
Recursion schemes
Or: why your abstractions are still weak

Koz Ross

17th August, 2017



Outline

Introduction

Preliminaries

Recursion schemes

Questions



How many of you felt after the functor talk

Let me show you!



How many of you felt after the functor talk

Let me show you!



Recursive data types

We can express certain structures in a recursive manner:

data List a =
Nil | -- base case
Cons a (List a) -- inductive case

Under this definition, we get the following ‘expansions’:

[] == Nil -- obviously
[1] == Cons 1 Nil
[1, 2, 3] == Cons 1 (Cons 2 (Cons 3 Nil))
-- and so on…

As long as we ‘bottom out’ somewhere, this is fine. It also allows
us to write very elegant code for processing such data structures.



Recursive data types

We can express certain structures in a recursive manner:

data List a =
Nil | -- base case
Cons a (List a) -- inductive case

Under this definition, we get the following ‘expansions’:

[] == Nil -- obviously
[1] == Cons 1 Nil
[1, 2, 3] == Cons 1 (Cons 2 (Cons 3 Nil))
-- and so on…

As long as we ‘bottom out’ somewhere, this is fine. It also allows
us to write very elegant code for processing such data structures.



Recursive data types

We can express certain structures in a recursive manner:

data List a =
Nil | -- base case
Cons a (List a) -- inductive case

Under this definition, we get the following ‘expansions’:

[] == Nil -- obviously
[1] == Cons 1 Nil
[1, 2, 3] == Cons 1 (Cons 2 (Cons 3 Nil))
-- and so on…

As long as we ‘bottom out’ somewhere, this is fine. It also allows
us to write very elegant code for processing such data structures.



Recursive data types

We can express certain structures in a recursive manner:

data List a =
Nil | -- base case
Cons a (List a) -- inductive case

Under this definition, we get the following ‘expansions’:

[] == Nil -- obviously
[1] == Cons 1 Nil
[1, 2, 3] == Cons 1 (Cons 2 (Cons 3 Nil))
-- and so on…

As long as we ‘bottom out’ somewhere, this is fine. It also allows
us to write very elegant code for processing such data structures.



Recursive data types

We can express certain structures in a recursive manner:

data List a =
Nil | -- base case
Cons a (List a) -- inductive case

Under this definition, we get the following ‘expansions’:

[] == Nil -- obviously
[1] == Cons 1 Nil
[1, 2, 3] == Cons 1 (Cons 2 (Cons 3 Nil))
-- and so on…

As long as we ‘bottom out’ somewhere, this is fine. It also allows
us to write very elegant code for processing such data structures.



How to use recursive data types

instance Functor List where
map f Nil = Nil
map f Cons head tail = Cons (f head) (map f tail)

This would lead to the following ‘expansion’:

-- this expression
map inc [1, 2, 3] -- Cons 1 (Cons 2 (Cons 3 Nil))
-- would be evaluated like this
Cons (inc 1) (map inc [2, 3])
Cons (inc 1) (Cons (inc 2) (map inc [3]))
Cons (inc 1) (Cons (inc 2) (Cons (inc 3) (map inc [])))
Cons (inc 1) (Cons (inc 2) (Cons (inc 3) Nil))
Cons (inc 1) (Cons (inc 2) (Cons 4 Nil))
Cons (inc 1) (Cons 3 (Cons 4 Nil))
Cons 2 (Cons 3 (Cons 4 Nil))-- or [2, 3, 4]



How to use recursive data types

instance Functor List where
map f Nil = Nil
map f Cons head tail = Cons (f head) (map f tail)

This would lead to the following ‘expansion’:

-- this expression
map inc [1, 2, 3] -- Cons 1 (Cons 2 (Cons 3 Nil))
-- would be evaluated like this
Cons (inc 1) (map inc [2, 3])
Cons (inc 1) (Cons (inc 2) (map inc [3]))
Cons (inc 1) (Cons (inc 2) (Cons (inc 3) (map inc [])))
Cons (inc 1) (Cons (inc 2) (Cons (inc 3) Nil))
Cons (inc 1) (Cons (inc 2) (Cons 4 Nil))
Cons (inc 1) (Cons 3 (Cons 4 Nil))
Cons 2 (Cons 3 (Cons 4 Nil))-- or [2, 3, 4]



How to use recursive data types

instance Functor List where
map f Nil = Nil
map f Cons head tail = Cons (f head) (map f tail)

This would lead to the following ‘expansion’:

-- this expression
map inc [1, 2, 3] -- Cons 1 (Cons 2 (Cons 3 Nil))
-- would be evaluated like this
Cons (inc 1) (map inc [2, 3])
Cons (inc 1) (Cons (inc 2) (map inc [3]))
Cons (inc 1) (Cons (inc 2) (Cons (inc 3) (map inc [])))
Cons (inc 1) (Cons (inc 2) (Cons (inc 3) Nil))
Cons (inc 1) (Cons (inc 2) (Cons 4 Nil))
Cons (inc 1) (Cons 3 (Cons 4 Nil))
Cons 2 (Cons 3 (Cons 4 Nil))-- or [2, 3, 4]



How to use recursive data types

instance Functor List where
map f Nil = Nil
map f Cons head tail = Cons (f head) (map f tail)

This would lead to the following ‘expansion’:

-- this expression
map inc [1, 2, 3] -- Cons 1 (Cons 2 (Cons 3 Nil))
-- would be evaluated like this

Cons (inc 1) (map inc [2, 3])
Cons (inc 1) (Cons (inc 2) (map inc [3]))
Cons (inc 1) (Cons (inc 2) (Cons (inc 3) (map inc [])))
Cons (inc 1) (Cons (inc 2) (Cons (inc 3) Nil))
Cons (inc 1) (Cons (inc 2) (Cons 4 Nil))
Cons (inc 1) (Cons 3 (Cons 4 Nil))
Cons 2 (Cons 3 (Cons 4 Nil))-- or [2, 3, 4]



How to use recursive data types

instance Functor List where
map f Nil = Nil
map f Cons head tail = Cons (f head) (map f tail)

This would lead to the following ‘expansion’:

-- this expression
map inc [1, 2, 3] -- Cons 1 (Cons 2 (Cons 3 Nil))
-- would be evaluated like this
Cons (inc 1) (map inc [2, 3])

Cons (inc 1) (Cons (inc 2) (map inc [3]))
Cons (inc 1) (Cons (inc 2) (Cons (inc 3) (map inc [])))
Cons (inc 1) (Cons (inc 2) (Cons (inc 3) Nil))
Cons (inc 1) (Cons (inc 2) (Cons 4 Nil))
Cons (inc 1) (Cons 3 (Cons 4 Nil))
Cons 2 (Cons 3 (Cons 4 Nil))-- or [2, 3, 4]



How to use recursive data types

instance Functor List where
map f Nil = Nil
map f Cons head tail = Cons (f head) (map f tail)

This would lead to the following ‘expansion’:

-- this expression
map inc [1, 2, 3] -- Cons 1 (Cons 2 (Cons 3 Nil))
-- would be evaluated like this
Cons (inc 1) (map inc [2, 3])
Cons (inc 1) (Cons (inc 2) (map inc [3]))

Cons (inc 1) (Cons (inc 2) (Cons (inc 3) (map inc [])))
Cons (inc 1) (Cons (inc 2) (Cons (inc 3) Nil))
Cons (inc 1) (Cons (inc 2) (Cons 4 Nil))
Cons (inc 1) (Cons 3 (Cons 4 Nil))
Cons 2 (Cons 3 (Cons 4 Nil))-- or [2, 3, 4]



How to use recursive data types

instance Functor List where
map f Nil = Nil
map f Cons head tail = Cons (f head) (map f tail)

This would lead to the following ‘expansion’:

-- this expression
map inc [1, 2, 3] -- Cons 1 (Cons 2 (Cons 3 Nil))
-- would be evaluated like this
Cons (inc 1) (map inc [2, 3])
Cons (inc 1) (Cons (inc 2) (map inc [3]))
Cons (inc 1) (Cons (inc 2) (Cons (inc 3) (map inc [])))

Cons (inc 1) (Cons (inc 2) (Cons (inc 3) Nil))
Cons (inc 1) (Cons (inc 2) (Cons 4 Nil))
Cons (inc 1) (Cons 3 (Cons 4 Nil))
Cons 2 (Cons 3 (Cons 4 Nil))-- or [2, 3, 4]



How to use recursive data types

instance Functor List where
map f Nil = Nil
map f Cons head tail = Cons (f head) (map f tail)

