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Recursive data types

We can express certain structures in a recursive manner:

data List a =
Nil | -- base case
Cons a (List a) -- inductive case

Under this definition, we get the following ‘expansions’:

[] == Nil -- obviously
[1] == Cons 1 Nil
[1, 2, 3] == Cons 1 (Cons 2 (Cons 3 Nil))
-- and so on…

As long as we ‘bottom out’ somewhere, this is fine. It also allows
us to write very elegant code for processing such data structures.
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How to use recursive data types

instance Functor List where
map f Nil = Nil
map f Cons head tail = Cons (f head) (map f tail)

This would lead to the following ‘expansion’:

-- this expression
map inc [1, 2, 3] -- Cons 1 (Cons 2 (Cons 3 Nil))
-- would be evaluated like this
Cons (inc 1) (map inc [2, 3])
Cons (inc 1) (Cons (inc 2) (map inc [3]))
Cons (inc 1) (Cons (inc 2) (Cons (inc 3) (map inc [])))
Cons (inc 1) (Cons (inc 2) (Cons (inc 3) Nil))
Cons (inc 1) (Cons (inc 2) (Cons 4 Nil))
Cons (inc 1) (Cons 3 (Cons 4 Nil))
Cons 2 (Cons 3 (Cons 4 Nil))-- or [2, 3, 4]
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Going further

We can define arbitrary nested structures in this way:

data FSEntry = -- file system entry
File String String | -- name, extension
Executable String | -- name
Folder String [FSEntry] |
Archive String String [FSEntry]

Such structures are very common: trees, semi-structured data
(XML, JSON, etc), expression trees, and many more, can be
represented this way very naturally. However, working with these is
much less easy.
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Why this is awful

Let’s suppose we wanted a function which told us how
deeply-nested our file system is:

depth :: FSEntry -> Integer
depth File _ _ = 0
depth Executable _ = 0
depth Folder _ entries = 1 + max (map depth entries)
depth Archive _ _ entries = 1 + max (map depth entries)

This is already looking bad. But it could be even worse…
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Why this awful, part 2

Suppose we wanted a list of every file with a .c or .h extension:

findCSource :: FSEntry -> [FSEntry]
findCSource File name "c" = [File name "c"]
findCSource File name "h" = [File name "h"]
findCSource File _ _ = []
findCSource Executable _ = []
findCSource Folder _ es = concat (map findCSource es)
findCSource Archive _ _ es = concat (map findCSource es)

That is absolutely gross. Now, imagine having to write ‘unpack all
archives, and place them in their own folders, with the same name
and "unpacked" appended’…
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Enumerating our gripes

I Conflates structure (how the data is arranged) with content
(what the data is)

I Difficult and counter-intuitive to write
I Brittle and hard to extend
I Tedious and repetitive

These are the sorts of problems ‘object-oriented’ programming
should concern itself with. We, as functional programmers, should
(and can) do better than this!
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Recursion schemes

I First introduced in a 1991 paper by Meijer, Fokkinga and
Paterson, titled Functional Programming with Bananas,
Lenses, Envelopes and Barbed Wire

I Describes a set of simple functions which can arbitrarily query,
tear down, and build up recursive data types

I Separates structure from content, allowing easy definition and
extension

I Have fancy Greek names (but aren’t really all that scary)
I Not widely known (even among functional programming

afficionados) or implemented (even in Haskell!)

Meijer, Fokkinga and Paterson called these functions morphisms.
Let’s give them a look…
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First of all

To make use of recursion schemes, we have to turn our nested
structure into a functor (and give it a type parameter):

data FSEntry a =
File String String |
Executable String |
Folder String [a] |
Archive String String [a]

instance Functor FSEntry where
map f (File n e) = File n e
map f (Executable n) = Executable n
map f (Folder n es) = Folder n (map f es)
map f (Archive n e es) = Archive n e (map f es)

The functor definition is simple enough that it can be auto-derived
by the compiler. At least one compiler actually does this (GHC for
Haskell).
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A slight typing problem

The old FSEntry type was uniform:

file = File "foo" "txt" -- file :: FSEntry
trash = Executable "Edge" -- trash :: FSEntry
src = Folder "src" [(File "foo" "c"),
(Executable "foo")] -- src :: FSEntry

rar = Archive "src" "rar" [src] -- rar :: FSEntry

The new FSEntry, however, is not:

file = File "foo" "txt" -- file :: FSEntry String
trash = Executable "Edge" -- trash :: FSEntry String
src = Folder "src" [(File "foo" "c"),
(Executable "foo")] -- src :: FSEntry (FSEntry String)

rar = Archive "src" "rar"
[src] -- rar :: FSEntry (FSEntry (FSEntry String))

This is a nuisance.
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Tying the knot

We really want to have some way of saying ‘this type is an
arbitrarily-nested FSEntry’, kind of like this:

type NestedFSEntry = FSEntry (FSEntry (FSEntry …))

This appears impossible. However, it can be done with a bit of
profitable cheating:

data Knot f = Tie { untie :: f (Knot f) }

file = Tie (File "foo" "txt") -- file :: Knot FSEntry
src = Tie (Folder "src" [(File "foo" "c"),
(Executable "foo")]) -- src :: Knot FSEntry

rar = Tie (Archive "src" "rar"
[src]) -- rar :: Knot FSEntry

This is called the fixed point of the FSEntry type, which is the
same as our earlier NestedFSEntry.
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A little helper

To make our next few steps a bit easier, we’re going to define a
‘pipeline’ function:

-- >>> is pronounced `then'
>>> :: (a -> b) -> (b -> c) -> (a -> c)
f >>> g = g ◦ f -- ◦ is function composition

f :: Integer -> Integer
f = (+ 1) >>> (* 2)

answer = f 3 -- answer == 8
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Separating structure from content

One of the biggest annoyances of our previous scheme is all the
boilerplate dealing with structure — let’s be rid of it, once and for
all.

