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for i ∈ 2, 3, . . . , length(arr) do

if x < arr[i] then

x← arr[i]
end if

end for

return x

end function

TMax(n) is O(n)

SMax(n) is O(1)
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Definition. Let f, g be functions. If there exist n0, c > 0, such that

for all n > n0, we have:

f(n) ≤ c · g(n)

then we say that f is O(g).

We write O(n) as a kind of shorthand — otherwise, we would have

to write O(f such that f(n) = n), which is far too long.
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Lemma. n2 is not O(n).

Proof. Suppose for the sake of a contradition that n2 is O(n). By

definition, there exist some n0, c > 0 such that for all n > n0,

n2 ≤ c · n. Consider n = max{n0 + 1, c+ 1}. There are two

cases:

Case 1: n = n0 + 1
By substitution, we have (n0 + 1)2 ≤ c · (n0 + 1), which simplifies

to n0 + 1 ≤ c. However, this is a contradiction, as c < n0 + 1.

Case 2: n = c+ 1
By substitution, we have (c+ 1)2 ≤ c · (c+ 1), which simplifies to

c+ 1 ≤ c, which is a contradiction.

As both cases lead to contradictions, no such n0, c can exist. Thus,

n2 is not O(n).
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amount. We don’t care about the base of the logarithm here,

because we can change to any base using a multiplication by a

constant.

O(n)
Linear : when input size doubles, complexity also doubles.
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O(n log (n))
Linearithmic: when input size doubles, complexity doubles, then also

increases by a fixed amount. Its ‘wordy’ name is rarely used outside

of a textbook.

O(n2)
Quadratic: when input size doubles, complexity quadruples.

O(n3)
Cubic: when input size doubles, complexity increases by a factor of

eight.
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O(2n)
Exponential : when input size goes up by 1, complexity doubles. If

your algorithm has exponential time or space complexity, it may as

well not exist.

Only gets worse from here — but we usually don’t bother at this

point.
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Worst-case analysis is pessimistic — this can be a good thing,

because it stops us from having unrealistic expectations in the face

of unknown inputs. However, it is possible for it to be too pessimistic:

• If worst cases are rare or improbable, an algorithm might look

much worse than it actually is

• Focus on the wrong places (exactly what we sought to avoid)

• Won’t match reality (and we won’t know why)

Is it really sensible to always be uncompromisingly pessimistic?
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• Should we bother

with it, then?

Questions

“RAM describes computers, and if we design algorithms

around it, their actual performance should reflect what

RAM says it should be.”

That statement was certainly true in the 1950s, but things have

changed considerably since then:

• Processing units are no longer singular

• Memory is not uniform or uniformally-addressable nowadays

• Processing units haven’t been sequential since the mid-70s

Is it really sensible to analyze (and design) algorithms based on such

an old view of our machines?
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• Constants can, and do, dominate algorithm performance

By clever ‘asymptotic abuse’, we can easily come up with algorithms

that ‘look good’, but are worthless in practice:

“Our algorithms have theoretical interest only; the

constant factors involve in the execution times preclude

practicality.”

This seems to fly in the face of why we’re doing this in the first place.

But where to draw the line?
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• In many cases (taking assumptions into account), still works very

well (similar to classical mechanics)

• ‘The beginning, but not the end’

• “If you don’t have an implementation, you don’t have an

algorithm”

“Trust, but verify.”
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