This would lead to the following ‘expansion’:

-- this expression
map inc [1, 2, 3] -- Cons 1 (Cons 2 (Cons 3 Nil))
-- would be evaluated like this
Cons (inc 1) (map inc [2, 3])
Cons (inc 1) (Cons (inc 2) (map inc [3]))
Cons (inc 1) (Cons (inc 2) (Cons (inc 3) (map inc [])))
Cons (inc 1) (Cons (inc 2) (Cons (inc 3) Nil))

Cons (inc 1) (Cons (inc 2) (Cons 4 Nil))
Cons (inc 1) (Cons 3 (Cons 4 Nil))
Cons 2 (Cons 3 (Cons 4 Nil))-- or [2, 3, 4]



How to use recursive data types

instance Functor List where
map f Nil = Nil
map f Cons head tail = Cons (f head) (map f tail)

This would lead to the following ‘expansion’:

-- this expression
map inc [1, 2, 3] -- Cons 1 (Cons 2 (Cons 3 Nil))
-- would be evaluated like this
Cons (inc 1) (map inc [2, 3])
Cons (inc 1) (Cons (inc 2) (map inc [3]))
Cons (inc 1) (Cons (inc 2) (Cons (inc 3) (map inc [])))
Cons (inc 1) (Cons (inc 2) (Cons (inc 3) Nil))
Cons (inc 1) (Cons (inc 2) (Cons 4 Nil))

Cons (inc 1) (Cons 3 (Cons 4 Nil))
Cons 2 (Cons 3 (Cons 4 Nil))-- or [2, 3, 4]



How to use recursive data types

instance Functor List where
map f Nil = Nil
map f Cons head tail = Cons (f head) (map f tail)

This would lead to the following ‘expansion’:

-- this expression
map inc [1, 2, 3] -- Cons 1 (Cons 2 (Cons 3 Nil))
-- would be evaluated like this
Cons (inc 1) (map inc [2, 3])
Cons (inc 1) (Cons (inc 2) (map inc [3]))
Cons (inc 1) (Cons (inc 2) (Cons (inc 3) (map inc [])))
Cons (inc 1) (Cons (inc 2) (Cons (inc 3) Nil))
Cons (inc 1) (Cons (inc 2) (Cons 4 Nil))
Cons (inc 1) (Cons 3 (Cons 4 Nil))

Cons 2 (Cons 3 (Cons 4 Nil))-- or [2, 3, 4]



How to use recursive data types

instance Functor List where
map f Nil = Nil
map f Cons head tail = Cons (f head) (map f tail)

This would lead to the following ‘expansion’:

-- this expression
map inc [1, 2, 3] -- Cons 1 (Cons 2 (Cons 3 Nil))
-- would be evaluated like this
Cons (inc 1) (map inc [2, 3])
Cons (inc 1) (Cons (inc 2) (map inc [3]))
Cons (inc 1) (Cons (inc 2) (Cons (inc 3) (map inc [])))
Cons (inc 1) (Cons (inc 2) (Cons (inc 3) Nil))
Cons (inc 1) (Cons (inc 2) (Cons 4 Nil))
Cons (inc 1) (Cons 3 (Cons 4 Nil))
Cons 2 (Cons 3 (Cons 4 Nil))-- or [2, 3, 4]



Going further

We can define arbitrary nested structures in this way:

data FSEntry = -- file system entry
File String String | -- name, extension
Executable String | -- name
Folder String [FSEntry] |
Archive String String [FSEntry]

Such structures are very common: trees, semi-structured data
(XML, JSON, etc), expression trees, and many more, can be
represented this way very naturally. However, working with these is
much less easy.



Going further

We can define arbitrary nested structures in this way:

data FSEntry = -- file system entry

File String String | -- name, extension
Executable String | -- name
Folder String [FSEntry] |
Archive String String [FSEntry]

Such structures are very common: trees, semi-structured data
(XML, JSON, etc), expression trees, and many more, can be
represented this way very naturally. However, working with these is
much less easy.



Going further

We can define arbitrary nested structures in this way:

data FSEntry = -- file system entry
File String String | -- name, extension

Executable String | -- name
Folder String [FSEntry] |
Archive String String [FSEntry]

Such structures are very common: trees, semi-structured data
(XML, JSON, etc), expression trees, and many more, can be
represented this way very naturally. However, working with these is
much less easy.



Going further

We can define arbitrary nested structures in this way:

data FSEntry = -- file system entry
File String String | -- name, extension
Executable String | -- name

Folder String [FSEntry] |
Archive String String [FSEntry]

Such structures are very common: trees, semi-structured data
(XML, JSON, etc), expression trees, and many more, can be
represented this way very naturally. However, working with these is
much less easy.



Going further

We can define arbitrary nested structures in this way:

data FSEntry = -- file system entry
File String String | -- name, extension
Executable String | -- name
Folder String [FSEntry] |

Archive String String [FSEntry]

Such structures are very common: trees, semi-structured data
(XML, JSON, etc), expression trees, and many more, can be
represented this way very naturally. However, working with these is
much less easy.



Going further

We can define arbitrary nested structures in this way:

data FSEntry = -- file system entry
File String String | -- name, extension
Executable String | -- name
Folder String [FSEntry] |
Archive String String [FSEntry]

Such structures are very common: trees, semi-structured data
(XML, JSON, etc), expression trees, and many more, can be
represented this way very naturally. However, working with these is
much less easy.



Going further

We can define arbitrary nested structures in this way:

data FSEntry = -- file system entry
File String String | -- name, extension
Executable String | -- name
Folder String [FSEntry] |
Archive String String [FSEntry]

Such structures are very common: trees, semi-structured data
(XML, JSON, etc), expression trees, and many more, can be
represented this way very naturally.

However, working with these is
much less easy.



Going further

We can define arbitrary nested structures in this way:

data FSEntry = -- file system entry
File String String | -- name, extension
Executable String | -- name
Folder String [FSEntry] |
Archive String String [FSEntry]

Such structures are very common: trees, semi-structured data
(XML, JSON, etc), expression trees, and many more, can be
represented this way very naturally. However, working with these is
much less easy.



Why this is awful

Let’s suppose we wanted a function which told us how
deeply-nested our file system is:

depth :: FSEntry -> Integer
depth File _ _ = 0
depth Executable _ = 0
depth Folder _ entries = 1 + max (map depth entries)
depth Archive _ _ entries = 1 + max (map depth entries)

This is already looking bad. But it could be even worse…



Why this is awful

Let’s suppose we wanted a function which told us how
deeply-nested our file system is:

depth :: FSEntry -> Integer

depth File _ _ = 0
depth Executable _ = 0
depth Folder _ entries = 1 + max (map depth entries)
depth Archive _ _ entries = 1 + max (map depth entries)

This is already looking bad. But it could be even worse…



Why this is awful

Let’s suppose we wanted a function which told us how
deeply-nested our file system is:

depth :: FSEntry -> Integer
depth File _ _ = 0

depth Executable _ = 0
depth Folder _ entries = 1 + max (map depth entries)
depth Archive _ _ entries = 1 + max (map depth entries)

This is already looking bad. But it could be even worse…



Why this is awful

Let’s suppose we wanted a function which told us how
deeply-nested our file system is:

depth :: FSEntry -> Integer
depth File _ _ = 0
depth Executable _ = 0

depth Folder _ entries = 1 + max (map depth entries)
depth Archive _ _ entries = 1 + max (map depth entries)

This is already looking bad. But it could be even worse…



Why this is awful

Let’s suppose we wanted a function which told us how
deeply-nested our file system is:

depth :: FSEntry -> Integer
depth File _ _ = 0
depth Executable _ = 0
depth Folder _ entries = 1 + max (map depth entries)

depth Archive _ _ entries = 1 + max (map depth entries)

This is already looking bad. But it could be even worse…



Why this is awful

Let’s suppose we wanted a function which told us how
deeply-nested our file system is:

depth :: FSEntry -> Integer
depth File _ _ = 0
depth Executable _ = 0
depth Folder _ entries = 1 + max (map depth entries)
depth Archive _ _ entries = 1 + max (map depth entries)

This is already looking bad. But it could be even worse…



Why this is awful

Let’s suppose we wanted a function which told us how
deeply-nested our file system is:

depth :: FSEntry -> Integer
depth File _ _ = 0
depth Executable _ = 0
depth Folder _ entries = 1 + max (map depth entries)
depth Archive _ _ entries = 1 + max (map depth entries)

