garbage collection tradeoffs

I Benefits:
I Very easy on the programmer (basically never have to think

about memory management)
I Can deal with external memory fragmentation and high

contention without programmer intervention
I Drawbacks:

I Trickiest for the runtime (especially for more modern garbage
collectors)

I Very unpredictable in general
I (Relatively) resource-intensive

GC has maintained a rabid cult of detractors since it was invented
in the 1950s (most of whom write C++). Many of their critiques
are hilariously outdated or irrelevant today. However, there are still
cases where the cost of GC is too high, or where its
unpredictability is an issue.



So, which should we use?

I Popularity-contest-wise, GC wins by a landslide:

I Out of the TIOBE index’s top 20 languages, twelve use GC as
their default method for managing non-scoped memory

I Out of all the languages invented in the last 10 years, all but
two (Swift and Rust) use GC by default

I Even Bjarne Stroustrup (inventor of C++) admitted C++
should have garbage collection (optionally)… nearly twenty
years ago (take that, C++ cultists!)

I However, hype-following is never a good idea; a better plan is
to consider your specific case and problem and go from there

I The costs to GC are getting lower every day, partly because of
better hardware, and partly because of better collectors

I In short: know your tradeoffs! (Well, I guess don’t be a cultist
also suits…)



So, which should we use?

I Popularity-contest-wise, GC wins by a landslide:
I Out of the TIOBE index’s top 20 languages, twelve use GC as

their default method for managing non-scoped memory

I Out of all the languages invented in the last 10 years, all but
two (Swift and Rust) use GC by default

I Even Bjarne Stroustrup (inventor of C++) admitted C++
should have garbage collection (optionally)… nearly twenty
years ago (take that, C++ cultists!)

I However, hype-following is never a good idea; a better plan is
to consider your specific case and problem and go from there

I The costs to GC are getting lower every day, partly because of
better hardware, and partly because of better collectors

I In short: know your tradeoffs! (Well, I guess don’t be a cultist
also suits…)



So, which should we use?

I Popularity-contest-wise, GC wins by a landslide:
I Out of the TIOBE index’s top 20 languages, twelve use GC as

their default method for managing non-scoped memory
I Out of all the languages invented in the last 10 years, all but

two (Swift and Rust) use GC by default

I Even Bjarne Stroustrup (inventor of C++) admitted C++
should have garbage collection (optionally)… nearly twenty
years ago (take that, C++ cultists!)

I However, hype-following is never a good idea; a better plan is
to consider your specific case and problem and go from there

I The costs to GC are getting lower every day, partly because of
better hardware, and partly because of better collectors

I In short: know your tradeoffs! (Well, I guess don’t be a cultist
also suits…)



So, which should we use?

I Popularity-contest-wise, GC wins by a landslide:
I Out of the TIOBE index’s top 20 languages, twelve use GC as

their default method for managing non-scoped memory
I Out of all the languages invented in the last 10 years, all but

two (Swift and Rust) use GC by default
I Even Bjarne Stroustrup (inventor of C++) admitted C++

should have garbage collection (optionally)…

nearly twenty
years ago (take that, C++ cultists!)

I However, hype-following is never a good idea; a better plan is
to consider your specific case and problem and go from there

I The costs to GC are getting lower every day, partly because of
better hardware, and partly because of better collectors

I In short: know your tradeoffs! (Well, I guess don’t be a cultist
also suits…)



So, which should we use?

I Popularity-contest-wise, GC wins by a landslide:
I Out of the TIOBE index’s top 20 languages, twelve use GC as

their default method for managing non-scoped memory
I Out of all the languages invented in the last 10 years, all but

two (Swift and Rust) use GC by default
I Even Bjarne Stroustrup (inventor of C++) admitted C++

should have garbage collection (optionally)… nearly twenty
years ago (take that, C++ cultists!)

I However, hype-following is never a good idea; a better plan is
to consider your specific case and problem and go from there

I The costs to GC are getting lower every day, partly because of
better hardware, and partly because of better collectors

I In short: know your tradeoffs! (Well, I guess don’t be a cultist
also suits…)



So, which should we use?

I Popularity-contest-wise, GC wins by a landslide:
I Out of the TIOBE index’s top 20 languages, twelve use GC as

their default method for managing non-scoped memory
I Out of all the languages invented in the last 10 years, all but

two (Swift and Rust) use GC by default
I Even Bjarne Stroustrup (inventor of C++) admitted C++

should have garbage collection (optionally)… nearly twenty
years ago (take that, C++ cultists!)

I However, hype-following is never a good idea; a better plan is
to consider your specific case and problem and go from there

I The costs to GC are getting lower every day, partly because of
better hardware, and partly because of better collectors

I In short: know your tradeoffs! (Well, I guess don’t be a cultist
also suits…)



So, which should we use?

I Popularity-contest-wise, GC wins by a landslide:
I Out of the TIOBE index’s top 20 languages, twelve use GC as

their default method for managing non-scoped memory
I Out of all the languages invented in the last 10 years, all but

two (Swift and Rust) use GC by default
I Even Bjarne Stroustrup (inventor of C++) admitted C++

should have garbage collection (optionally)… nearly twenty
years ago (take that, C++ cultists!)

I However, hype-following is never a good idea; a better plan is
to consider your specific case and problem and go from there

I The costs to GC are getting lower every day, partly because of
better hardware, and partly because of better collectors

I In short: know your tradeoffs! (Well, I guess don’t be a cultist
also suits…)



So, which should we use?

I Popularity-contest-wise, GC wins by a landslide:
I Out of the TIOBE index’s top 20 languages, twelve use GC as

their default method for managing non-scoped memory
I Out of all the languages invented in the last 10 years, all but

two (Swift and Rust) use GC by default
I Even Bjarne Stroustrup (inventor of C++) admitted C++

should have garbage collection (optionally)… nearly twenty
years ago (take that, C++ cultists!)

I However, hype-following is never a good idea; a better plan is
to consider your specific case and problem and go from there

I The costs to GC are getting lower every day, partly because of
better hardware, and partly because of better collectors

I In short: know your tradeoffs!

(Well, I guess don’t be a cultist
also suits…)



So, which should we use?

I Popularity-contest-wise, GC wins by a landslide:
I Out of the TIOBE index’s top 20 languages, twelve use GC as

their default method for managing non-scoped memory
I Out of all the languages invented in the last 10 years, all but

two (Swift and Rust) use GC by default
I Even Bjarne Stroustrup (inventor of C++) admitted C++

should have garbage collection (optionally)… nearly twenty
years ago (take that, C++ cultists!)

I However, hype-following is never a good idea; a better plan is
to consider your specific case and problem and go from there

I The costs to GC are getting lower every day, partly because of
better hardware, and partly because of better collectors

I In short: know your tradeoffs! (Well, I guess don’t be a cultist
also suits…)



Questions?


	Introduction
	Preliminaries
	The three management approaches
	Advantages and disadvantages
	Questions