As we’re dealing with tree-like structures, there’s two ways we
can process them:

Bottom-up: Descendants before ancestors
Top-down: Ancestors before descendants

This is where our Functor instance can really shine — we can use
it to automate the ‘process descendants’ step, without worrying
about our structure or breaking it (due to the functor law). We
just need to provide a local processing function, which deals with
our content.
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Bottom-up processing

To process a recursive data structure bottom-up using the
processing function f, we need to take the following steps:

1. Untie the Knot
2. Process descendants using map f
3. Re-tie the Knot
4. Process the ancestor using f

In code terms:
bottomUp :: Functor a => (Knot a -> Knot a) -> Knot a -> Knot a
bottomUp f = untie >>> map (bottomUp f) >>> Tie >>> f

Note: bottomUp absolutely and totally does not care what we tied
into a Knot. Furthermore, f doesn’t need to care about the
structure anymore.
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3. Process descendants using map f
4. Re-tie the Knot

In code terms:
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topDown f = f >>> untie >>> map (topDown f) >>> Tie

Note: topDown absolutely and totally does not care what we tied
into a Knot. Furthermore, f doesn’t need to care about the
structure anymore.
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Slipping the Knot

Unfortunately, our separation of structure and content is not
complete — we’re still tied (hurr hurr) to returning a Knot, which
is not enough to implement anything (too) useful.

What if we
tried to ‘slip the Knot’ by ‘cleverly’ forgetting to re-tie it?

-- what would the type of this possibly be?
mystery f = untie >>> map (mystery f) >>> f

-- mystery :: Functor f => (f a -> a) -> Knot f -> a

Now, the separation is complete. Let’s write some code!
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Revisiting depth

countDepth :: FSEntry Int -> Int
countDepth File _ _ = 0
countDepth Executable _ = 0
countDepth Folder _ es = 1 + max es
countDepth Executable _ es = 1 + max es

depth :: Knot FSEntry -> Int
depth = mystery countDepth

countDepth doesn’t have to care about structure, while mystery
doesn’t have to care about content. Success!
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Revisiting findCSource

getCSource :: FSEntry String -> [FSEntry String]
getCSource File n "c" = [File name "c"]
getCSource File n "h" = [File name "h"]
getCSource File _ _ = []
getCSource Executable _ = []
getCSource Folder _ es = concat es
getCSource Archive _ _ es = concat es

findCSource :: Knot FSEntry -> [FSEntry]
findCSource = mystery getCSource

Woo-hoo!
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Cleaning up our terminology

mystery is a pretty silly name to give something so useful, and (f
a -> a) is really hard to pronounce. Let’s name them sensibly:

type Algebra f a = f a -> a

-- the humble catamorphism, at last
cata :: Functor f => Algebra f a -> Knot f -> a
cata f = untie >>> map (cata f) >>> f

The names seem a bit odd at first, but there are reasons for them:

Algebra: Arabic root jabr, which means ‘restoration,
reunion’ — an algebra ‘reunites’ an f a (a
container of as) back into a single a.

Catamorphism: Greek root kata (like ‘catastrophe’), which means
‘downwards, into, collapse’ — a catamorphism
‘collapses’ a nested structure of values into a
single value.
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Extending to logical conclusions

We just managed to decouple structure from content for
bottom-up traversals. But what if we tried to do the same for
top-down ones?

-- a reminder
topDown f = f >>> untie >>> map (topDown f) >>> Tie

-- what is the type of this?
wtf f = f >>> map (wtf f) >>> Tie
-- wtf :: (Functor f) => (a -> f a) -> a -> Knot f

Seem familiar?
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Wtf is up with wtf?

Consider the type signatures of cata versus wtf:

cata: Takes an algebra and a nested structure, and ‘tears it
down’ into a single value

wtf: Takes a ‘backwards-algebra’ and a value, and ‘builds
it up’ into a nested structure

Again, sensible naming is in order:

type Coalgebra f a = a -> f a

-- meet the anamorphism (from Greek root for `build')
ana :: Functor f => Coalgebra f a -> a -> Knot f
ana f = f >>> map (ana f) >>> Tie

Thanks to recursion schemes, we can now build nested structures
up based on local expansions.
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Why recursion schemes are amazing

I Full separation of structure and content
I Easy to modify, simpler to write
I Formal guarantees of correct behaviour

All this is possible because of the wonderful Functor!
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Going further

I Context-sensitive construction and teardown (paramorphisms
and apomorphisms)

I Processing via intermediate structures, generalization and
simplification of divide-and-conquer (hylomorphisms)

I Generalize more expressive techniques (for example,
trampolining with zygomorphisms and dynamic programming
with histomorphisms)

I Processing infinite structures (yes, this is possible!)

But ultimately, this is freedom from boilerplate, freedom from
drudgery, and ultimately, freedom from structural processing.

Still don’t know how to used functor?
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Questions?
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