This is already looking bad. But it could be even worse…



Why this awful, part 2

Suppose we wanted a list of every file with a .c or .h extension:

findCSource :: FSEntry -> [FSEntry]
findCSource File name "c" = [File name "c"]
findCSource File name "h" = [File name "h"]
findCSource File _ _ = []
findCSource Executable _ = []
findCSource Folder _ es = concat (map findCSource es)
findCSource Archive _ _ es = concat (map findCSource es)

That is absolutely gross. Now, imagine having to write ‘unpack all
archives, and place them in their own folders, with the same name
and "unpacked" appended’…



Why this awful, part 2

Suppose we wanted a list of every file with a .c or .h extension:

findCSource :: FSEntry -> [FSEntry]

findCSource File name "c" = [File name "c"]
findCSource File name "h" = [File name "h"]
findCSource File _ _ = []
findCSource Executable _ = []
findCSource Folder _ es = concat (map findCSource es)
findCSource Archive _ _ es = concat (map findCSource es)

That is absolutely gross. Now, imagine having to write ‘unpack all
archives, and place them in their own folders, with the same name
and "unpacked" appended’…



Why this awful, part 2

Suppose we wanted a list of every file with a .c or .h extension:

findCSource :: FSEntry -> [FSEntry]
findCSource File name "c" = [File name "c"]
findCSource File name "h" = [File name "h"]

findCSource File _ _ = []
findCSource Executable _ = []
findCSource Folder _ es = concat (map findCSource es)
findCSource Archive _ _ es = concat (map findCSource es)

That is absolutely gross. Now, imagine having to write ‘unpack all
archives, and place them in their own folders, with the same name
and "unpacked" appended’…



Why this awful, part 2

Suppose we wanted a list of every file with a .c or .h extension:

findCSource :: FSEntry -> [FSEntry]
findCSource File name "c" = [File name "c"]
findCSource File name "h" = [File name "h"]
findCSource File _ _ = []

findCSource Executable _ = []
findCSource Folder _ es = concat (map findCSource es)
findCSource Archive _ _ es = concat (map findCSource es)

That is absolutely gross. Now, imagine having to write ‘unpack all
archives, and place them in their own folders, with the same name
and "unpacked" appended’…



Why this awful, part 2

Suppose we wanted a list of every file with a .c or .h extension:

findCSource :: FSEntry -> [FSEntry]
findCSource File name "c" = [File name "c"]
findCSource File name "h" = [File name "h"]
findCSource File _ _ = []
findCSource Executable _ = []

findCSource Folder _ es = concat (map findCSource es)
findCSource Archive _ _ es = concat (map findCSource es)

That is absolutely gross. Now, imagine having to write ‘unpack all
archives, and place them in their own folders, with the same name
and "unpacked" appended’…



Why this awful, part 2

Suppose we wanted a list of every file with a .c or .h extension:

findCSource :: FSEntry -> [FSEntry]
findCSource File name "c" = [File name "c"]
findCSource File name "h" = [File name "h"]
findCSource File _ _ = []
findCSource Executable _ = []
findCSource Folder _ es = concat (map findCSource es)

findCSource Archive _ _ es = concat (map findCSource es)

That is absolutely gross. Now, imagine having to write ‘unpack all
archives, and place them in their own folders, with the same name
and "unpacked" appended’…



Why this awful, part 2

Suppose we wanted a list of every file with a .c or .h extension:

findCSource :: FSEntry -> [FSEntry]
findCSource File name "c" = [File name "c"]
findCSource File name "h" = [File name "h"]
findCSource File _ _ = []
findCSource Executable _ = []
findCSource Folder _ es = concat (map findCSource es)
findCSource Archive _ _ es = concat (map findCSource es)

That is absolutely gross. Now, imagine having to write ‘unpack all
archives, and place them in their own folders, with the same name
and "unpacked" appended’…



Why this awful, part 2

Suppose we wanted a list of every file with a .c or .h extension:

findCSource :: FSEntry -> [FSEntry]
findCSource File name "c" = [File name "c"]
findCSource File name "h" = [File name "h"]
findCSource File _ _ = []
findCSource Executable _ = []
findCSource Folder _ es = concat (map findCSource es)
findCSource Archive _ _ es = concat (map findCSource es)

That is absolutely gross.

Now, imagine having to write ‘unpack all
archives, and place them in their own folders, with the same name
and "unpacked" appended’…



Why this awful, part 2

Suppose we wanted a list of every file with a .c or .h extension:

findCSource :: FSEntry -> [FSEntry]
findCSource File name "c" = [File name "c"]
findCSource File name "h" = [File name "h"]
findCSource File _ _ = []
findCSource Executable _ = []
findCSource Folder _ es = concat (map findCSource es)
findCSource Archive _ _ es = concat (map findCSource es)

That is absolutely gross. Now, imagine having to write ‘unpack all
archives, and place them in their own folders, with the same name
and "unpacked" appended’…



Enumerating our gripes

I Conflates structure (how the data is arranged) with content
(what the data is)

I Difficult and counter-intuitive to write
I Brittle and hard to extend
I Tedious and repetitive

These are the sorts of problems ‘object-oriented’ programming
should concern itself with. We, as functional programmers, should
(and can) do better than this!



Enumerating our gripes

I Conflates structure (how the data is arranged) with content
(what the data is)

I Difficult and counter-intuitive to write
I Brittle and hard to extend
I Tedious and repetitive

These are the sorts of problems ‘object-oriented’ programming
should concern itself with. We, as functional programmers, should
(and can) do better than this!



Enumerating our gripes

I Conflates structure (how the data is arranged) with content
(what the data is)

I Difficult and counter-intuitive to write

I Brittle and hard to extend
I Tedious and repetitive

These are the sorts of problems ‘object-oriented’ programming
should concern itself with. We, as functional programmers, should
(and can) do better than this!



Enumerating our gripes

I Conflates structure (how the data is arranged) with content
(what the data is)

I Difficult and counter-intuitive to write
I Brittle and hard to extend

I Tedious and repetitive

These are the sorts of problems ‘object-oriented’ programming
should concern itself with. We, as functional programmers, should
(and can) do better than this!



Enumerating our gripes

I Conflates structure (how the data is arranged) with content
(what the data is)

I Difficult and counter-intuitive to write
I Brittle and hard to extend
I Tedious and repetitive

These are the sorts of problems ‘object-oriented’ programming
should concern itself with. We, as functional programmers, should
(and can) do better than this!



Enumerating our gripes

I Conflates structure (how the data is arranged) with content
(what the data is)

I Difficult and counter-intuitive to write
I Brittle and hard to extend
I Tedious and repetitive

These are the sorts of problems ‘object-oriented’ programming
should concern itself with. We, as functional programmers, should
(and can) do better than this!



Recursion schemes

I First introduced in a 1991 paper by Meijer, Fokkinga and
Paterson, titled Functional Programming with Bananas,
Lenses, Envelopes and Barbed Wire

I Describes a set of simple functions which can arbitrarily query,
tear down, and build up recursive data types

I Separates structure from content, allowing easy definition and
extension

I Have fancy Greek names (but aren’t really all that scary)
I Not widely known (even among functional programming

afficionados) or implemented (even in Haskell!)

Meijer, Fokkinga and Paterson called these functions morphisms.
Let’s give them a look…



Recursion schemes

I First introduced in a 1991 paper by Meijer, Fokkinga and
Paterson, titled Functional Programming with Bananas,
Lenses, Envelopes and Barbed Wire

I Describes a set of simple functions which can arbitrarily query,
tear down, and build up recursive data types

I Separates structure from content, allowing easy definition and
extension

I Have fancy Greek names (but aren’t really all that scary)
I Not widely known (even among functional programming

afficionados) or implemented (even in Haskell!)

Meijer, Fokkinga and Paterson called these functions morphisms.
Let’s give them a look…



Recursion schemes

I First introduced in a 1991 paper by Meijer, Fokkinga and
Paterson, titled Functional Programming with Bananas,
Lenses, Envelopes and Barbed Wire

I Describes a set of simple functions which can arbitrarily query,
tear down, and build up recursive data types

I Separates structure from content, allowing easy definition and
extension

I Have fancy Greek names (but aren’t really all that scary)
I Not widely known (even among functional programming

afficionados) or implemented (even in Haskell!)

