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• The ingredients are the inputs

• The recipe directions are the instructions

• The (hopefully!) resulting food is the output
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• Algorithms are very fundamental to computer science (which is

why it’s all about cooking!)

• They define what we can do at all, and what we can do efficiently

• Improved algorithms lead to improved everything-else

• ‘Ready-baked’ efficient solutions to many problems (theoretical

and practical)

• If you don’t know this stuff, everything you do on a computer will

run like hot garbage, and you won’t know why, or what to do

about it

Thus, we really need to be able to compare algorithms to each other,

and also understand why they run the way they do, if we have any

hope of making them do our bidding.



What do we mean by ‘efficient’?

What are algorithms,

and why do we care?

• Definition of an

algorithm

• Why we care

• What do we mean by

‘efficient’?

Building up

Going asymptotic

Questions

Efficiency is ultimately doing more with less effort. We can measure

the ‘effort’ required to run an algorithm in two ways:



What do we mean by ‘efficient’?

What are algorithms,

and why do we care?

• Definition of an

algorithm

• Why we care

• What do we mean by

‘efficient’?

Building up

Going asymptotic

Questions

Efficiency is ultimately doing more with less effort. We can measure

the ‘effort’ required to run an algorithm in two ways:

• How much time we need to solve a problem instance; and



What do we mean by ‘efficient’?

What are algorithms,

and why do we care?

• Definition of an

algorithm

• Why we care

• What do we mean by

‘efficient’?

Building up

Going asymptotic

Questions

Efficiency is ultimately doing more with less effort. We can measure

the ‘effort’ required to run an algorithm in two ways:

• How much time we need to solve a problem instance; and

• How much space (in terms of memory) we would have to use as

part of this process.



What do we mean by ‘efficient’?

What are algorithms,

and why do we care?

• Definition of an

algorithm

• Why we care

• What do we mean by

‘efficient’?

Building up

Going asymptotic

Questions

Efficiency is ultimately doing more with less effort. We can measure

the ‘effort’ required to run an algorithm in two ways:

• How much time we need to solve a problem instance; and

• How much space (in terms of memory) we would have to use as

part of this process.

Determining these two factors is an important part of algorithm

analysis.



What do we mean by ‘efficient’?

What are algorithms,

and why do we care?

• Definition of an

algorithm

• Why we care

• What do we mean by

‘efficient’?

Building up

Going asymptotic

Questions

Efficiency is ultimately doing more with less effort. We can measure
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• How much time we need to solve a problem instance; and

• How much space (in terms of memory) we would have to use as

part of this process.

Determining these two factors is an important part of algorithm

analysis. Additionally, any method we use must explain why we get

the performance it claims.
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and the memory used.”

Not bad per se, but has a few notable downsides:

• Very labour-intensive (programming is hard!)

• Too many external factors (programmer skill, language, OS,

hardware, workload. . .)

• The test data problem (what do we test against?)

While this method is useful at the end of the process, it’s not a very

good analytical tool in general. To do better than this, we need a

different view of the problem, as well as a different method.
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In sciences (of all sorts), a model is a way of looking at the world

which:

• Minimizes the impact of factors we don’t care about

• Stays true to the reality of factors we do care about

• Explains why phenomena occur like they do.

Examples of models include:

• The Standard Model

• The orbital model

• Statistical models

Models allow us to analyze and understand their subject matter

without having to ‘manually verify’ everything.
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Because algorithms ultimately run on computers, our model must be

of a computer.

There are many choices of model, depending on what kind of

computer we want to study, as well as what aspects of it interest us.

The most traditional (and foundational) model for algorithm analysis

is the random access model (RAM). This closely represents a

computer at the time when algorithm analysis first became a topic in

its own right (around 1950).
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In RAM, we have access to:

• A single, sequential processing unit (PU)

• Addressable memory, divided into words of w bits

A primitive instruction is any of the following:

• Arithmetic (+,−, ·,÷) on w-bit integers

• Comparison (<,>,≤,≥,=, 6=) of two w-bit integers or flags

• Allocation of any number of consecutively-addressed words

• Given an address, a one-word read or write there

• Conditional or unconditional branch

• A procedure call

• A return of a value

Any primitive instruction requires one time unit to execute.
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Ultimately, we don’t actually care about what T (n), S(n) are. What

really matters is how they behave as their input sizes grow. Our

current method focuses too much on the former, and not enough on

the latter.

Thus, we make the following assumptions:

• Input sizes can grow arbitrarily large

• Constant additions or factors are irrelevant

• Out of multiple n-terms, only the largest matters

• We will talk about rate of growth, not value

We call this kind of analysis asymptotic. This is because the input

can grow as big as we like, and we’re only interested in how the

running time (or space) changes with the growth of the input.
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for i ∈ 2, 3, . . . , length(arr) do

if x < arr[i] then

x← arr[i]
end if

end for

return x

end function

TMax(n) is O(n)

SMax(n) is O(1)

We also say “the time complexity of Max is O(n)”, or even “Max is

O(n)”. The second one is a bit unclear, so I’d avoid it.
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• Can be determined (and verified) very quickly

It’s definitely not perfect though — but that’s material for another talk.
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