Meijer, Fokkinga and Paterson called these functions morphisms.
Let’s give them a look…



Recursion schemes

I First introduced in a 1991 paper by Meijer, Fokkinga and
Paterson, titled Functional Programming with Bananas,
Lenses, Envelopes and Barbed Wire

I Describes a set of simple functions which can arbitrarily query,
tear down, and build up recursive data types

I Separates structure from content, allowing easy definition and
extension

I Have fancy Greek names (but aren’t really all that scary)
I Not widely known (even among functional programming

afficionados) or implemented (even in Haskell!)

Meijer, Fokkinga and Paterson called these functions morphisms.
Let’s give them a look…



Recursion schemes

I First introduced in a 1991 paper by Meijer, Fokkinga and
Paterson, titled Functional Programming with Bananas,
Lenses, Envelopes and Barbed Wire

I Describes a set of simple functions which can arbitrarily query,
tear down, and build up recursive data types

I Separates structure from content, allowing easy definition and
extension

I Have fancy Greek names (but aren’t really all that scary)

I Not widely known (even among functional programming
afficionados) or implemented (even in Haskell!)

Meijer, Fokkinga and Paterson called these functions morphisms.
Let’s give them a look…



Recursion schemes

I First introduced in a 1991 paper by Meijer, Fokkinga and
Paterson, titled Functional Programming with Bananas,
Lenses, Envelopes and Barbed Wire

I Describes a set of simple functions which can arbitrarily query,
tear down, and build up recursive data types

I Separates structure from content, allowing easy definition and
extension

I Have fancy Greek names (but aren’t really all that scary)
I Not widely known (even among functional programming

afficionados) or implemented (even in Haskell!)

Meijer, Fokkinga and Paterson called these functions morphisms.
Let’s give them a look…



Recursion schemes

I First introduced in a 1991 paper by Meijer, Fokkinga and
Paterson, titled Functional Programming with Bananas,
Lenses, Envelopes and Barbed Wire

I Describes a set of simple functions which can arbitrarily query,
tear down, and build up recursive data types

I Separates structure from content, allowing easy definition and
extension

I Have fancy Greek names (but aren’t really all that scary)
I Not widely known (even among functional programming

afficionados) or implemented (even in Haskell!)

Meijer, Fokkinga and Paterson called these functions morphisms.

Let’s give them a look…



Recursion schemes

I First introduced in a 1991 paper by Meijer, Fokkinga and
Paterson, titled Functional Programming with Bananas,
Lenses, Envelopes and Barbed Wire

I Describes a set of simple functions which can arbitrarily query,
tear down, and build up recursive data types

I Separates structure from content, allowing easy definition and
extension

I Have fancy Greek names (but aren’t really all that scary)
I Not widely known (even among functional programming

afficionados) or implemented (even in Haskell!)

Meijer, Fokkinga and Paterson called these functions morphisms.
Let’s give them a look…



First of all

To make use of recursion schemes, we have to turn our nested
structure into a functor (and give it a type parameter):

data FSEntry a =
File String String |
Executable String |
Folder String [a] |
Archive String String [a]

instance Functor FSEntry where
map f (File n e) = File n e
map f (Executable n) = Executable n
map f (Folder n es) = Folder n (map f es)
map f (Archive n e es) = Archive n e (map f es)

The functor definition is simple enough that it can be auto-derived
by the compiler. At least one compiler actually does this (GHC for
Haskell).



First of all

To make use of recursion schemes, we have to turn our nested
structure into a functor (and give it a type parameter):

data FSEntry a =
File String String |
Executable String |
Folder String [a] |
Archive String String [a]

instance Functor FSEntry where
map f (File n e) = File n e
map f (Executable n) = Executable n
map f (Folder n es) = Folder n (map f es)
map f (Archive n e es) = Archive n e (map f es)

The functor definition is simple enough that it can be auto-derived
by the compiler. At least one compiler actually does this (GHC for
Haskell).



First of all

To make use of recursion schemes, we have to turn our nested
structure into a functor (and give it a type parameter):

data FSEntry a =
File String String |
Executable String |
Folder String [a] |
Archive String String [a]

instance Functor FSEntry where
map f (File n e) = File n e
map f (Executable n) = Executable n
map f (Folder n es) = Folder n (map f es)
map f (Archive n e es) = Archive n e (map f es)

The functor definition is simple enough that it can be auto-derived
by the compiler. At least one compiler actually does this (GHC for
Haskell).



A slight typing problem

The old FSEntry type was uniform:

file = File "foo" "txt" -- file :: FSEntry
trash = Executable "Edge" -- trash :: FSEntry
src = Folder "src" [(File "foo" "c"),
(Executable "foo")] -- src :: FSEntry

rar = Archive "src" "rar" [src] -- rar :: FSEntry

The new FSEntry, however, is not:

file = File "foo" "txt" -- file :: FSEntry String
trash = Executable "Edge" -- trash :: FSEntry String
src = Folder "src" [(File "foo" "c"),
(Executable "foo")] -- src :: FSEntry (FSEntry String)

rar = Archive "src" "rar"
[src] -- rar :: FSEntry (FSEntry (FSEntry String))

This is a nuisance.



A slight typing problem

The old FSEntry type was uniform:

file = File "foo" "txt" -- file :: FSEntry
trash = Executable "Edge" -- trash :: FSEntry
src = Folder "src" [(File "foo" "c"),

(Executable "foo")] -- src :: FSEntry
rar = Archive "src" "rar" [src] -- rar :: FSEntry

The new FSEntry, however, is not:

file = File "foo" "txt" -- file :: FSEntry String
trash = Executable "Edge" -- trash :: FSEntry String
src = Folder "src" [(File "foo" "c"),
(Executable "foo")] -- src :: FSEntry (FSEntry String)

rar = Archive "src" "rar"
[src] -- rar :: FSEntry (FSEntry (FSEntry String))

This is a nuisance.



A slight typing problem

The old FSEntry type was uniform:

file = File "foo" "txt" -- file :: FSEntry
trash = Executable "Edge" -- trash :: FSEntry
src = Folder "src" [(File "foo" "c"),

(Executable "foo")] -- src :: FSEntry
rar = Archive "src" "rar" [src] -- rar :: FSEntry

The new FSEntry, however, is not:

file = File "foo" "txt" -- file :: FSEntry String
trash = Executable "Edge" -- trash :: FSEntry String
src = Folder "src" [(File "foo" "c"),
(Executable "foo")] -- src :: FSEntry (FSEntry String)

rar = Archive "src" "rar"
[src] -- rar :: FSEntry (FSEntry (FSEntry String))

This is a nuisance.



A slight typing problem

The old FSEntry type was uniform:

file = File "foo" "txt" -- file :: FSEntry
trash = Executable "Edge" -- trash :: FSEntry
src = Folder "src" [(File "foo" "c"),

(Executable "foo")] -- src :: FSEntry
rar = Archive "src" "rar" [src] -- rar :: FSEntry

The new FSEntry, however, is not:

file = File "foo" "txt" -- file :: FSEntry String
trash = Executable "Edge" -- trash :: FSEntry String
src = Folder "src" [(File "foo" "c"),

(Executable "foo")] -- src :: FSEntry (FSEntry String)
rar = Archive "src" "rar"

[src] -- rar :: FSEntry (FSEntry (FSEntry String))

This is a nuisance.



A slight typing problem

The old FSEntry type was uniform:

file = File "foo" "txt" -- file :: FSEntry
trash = Executable "Edge" -- trash :: FSEntry
src = Folder "src" [(File "foo" "c"),

(Executable "foo")] -- src :: FSEntry
rar = Archive "src" "rar" [src] -- rar :: FSEntry

The new FSEntry, however, is not:

file = File "foo" "txt" -- file :: FSEntry String
trash = Executable "Edge" -- trash :: FSEntry String
src = Folder "src" [(File "foo" "c"),

(Executable "foo")] -- src :: FSEntry (FSEntry String)
rar = Archive "src" "rar"

[src] -- rar :: FSEntry (FSEntry (FSEntry String))

This is a nuisance.



Tying the knot

We really want to have some way of saying ‘this type is an
arbitrarily-nested FSEntry’, kind of like this:

type NestedFSEntry = FSEntry (FSEntry (FSEntry …))

This appears impossible. However, it can be done with a bit of
profitable cheating:

data Knot f = Tie { untie :: f (Knot f) }

file = Tie (File "foo" "txt") -- file :: Knot FSEntry
src = Tie (Folder "src" [(File "foo" "c"),
(Executable "foo")]) -- src :: Knot FSEntry

rar = Tie (Archive "src" "rar"
[src]) -- rar :: Knot FSEntry

This is called the fixed point of the FSEntry type, which is the
same as our earlier NestedFSEntry.



Tying the knot

We really want to have some way of saying ‘this type is an
arbitrarily-nested FSEntry’, kind of like this:

type NestedFSEntry = FSEntry (FSEntry (FSEntry …))

This appears impossible. However, it can be done with a bit of
profitable cheating:

data Knot f = Tie { untie :: f (Knot f) }

file = Tie (File "foo" "txt") -- file :: Knot FSEntry
src = Tie (Folder "src" [(File "foo" "c"),
(Executable "foo")]) -- src :: Knot FSEntry

rar = Tie (Archive "src" "rar"
[src]) -- rar :: Knot FSEntry

This is called the fixed point of the FSEntry type, which is the
same as our earlier NestedFSEntry.



Tying the knot

We really want to have some way of saying ‘this type is an
arbitrarily-nested FSEntry’, kind of like this:

type NestedFSEntry = FSEntry (FSEntry (FSEntry …))

This appears impossible. However, it can be done with a bit of
profitable cheating:

data Knot f = Tie { untie :: f (Knot f) }

file = Tie (File "foo" "txt") -- file :: Knot FSEntry
src = Tie (Folder "src" [(File "foo" "c"),
(Executable "foo")]) -- src :: Knot FSEntry

rar = Tie (Archive "src" "rar"
[src]) -- rar :: Knot FSEntry

This is called the fixed point of the FSEntry type, which is the
same as our earlier NestedFSEntry.



Tying the knot

We really want to have some way of saying ‘this type is an
arbitrarily-nested FSEntry’, kind of like this:

type NestedFSEntry = FSEntry (FSEntry (FSEntry …))

This appears impossible. However, it can be done with a bit of
profitable cheating:

data Knot f = Tie { untie :: f (Knot f) }

file = Tie (File "foo" "txt") -- file :: Knot FSEntry
src = Tie (Folder "src" [(File "foo" "c"),

(Executable "foo")]) -- src :: Knot FSEntry
rar = Tie (Archive "src" "rar"

[src]) -- rar :: Knot FSEntry

This is called the fixed point of the FSEntry type, which is the
same as our earlier NestedFSEntry.



Tying the knot

We really want to have some way of saying ‘this type is an
arbitrarily-nested FSEntry’, kind of like this:

type NestedFSEntry = FSEntry (FSEntry (FSEntry …))

This appears impossible. However, it can be done with a bit of
profitable cheating:

data Knot f = Tie { untie :: f (Knot f) }

file = Tie (File "foo" "txt") -- file :: Knot FSEntry
src = Tie (Folder "src" [(File "foo" "c"),

(Executable "foo")]) -- src :: Knot FSEntry
rar = Tie (Archive "src" "rar"

[src]) -- rar :: Knot FSEntry

This is called the fixed point of the FSEntry type, which is the
same as our earlier NestedFSEntry.



A little helper

To make our next few steps a bit easier, we’re going to define a
‘pipeline’ function:

-- >>> is pronounced `then'
>>> :: (a -> b) -> (b -> c) -> (a -> c)
f >>> g = g ◦ f -- ◦ is function composition

f :: Integer -> Integer
f = (+ 1) >>> (* 2)

answer = f 3 -- answer == 8



A little helper

To make our next few steps a bit easier, we’re going to define a
‘pipeline’ function:

-- >>> is pronounced `then'
>>> :: (a -> b) -> (b -> c) -> (a -> c)
f >>> g = g ◦ f -- ◦ is function composition

f :: Integer -> Integer
f = (+ 1) >>> (* 2)

answer = f 3 -- answer == 8



A little helper

To make our next few steps a bit easier, we’re going to define a
‘pipeline’ function:

-- >>> is pronounced `then'
>>> :: (a -> b) -> (b -> c) -> (a -> c)
f >>> g = g ◦ f -- ◦ is function composition

f :: Integer -> Integer
f = (+ 1) >>> (* 2)

answer = f 3 -- answer == 8



A little helper

To make our next few steps a bit easier, we’re going to define a
‘pipeline’ function:

-- >>> is pronounced `then'
>>> :: (a -> b) -> (b -> c) -> (a -> c)
f >>> g = g ◦ f -- ◦ is function composition

f :: Integer -> Integer
f = (+ 1) >>> (* 2)

answer = f 3 -- answer == 8



Separating structure from content

One of the biggest annoyances of our previous scheme is all the
boilerplate dealing with structure — let’s be rid of it, once and for
all.

As we’re dealing with tree-like structures, there’s two ways we
can process them:

Bottom-up: Descendants before ancestors
Top-down: Ancestors before descendants

This is where our Functor instance can really shine — we can use
it to automate the ‘process descendants’ step, without worrying
about our structure or breaking it (due to the functor law). We
just need to provide a local processing function, which deals with
our content.



Separating structure from content

One of the biggest annoyances of our previous scheme is all the
boilerplate dealing with structure — let’s be rid of it, once and for
all. As we’re dealing with tree-like structures, there’s two ways we
can process them:

Bottom-up: Descendants before ancestors
Top-down: Ancestors before descendants

This is where our Functor instance can really shine — we can use
it to automate the ‘process descendants’ step, without worrying
about our structure or breaking it (due to the functor law). We
just need to provide a local processing function, which deals with
our content.



Separating structure from content

One of the biggest annoyances of our previous scheme is all the
boilerplate dealing with structure — let’s be rid of it, once and for
all. As we’re dealing with tree-like structures, there’s two ways we
can process them:

Bottom-up: Descendants before ancestors
Top-down: Ancestors before descendants

This is where our Functor instance can really shine — we can use
it to automate the ‘process descendants’ step, without worrying
about our structure or breaking it (due to the functor law). We
just need to provide a local processing function, which deals with
our content.



Separating structure from content

One of the biggest annoyances of our previous scheme is all the
boilerplate dealing with structure — let’s be rid of it, once and for
all. As we’re dealing with tree-like structures, there’s two ways we
can process them:

Bottom-up: Descendants before ancestors
Top-down: Ancestors before descendants

This is where our Functor instance can really shine — we can use
it to automate the ‘process descendants’ step, without worrying
about our structure or breaking it (due to the functor law).

We
just need to provide a local processing function, which deals with
our content.



Separating structure from content

One of the biggest annoyances of our previous scheme is all the
boilerplate dealing with structure — let’s be rid of it, once and for
all. As we’re dealing with tree-like structures, there’s two ways we
can process them:

Bottom-up: Descendants before ancestors
Top-down: Ancestors before descendants

This is where our Functor instance can really shine — we can use
it to automate the ‘process descendants’ step, without worrying
about our structure or breaking it (due to the functor law). We
just need to provide a local processing function, which deals with
our content.



Bottom-up processing

To process a recursive data structure bottom-up using the
processing function f, we need to take the following steps:

1. Untie the Knot
2. Process descendants using map f
3. Re-tie the Knot
4. Process the ancestor using f

In code terms:
bottomUp :: Functor a => (Knot a -> Knot a) -> Knot a -> Knot a
bottomUp f = untie >>> map (bottomUp f) >>> Tie >>> f

Note: bottomUp absolutely and totally does not care what we tied
into a Knot. Furthermore, f doesn’t need to care about the
structure anymore.



Bottom-up processing

To process a recursive data structure bottom-up using the
processing function f, we need to take the following steps:

1. Untie the Knot

2. Process descendants using map f
3. Re-tie the Knot
4. Process the ancestor using f

In code terms:
bottomUp :: Functor a => (Knot a -> Knot a) -> Knot a -> Knot a
bottomUp f = untie >>> map (bottomUp f) >>> Tie >>> f

Note: bottomUp absolutely and totally does not care what we tied
into a Knot. Furthermore, f doesn’t need to care about the
structure anymore.



Bottom-up processing

To process a recursive data structure bottom-up using the
processing function f, we need to take the following steps:

1. Untie the Knot
2. Process descendants using map f

3. Re-tie the Knot
4. Process the ancestor using f

In code terms:
bottomUp :: Functor a => (Knot a -> Knot a) -> Knot a -> Knot a
bottomUp f = untie >>> map (bottomUp f) >>> Tie >>> f

Note: bottomUp absolutely and totally does not care what we tied
into a Knot. Furthermore, f doesn’t need to care about the
structure anymore.



Bottom-up processing

To process a recursive data structure bottom-up using the
processing function f, we need to take the following steps:

1. Untie the Knot
2. Process descendants using map f
3. Re-tie the Knot

4. Process the ancestor using f

In code terms:
bottomUp :: Functor a => (Knot a -> Knot a) -> Knot a -> Knot a
bottomUp f = untie >>> map (bottomUp f) >>> Tie >>> f

Note: bottomUp absolutely and totally does not care what we tied
into a Knot. Furthermore, f doesn’t need to care about the
structure anymore.



Bottom-up processing

To process a recursive data structure bottom-up using the
processing function f, we need to take the following steps:

1. Untie the Knot
2. Process descendants using map f
3. Re-tie the Knot
4. Process the ancestor using f

In code terms:
bottomUp :: Functor a => (Knot a -> Knot a) -> Knot a -> Knot a
bottomUp f = untie >>> map (bottomUp f) >>> Tie >>> f

Note: bottomUp absolutely and totally does not care what we tied
into a Knot. Furthermore, f doesn’t need to care about the
structure anymore.



Bottom-up processing

To process a recursive data structure bottom-up using the
processing function f, we need to take the following steps:

1. Untie the Knot
2. Process descendants using map f
3. Re-tie the Knot
4. Process the ancestor using f

In code terms:

bottomUp :: Functor a => (Knot a -> Knot a) -> Knot a -> Knot a
bottomUp f = untie >>> map (bottomUp f) >>> Tie >>> f

Note: bottomUp absolutely and totally does not care what we tied
into a Knot. Furthermore, f doesn’t need to care about the
structure anymore.



Bottom-up processing

To process a recursive data structure bottom-up using the
processing function f, we need to take the following steps:

1. Untie the Knot
2. Process descendants using map f
3. Re-tie the Knot
4. Process the ancestor using f

In code terms:
bottomUp :: Functor a => (Knot a -> Knot a) -> Knot a -> Knot a
bottomUp f = untie >>> map (bottomUp f) >>> Tie >>> f

Note: bottomUp absolutely and totally does not care what we tied
into a Knot. Furthermore, f doesn’t need to care about the
structure anymore.



Bottom-up processing

To process a recursive data structure bottom-up using the
processing function f, we need to take the following steps:

1. Untie the Knot
2. Process descendants using map f
3. Re-tie the Knot
4. Process the ancestor using f

In code terms:
bottomUp :: Functor a => (Knot a -> Knot a) -> Knot a -> Knot a
bottomUp f = untie >>> map (bottomUp f) >>> Tie >>> f

Note: bottomUp absolutely and totally does not care what we tied
into a Knot. Furthermore, f doesn’t need to care about the
structure anymore.



Top-down processing

To process a recursive data structure top-down using the
processing function f, we need to take the following steps:

1. Process the ancestor using f
2. Untie the Knot
3. Process descendants using map f
4. Re-tie the Knot

In code terms:
topDown :: Functor a => (Knot a -> Knot a) -> Knot a -> Knot a
topDown f = f >>> untie >>> map (topDown f) >>> Tie

Note: topDown absolutely and totally does not care what we tied
into a Knot. Furthermore, f doesn’t need to care about the
structure anymore.



Top-down processing

To process a recursive data structure top-down using the
processing function f, we need to take the following steps:

1. Process the ancestor using f

2. Untie the Knot
3. Process descendants using map f
4. Re-tie the Knot

In code terms:
topDown :: Functor a => (Knot a -> Knot a) -> Knot a -> Knot a
topDown f = f >>> untie >>> map (topDown f) >>> Tie

Note: topDown absolutely and totally does not care what we tied
into a Knot. Furthermore, f doesn’t need to care about the
structure anymore.



Top-down processing

To process a recursive data structure top-down using the
processing function f, we need to take the following steps:

1. Process the ancestor using f
2. Untie the Knot

3. Process descendants using map f
4. Re-tie the Knot

In code terms:
topDown :: Functor a => (Knot a -> Knot a) -> Knot a -> Knot a
topDown f = f >>> untie >>> map (topDown f) >>> Tie

Note: topDown absolutely and totally does not care what we tied
into a Knot. Furthermore, f doesn’t need to care about the
structure anymore.



Top-down processing

To process a recursive data structure top-down using the
processing function f, we need to take the following steps:

1. Process the ancestor using f
2. Untie the Knot
3. Process descendants using map f

4. Re-tie the Knot

In code terms:
topDown :: Functor a => (Knot a -> Knot a) -> Knot a -> Knot a
topDown f = f >>> untie >>> map (topDown f) >>> Tie

Note: topDown absolutely and totally does not care what we tied
into a Knot. Furthermore, f doesn’t need to care about the
structure anymore.



Top-down processing

To process a recursive data structure top-down using the
processing function f, we need to take the following steps:

1. Process the ancestor using f
2. Untie the Knot
3. Process descendants using map f
4. Re-tie the Knot

In code terms:
topDown :: Functor a => (Knot a -> Knot a) -> Knot a -> Knot a
topDown f = f >>> untie >>> map (topDown f) >>> Tie

Note: topDown absolutely and totally does not care what we tied
into a Knot. Furthermore, f doesn’t need to care about the
structure anymore.



Top-down processing

To process a recursive data structure top-down using the
processing function f, we need to take the following steps:

1. Process the ancestor using f
2. Untie the Knot
3. Process descendants using map f
4. Re-tie the Knot

In code terms:

topDown :: Functor a => (Knot a -> Knot a) -> Knot a -> Knot a
topDown f = f >>> untie >>> map (topDown f) >>> Tie

Note: topDown absolutely and totally does not care what we tied
into a Knot. Furthermore, f doesn’t need to care about the
structure anymore.



Top-down processing

To process a recursive data structure top-down using the
processing function f, we need to take the following steps:

1. Process the ancestor using f
2. Untie the Knot
3. Process descendants using map f
4. Re-tie the Knot

In code terms:
topDown :: Functor a => (Knot a -> Knot a) -> Knot a -> Knot a
topDown f = f >>> untie >>> map (topDown f) >>> Tie

Note: topDown absolutely and totally does not care what we tied
into a Knot. Furthermore, f doesn’t need to care about the
structure anymore.



Top-down processing

To process a recursive data structure top-down using the
processing function f, we need to take the following steps:

1. Process the ancestor using f
2. Untie the Knot
3. Process descendants using map f
4. Re-tie the Knot

In code terms:
topDown :: Functor a => (Knot a -> Knot a) -> Knot a -> Knot a
topDown f = f >>> untie >>> map (topDown f) >>> Tie

Note: topDown absolutely and totally does not care what we tied
into a Knot. Furthermore, f doesn’t need to care about the
structure anymore.



Slipping the Knot

Unfortunately, our separation of structure and content is not
complete — we’re still tied (hurr hurr) to returning a Knot, which
is not enough to implement anything (too) useful.

What if we
tried to ‘slip the Knot’ by ‘cleverly’ forgetting to re-tie it?

-- what would the type of this possibly be?
mystery f = untie >>> map (mystery f) >>> f

-- mystery :: Functor f => (f a -> a) -> Knot f -> a

Now, the separation is complete. Let’s write some code!



Slipping the Knot

Unfortunately, our separation of structure and content is not
complete — we’re still tied (hurr hurr) to returning a Knot, which
is not enough to implement anything (too) useful. What if we
tried to ‘slip the Knot’ by ‘cleverly’ forgetting to re-tie it?

-- what would the type of this possibly be?
mystery f = untie >>> map (mystery f) >>> f

-- mystery :: Functor f => (f a -> a) -> Knot f -> a

Now, the separation is complete. Let’s write some code!



Slipping the Knot

Unfortunately, our separation of structure and content is not
complete — we’re still tied (hurr hurr) to returning a Knot, which
is not enough to implement anything (too) useful. What if we
tried to ‘slip the Knot’ by ‘cleverly’ forgetting to re-tie it?

-- what would the type of this possibly be?
mystery f = untie >>> map (mystery f) >>> f

-- mystery :: Functor f => (f a -> a) -> Knot f -> a

Now, the separation is complete. Let’s write some code!



Slipping the Knot

Unfortunately, our separation of structure and content is not
complete — we’re still tied (hurr hurr) to returning a Knot, which
is not enough to implement anything (too) useful. What if we
tried to ‘slip the Knot’ by ‘cleverly’ forgetting to re-tie it?

-- what would the type of this possibly be?
mystery f = untie >>> map (mystery f) >>> f

-- mystery :: Functor f => (f a -> a) -> Knot f -> a

Now, the separation is complete. Let’s write some code!



Slipping the Knot

Unfortunately, our separation of structure and content is not
complete — we’re still tied (hurr hurr) to returning a Knot, which
is not enough to implement anything (too) useful. What if we
tried to ‘slip the Knot’ by ‘cleverly’ forgetting to re-tie it?

-- what would the type of this possibly be?
mystery f = untie >>> map (mystery f) >>> f

-- mystery :: Functor f => (f a -> a) -> Knot f -> a

Now, the separation is complete. Let’s write some code!



Revisiting depth

countDepth :: FSEntry Int -> Int
countDepth File _ _ = 0
countDepth Executable _ = 0
countDepth Folder _ es = 1 + max es
countDepth Executable _ es = 1 + max es

depth :: Knot FSEntry -> Int
depth = mystery countDepth

countDepth doesn’t have to care about structure, while mystery
doesn’t have to care about content. Success!



Revisiting depth

countDepth :: FSEntry Int -> Int
countDepth File _ _ = 0
countDepth Executable _ = 0
countDepth Folder _ es = 1 + max es
countDepth Executable _ es = 1 + max es

depth :: Knot FSEntry -> Int
depth = mystery countDepth

countDepth doesn’t have to care about structure, while mystery
doesn’t have to care about content. Success!



Revisiting depth

countDepth :: FSEntry Int -> Int
countDepth File _ _ = 0
countDepth Executable _ = 0
countDepth Folder _ es = 1 + max es
countDepth Executable _ es = 1 + max es

depth :: Knot FSEntry -> Int
depth = mystery countDepth

countDepth doesn’t have to care about structure, while mystery
doesn’t have to care about content. Success!



Revisiting depth

countDepth :: FSEntry Int -> Int
countDepth File _ _ = 0
countDepth Executable _ = 0
countDepth Folder _ es = 1 + max es
countDepth Executable _ es = 1 + max es

depth :: Knot FSEntry -> Int
depth = mystery countDepth

countDepth doesn’t have to care about structure, while mystery
doesn’t have to care about content. Success!



Revisiting findCSource

getCSource :: FSEntry String -> [FSEntry String]
getCSource File n "c" = [File name "c"]
getCSource File n "h" = [File name "h"]
getCSource File _ _ = []
getCSource Executable _ = []
getCSource Folder _ es = concat es
getCSource Archive _ _ es = concat es

findCSource :: Knot FSEntry -> [FSEntry]
findCSource = mystery getCSource

Woo-hoo!



Revisiting findCSource

getCSource :: FSEntry String -> [FSEntry String]
getCSource File n "c" = [File name "c"]
getCSource File n "h" = [File name "h"]
getCSource File _ _ = []
getCSource Executable _ = []
getCSource Folder _ es = concat es
getCSource Archive _ _ es = concat es

findCSource :: Knot FSEntry -> [FSEntry]
findCSource = mystery getCSource

Woo-hoo!



Revisiting findCSource

getCSource :: FSEntry String -> [FSEntry String]
getCSource File n "c" = [File name "c"]
getCSource File n "h" = [File name "h"]
getCSource File _ _ = []
getCSource Executable _ = []
getCSource Folder _ es = concat es
getCSource Archive _ _ es = concat es

findCSource :: Knot FSEntry -> [FSEntry]
findCSource = mystery getCSource

Woo-hoo!



Revisiting findCSource

getCSource :: FSEntry String -> [FSEntry String]
getCSource File n "c" = [File name "c"]
getCSource File n "h" = [File name "h"]
getCSource File _ _ = []
getCSource Executable _ = []
getCSource Folder _ es = concat es
getCSource Archive _ _ es = concat es

findCSource :: Knot FSEntry -> [FSEntry]
findCSource = mystery getCSource

Woo-hoo!



What you might be thinking right now

I assure you, it gets better!



What you might be thinking right now

I assure you, it gets better!



Cleaning up our terminology

mystery is a pretty silly name to give something so useful, and (f
a -> a) is really hard to pronounce. Let’s name them sensibly:

type Algebra f a = f a -> a

-- the humble catamorphism, at last
cata :: Functor f => Algebra f a -> Knot f -> a
cata f = untie >>> map (cata f) >>> f

The names seem a bit odd at first, but there are reasons for them:

Algebra: Arabic root jabr, which means ‘restoration,
reunion’ — an algebra ‘reunites’ an f a (a
container of as) back into a single a.

Catamorphism: Greek root kata (like ‘catastrophe’), which means
‘downwards, into, collapse’ — a catamorphism
‘collapses’ a nested structure of values into a
single value.



Cleaning up our terminology

mystery is a pretty silly name to give something so useful, and (f
a -> a) is really hard to pronounce. Let’s name them sensibly:

type Algebra f a = f a -> a

-- the humble catamorphism, at last
cata :: Functor f => Algebra f a -> Knot f -> a
cata f = untie >>> map (cata f) >>> f

The names seem a bit odd at first, but there are reasons for them:

Algebra: Arabic root jabr, which means ‘restoration,
reunion’ — an algebra ‘reunites’ an f a (a
container of as) back into a single a.

Catamorphism: Greek root kata (like ‘catastrophe’), which means
‘downwards, into, collapse’ — a catamorphism
‘collapses’ a nested structure of values into a
single value.



Cleaning up our terminology

mystery is a pretty silly name to give something so useful, and (f
a -> a) is really hard to pronounce. Let’s name them sensibly:

type Algebra f a = f a -> a

-- the humble catamorphism, at last
cata :: Functor f => Algebra f a -> Knot f -> a
cata f = untie >>> map (cata f) >>> f

The names seem a bit odd at first, but there are reasons for them:

Algebra: Arabic root jabr, which means ‘restoration,
reunion’ — an algebra ‘reunites’ an f a (a
container of as) back into a single a.

Catamorphism: Greek root kata (like ‘catastrophe’), which means
‘downwards, into, collapse’ — a catamorphism
‘collapses’ a nested structure of values into a
single value.



Cleaning up our terminology

mystery is a pretty silly name to give something so useful, and (f
a -> a) is really hard to pronounce. Let’s name them sensibly:

type Algebra f a = f a -> a

-- the humble catamorphism, at last
cata :: Functor f => Algebra f a -> Knot f -> a
cata f = untie >>> map (cata f) >>> f

The names seem a bit odd at first, but there are reasons for them:

Algebra: Arabic root jabr, which means ‘restoration,
reunion’ — an algebra ‘reunites’ an f a (a
container of as) back into a single a.

Catamorphism: Greek root kata (like ‘catastrophe’), which means
‘downwards, into, collapse’ — a catamorphism
‘collapses’ a nested structure of values into a
single value.



Cleaning up our terminology

mystery is a pretty silly name to give something so useful, and (f
a -> a) is really hard to pronounce. Let’s name them sensibly:

type Algebra f a = f a -> a

-- the humble catamorphism, at last
cata :: Functor f => Algebra f a -> Knot f -> a
cata f = untie >>> map (cata f) >>> f

The names seem a bit odd at first, but there are reasons for them:

Algebra: Arabic root jabr, which means ‘restoration,
reunion’ — an algebra ‘reunites’ an f a (a
container of as) back into a single a.

Catamorphism: Greek root kata (like ‘catastrophe’), which means
‘downwards, into, collapse’ — a catamorphism
‘collapses’ a nested structure of values into a
single value.



Extending to logical conclusions

We just managed to decouple structure from content for
bottom-up traversals. But what if we tried to do the same for
top-down ones?

-- a reminder
topDown f = f >>> untie >>> map (topDown f) >>> Tie

-- what is the type of this?
wtf f = f >>> map (wtf f) >>> Tie
-- wtf :: (Functor f) => (a -> f a) -> a -> Knot f

Seem familiar?



Extending to logical conclusions

We just managed to decouple structure from content for
bottom-up traversals. But what if we tried to do the same for
top-down ones?

-- a reminder
topDown f = f >>> untie >>> map (topDown f) >>> Tie

-- what is the type of this?
wtf f = f >>> map (wtf f) >>> Tie
-- wtf :: (Functor f) => (a -> f a) -> a -> Knot f

Seem familiar?



Extending to logical conclusions

We just managed to decouple structure from content for
bottom-up traversals. But what if we tried to do the same for
top-down ones?

-- a reminder
topDown f = f >>> untie >>> map (topDown f) >>> Tie

-- what is the type of this?
wtf f = f >>> map (wtf f) >>> Tie

-- wtf :: (Functor f) => (a -> f a) -> a -> Knot f

Seem familiar?



Extending to logical conclusions

We just managed to decouple structure from content for
bottom-up traversals. But what if we tried to do the same for
top-down ones?

-- a reminder
topDown f = f >>> untie >>> map (topDown f) >>> Tie

-- what is the type of this?
wtf f = f >>> map (wtf f) >>> Tie
-- wtf :: (Functor f) => (a -> f a) -> a -> Knot f

Seem familiar?



Extending to logical conclusions

We just managed to decouple structure from content for
bottom-up traversals. But what if we tried to do the same for
top-down ones?

-- a reminder
topDown f = f >>> untie >>> map (topDown f) >>> Tie

-- what is the type of this?
wtf f = f >>> map (wtf f) >>> Tie
-- wtf :: (Functor f) => (a -> f a) -> a -> Knot f

Seem familiar?



Wtf is up with wtf?

Consider the type signatures of cata versus wtf:

cata: Takes an algebra and a nested structure, and ‘tears it
down’ into a single value

wtf: Takes a ‘backwards-algebra’ and a value, and ‘builds
it up’ into a nested structure

Again, sensible naming is in order:

type Coalgebra f a = a -> f a

-- meet the anamorphism (from Greek root for `build')
ana :: Functor f => Coalgebra f a -> a -> Knot f
ana f = f >>> map (ana f) >>> Tie

Thanks to recursion schemes, we can now build nested structures
up based on local expansions.



Wtf is up with wtf?

Consider the type signatures of cata versus wtf:

cata: Takes an algebra and a nested structure, and ‘tears it
down’ into a single value

wtf: Takes a ‘backwards-algebra’ and a value, and ‘builds
it up’ into a nested structure

Again, sensible naming is in order:

type Coalgebra f a = a -> f a

-- meet the anamorphism (from Greek root for `build')
ana :: Functor f => Coalgebra f a -> a -> Knot f
ana f = f >>> map (ana f) >>> Tie

Thanks to recursion schemes, we can now build nested structures
up based on local expansions.



Wtf is up with wtf?

Consider the type signatures of cata versus wtf:

cata: Takes an algebra and a nested structure, and ‘tears it
down’ into a single value

wtf: Takes a ‘backwards-algebra’ and a value, and ‘builds
it up’ into a nested structure

Again, sensible naming is in order:

type Coalgebra f a = a -> f a

-- meet the anamorphism (from Greek root for `build')
ana :: Functor f => Coalgebra f a -> a -> Knot f
ana f = f >>> map (ana f) >>> Tie

Thanks to recursion schemes, we can now build nested structures
up based on local expansions.



Wtf is up with wtf?

Consider the type signatures of cata versus wtf:

cata: Takes an algebra and a nested structure, and ‘tears it
down’ into a single value

wtf: Takes a ‘backwards-algebra’ and a value, and ‘builds
it up’ into a nested structure

Again, sensible naming is in order:

type Coalgebra f a = a -> f a

-- meet the anamorphism (from Greek root for `build')
ana :: Functor f => Coalgebra f a -> a -> Knot f
ana f = f >>> map (ana f) >>> Tie

Thanks to recursion schemes, we can now build nested structures
up based on local expansions.



Wtf is up with wtf?

Consider the type signatures of cata versus wtf:

cata: Takes an algebra and a nested structure, and ‘tears it
down’ into a single value

wtf: Takes a ‘backwards-algebra’ and a value, and ‘builds
it up’ into a nested structure

Again, sensible naming is in order:

type Coalgebra f a = a -> f a

-- meet the anamorphism (from Greek root for `build')
ana :: Functor f => Coalgebra f a -> a -> Knot f
ana f = f >>> map (ana f) >>> Tie

Thanks to recursion schemes, we can now build nested structures
up based on local expansions.



Wtf is up with wtf?

Consider the type signatures of cata versus wtf:

cata: Takes an algebra and a nested structure, and ‘tears it
down’ into a single value

wtf: Takes a ‘backwards-algebra’ and a value, and ‘builds
it up’ into a nested structure

Again, sensible naming is in order:

type Coalgebra f a = a -> f a

-- meet the anamorphism (from Greek root for `build')
ana :: Functor f => Coalgebra f a -> a -> Knot f
ana f = f >>> map (ana f) >>> Tie

Thanks to recursion schemes, we can now build nested structures
up based on local expansions.



Why recursion schemes are amazing

I Full separation of structure and content
I Easy to modify, simpler to write
I Formal guarantees of correct behaviour

All this is possible because of the wonderful Functor!



Why recursion schemes are amazing

I Full separation of structure and content

I Easy to modify, simpler to write
I Formal guarantees of correct behaviour

All this is possible because of the wonderful Functor!



Why recursion schemes are amazing

I Full separation of structure and content
I Easy to modify, simpler to write

I Formal guarantees of correct behaviour

All this is possible because of the wonderful Functor!



Why recursion schemes are amazing

I Full separation of structure and content
I Easy to modify, simpler to write
I Formal guarantees of correct behaviour

All this is possible because of the wonderful Functor!



Why recursion schemes are amazing

I Full separation of structure and content
I Easy to modify, simpler to write
I Formal guarantees of correct behaviour

All this is possible because of the wonderful Functor!



Going further

I Context-sensitive construction and teardown (paramorphisms
and apomorphisms)

I Processing via intermediate structures, generalization and
simplification of divide-and-conquer (hylomorphisms)

I Generalize more expressive techniques (for example,
trampolining with zygomorphisms and dynamic programming
with histomorphisms)

I Processing infinite structures (yes, this is possible!)

But ultimately, this is freedom from boilerplate, freedom from
drudgery, and ultimately, freedom from structural processing.

Still don’t know how to used functor?



Going further

I Context-sensitive construction and teardown (paramorphisms
and apomorphisms)

I Processing via intermediate structures, generalization and
simplification of divide-and-conquer (hylomorphisms)

I Generalize more expressive techniques (for example,
trampolining with zygomorphisms and dynamic programming
with histomorphisms)

I Processing infinite structures (yes, this is possible!)

But ultimately, this is freedom from boilerplate, freedom from
drudgery, and ultimately, freedom from structural processing.

Still don’t know how to used functor?



Going further

I Context-sensitive construction and teardown (paramorphisms
and apomorphisms)

I Processing via intermediate structures, generalization and
simplification of divide-and-conquer (hylomorphisms)

I Generalize more expressive techniques (for example,
trampolining with zygomorphisms and dynamic programming
with histomorphisms)

I Processing infinite structures (yes, this is possible!)

But ultimately, this is freedom from boilerplate, freedom from
drudgery, and ultimately, freedom from structural processing.

Still don’t know how to used functor?



Going further

I Context-sensitive construction and teardown (paramorphisms
and apomorphisms)

I Processing via intermediate structures, generalization and
simplification of divide-and-conquer (hylomorphisms)

I Generalize more expressive techniques (for example,
trampolining with zygomorphisms and dynamic programming
with histomorphisms)

I Processing infinite structures (yes, this is possible!)

But ultimately, this is freedom from boilerplate, freedom from
drudgery, and ultimately, freedom from structural processing.

Still don’t know how to used functor?



Going further

I Context-sensitive construction and teardown (paramorphisms
and apomorphisms)

I Processing via intermediate structures, generalization and
simplification of divide-and-conquer (hylomorphisms)

I Generalize more expressive techniques (for example,
trampolining with zygomorphisms and dynamic programming
with histomorphisms)

I Processing infinite structures (yes, this is possible!)

But ultimately, this is freedom from boilerplate, freedom from
drudgery, and ultimately, freedom from structural processing.

Still don’t know how to used functor?



Going further

I Context-sensitive construction and teardown (paramorphisms
and apomorphisms)

I Processing via intermediate structures, generalization and
simplification of divide-and-conquer (hylomorphisms)

I Generalize more expressive techniques (for example,
trampolining with zygomorphisms and dynamic programming
with histomorphisms)

I Processing infinite structures (yes, this is possible!)

But ultimately, this is freedom from boilerplate, freedom from
drudgery, and ultimately, freedom from structural processing.

Still don’t know how to used functor?



Going further

I Context-sensitive construction and teardown (paramorphisms
and apomorphisms)

I Processing via intermediate structures, generalization and
simplification of divide-and-conquer (hylomorphisms)

I Generalize more expressive techniques (for example,
trampolining with zygomorphisms and dynamic programming
with histomorphisms)

I Processing infinite structures (yes, this is possible!)

But ultimately, this is freedom from boilerplate, freedom from
drudgery, and ultimately, freedom from structural processing.

Still don’t know how to used functor?



Questions?


	Introduction
	Preliminaries
	Recursion schemes
	Questions

