
Sidef is a modern, high-level, general-purpose programming language, focusing on simplicity, readability
and elegance, taking the best from languages like Ruby, Raku and Julia.

The Sidef Programming Language: https://trizen.gitbook.io/sidef-lang/ (legacy)

Sidef can be installed from the CPAN, by invoking the following command:

$ cpan Sidef

If the testing takes a long time, add the -T flag to build and install Sidef without testing:

$ cpan -T Sidef

When the cpan command is not available, try:

$ perl -MCPAN -e "CPAN::Shell->install(q{Sidef})"

IMPORTANT: Sidef needs the GMP, MPFR and MPC C libraries.

To install Sidef manually, download the latest version, unzip it and follow the installation steps:

$ perl Build.PL
./Build installdeps
./Build install

When Module::Build is not installed, try:

$ perl Makefile.PL
$ make test
make install

Introduction

BOOK

Installation

Installing from git source

Linux installation

https://trizen.gitbooks.io/sidef-lang
https://metacpan.org/pod/distribution/Sidef/lib/Sidef.pod
https://gmplib.org/
http://www.mpfr.org/
http://www.multiprecision.org/
https://github.com/trizen/sidef/archive/master.zip
https://metacpan.org/pod/Module::Build

Sidef is available on the AUR and can be installed using an AUR helper, like trizen:

$ trizen -S sidef

On Debian-based distributions, Sidef can be installed from the CPAN, by executing the following
commands:

$ sudo apt install libgmp-dev libmpfr-dev libmpc-dev libc-dev cpanminus
$ sudo cpanm -n Sidef

It's also possible to install Sidef on Android, by installing Termux and executing the following commands:

$ pkg install perl make clang libgmp libmpfr libmpc
$ cpan -T Sidef

If the installation succeeded, the sidef command should be available:

$ sidef -h

It is also possible to run Sidef without having to install it. In a Unix-like environment, the following
commands can be executed:

$ wget 'https://github.com/trizen/sidef/archive/master.zip' -O 'master.zip'
$ unzip 'master.zip'
$ cd 'sidef-master/bin/'
$./sidef -v

Those commands will download and unpack the latest version of Sidef and will execute the bin/sidef
script which will print out the current version of the language.

To execute a Sidef script, run:

$./sidef ../scripts/sierpinski_carpet.sf

It's also possible to add the following alias to ~/.bashrc or ~/.zshrc :

Arch Linux

Debian / Ubuntu / Linux Mint

Android installation

Run Sidef without installing it

https://aur.archlinux.org/packages/sidef
https://github.com/trizen/trizen
https://metacpan.org/dist/Sidef
https://f-droid.org/en/packages/com.termux/

alias sidef="/path/to/bin/sidef"

For packaging Sidef, run:

$ perl Build.PL --destdir "/my/package/path" --installdirs vendor
$./Build test
$./Build install --install_path script=/usr/bin

A Sidef script can be written in any text editor and, by convention, it has the .sf extension.

The content of a simple Hello World program looks like this:

#!/usr/bin/sidef

say "Hello, 世界"

If we save the content in a new file called hello.sf , we can execute the code by running:

$ sidef hello.sf

Before taking a closer look at the syntax of the language, let's take a brief look at how a real program might
look like. The following program defines the Bitmap class and generates a PPM file with a color palette:

Packaging

Creating the first Sidef script

Real code

subset Int < Number {|n| n.is_int }
subset UInt < Int {|n| n >= 0 }
subset UInt8 < Int {|n| n ~~ ^256 }

struct Pixel {
 R < UInt8,
 G < UInt8,
 B < UInt8
}

class Bitmap(width < UInt, height < UInt) {
 has data = []

 method fill(Pixel p) {
 data = (width*height -> of { Pixel(p.R, p.G, p.B) })
 }

 method setpixel(i < UInt, j < UInt, Pixel p) {

 subset WidthLimit < UInt { |n| n ~~ ^width }
 subset HeightLimit < UInt { |n| n ~~ ^height }

 func (w < WidthLimit, h < HeightLimit) {
 data[w*height + h] = p
 }(i, j)
 }

 method p6 {
 <<-EOT + data.map {|p| [p.R, p.G, p.B].pack('C3') }.join
 P6
 #{width} #{height}
 255
 EOT
 }
}

var b = Bitmap(width: 125, height: 125)

for i,j in (^b.height ~X ^b.width) {
 b.setpixel(i, j, Pixel(2*i, 2*j, 255 - 2*i))
}

%f"palette.ppm".write(b.p6, :raw)

By executing the code, the following image is produced:

Another example is the implementation of the LCG algorithm, illustrating modules and classes.

https://en.wikipedia.org/wiki/Linear_congruential_generator

module LCG {

 # Creates a linear congruential generator with a given seed.
 class Common(seed) {
 has r = seed
 }

 # LCG::Berkeley generates 31-bit integers using the same formula
 # as BSD rand().
 class Berkeley < Common {
 method rand {
 self.r = ((1103515245 * self.r + 12345) & 0x7fff_ffff)
 }
 }

 # LCG::Microsoft generates 15-bit integers using the same formula
 # as rand() from the Microsoft C Runtime.
 class Microsoft < Common {
 method rand {
 self.r = ((214013 * self.r + 2531011) & 0x7fff_ffff)
 self.r >> 16
 }
 }
}

var lcg1 = LCG::Berkeley(1)
say 5.of { lcg1.rand }

var lcg2 = LCG::Microsoft(1)
say 5.of { lcg2.rand }

Output:

[1103527590, 377401575, 662824084, 1147902781, 2035015474]
[41, 18467, 6334, 26500, 19169]

A last example, implementing a simple algorithm that finds the longest common substring from two given
strings, illustrating the declaration of functions with typed parameters, the gather/take construct and
the set-intersection operator (&).

func createSubstrings(String word) -> Array {
 gather {
 combinations(word.len+1, 2, {|i,j|
 take(word.substr(i, j-i))
 })
 }
}

func findLongestCommon(String first, String second) -> String {
 createSubstrings(first) & createSubstrings(second) -> max_by { .len }
}

say findLongestCommon("thisisatest", "testing123testing")

The syntax of Sidef looks very much like the syntax of Ruby or JavaScript, but we'll see that there are some
important differences regarding the semantics.

All operators have the same precedence, which is controlled by the lack of whitespace between the
operands.

1+2 * 3+4 # means: (1+2) * (3+4)

In the above example, the lack of whitespace between 1 , + and 2 , classifies the operation as a
distinct expression.

The implications are the following:

var n = 1 + 2 # incorrect -- it means: (var n = 1) + 2
var n = 1+2 # correct
var n = (1 + 2) # correct

When no precedence is defined, the order of operations is from left to right:

1 + 2 * 3 # means: ((1 + 2) * 3)

On the other hand, when too much precedence is defined, the order is from right to left:

1+2*3 # means: (1 + (2 * 3))

The precedence can also be controlled by backslashing or preceding the operator with a dot.

1 + 2 * 3 # means: (1 + (2 * 3))
1 + 2 .* 3 # =//=

The infix backslash (\) removes any leading or trailing whitespace at that current position and it's useful
for expanding method calls on multiple lines:

say "abc".uc \
 .reverse \
 .chars

is equivalent with:

say "abc".uc.reverse.chars

Syntax

Keywords

Initially, Sidef was designed without any keywords. However, as it turned out, keywords can simplify the
writing of code, at the cost of not having a variable with the same name as that of a keyword.

var # declare a lexical variable
local # declare a local dynamic variable
func # declare a function
class # declare a class
module # declare a module
subset # declare a subset
struct # declare a structure
const # declare a runtime dynamic constant
static # declare a runtime static variable
define # declare and assign a compile-time static constant
enum # declare and assign a list of constants with distinct numbers

del # delete an identifier from the lexical scope
eval # evaluates any arbitrary Sidef code in the current scope
warn # prints an warning to STDERR followed by the current file name and the line number
die # raises an error followed by the current file name and the line number
read # reads from standard input a type of data (e.g.: read(Number))
print # writes to the standard output
say # same as print, except that it also writes a newline character at the end

assert # terminate the program if the argument is false
assert_eq # terminate the program if two arguments are not equal to each other
assert_ne # terminate the program if two arguments are equal to each other

nil # the `not initialized` value
true # boolean representation for a true value
false # boolean representation for a false value

if # `if` statement
with # `with` statement
while # `while` statement
loop # infinite loop
for # `for` loop
try # `try/catch` statement
given # `given/when` statement
gather # `gather/take` statement
continue # fall-through in a `given/when` statement
return # stop anything and return a value from a function
break # break the current loop
next # go to the next loop iteration

include # load a Sidef module
import # import a list of identifiers from a given module

Sidef defines the following list of built-in prefix operators:

Prefix operators

> # alias for `say`
>> # alias for `print`
+ # scalar context
- # the negative value of an object (calls `neg`)
++ # increments a variable's value (calls `inc`)
-- # decrements a variable's value (calls `dec`)
~ # the 'not' value of an onject (calls `not`)
\ # takes reference to a variable
* # dereferences a reference
: # initializes a new hash
! # the negation of an object in Boolean context
^ # an exclusive range (from 0 to n-1) (calls `range`)
@ # array context (calls `to_a`)
@| # list context (calls `...`)
√ # square root of a number

Additionally to prefix operators, Sidef also defines a small list of postfix operators:

++ # post-increments a variable's value (calls `inc`)
-- # post-decrements a variable's value (calls `dec`)
! # factorial operation
!! # double-factorial operation
... # unpacks an object into a list

These classes deal with the standard data types in Sidef and implement the useful methods visible to the
user.

Postfix operators

Built-in types

File
FileHandle
Dir
DirHandle
Arr Array
Vector
Matrix
Pair
Hash
Set
Bag
Str String
Num Number
RangeStr RangeString
RangeNum RangeNumber
Mod
Complex
Fraction
Gauss
Quadratic
Quaternion
Polynomial
Math
Pipe
Ref
Socket
Bool
Sys
Sig
Regex Regexp
Time
Perl
Sidef
Object
Parser
Block
Backtick
LazyMethod

Ignoring the performance differences, a string "" is just the same thing as String() .

[1,2,3] # same as: Array(1,2,3)

true # same as: Bool(1)
false # same as: Bool(0)

/^some[regex]?/i # same as: Regex('^some[regex]?', 'i')
:(key => "value") # same as: Hash("key", "value")
"first":"second" # same as: Pair("first", "second")

Method invocations

A method is a function defined for a specific type of object. For strings, we have a method named
 length , which differs from the method with the same name that is defined for array-type objects.

"string".length #=> 6
[1,2,3].length #=> 3

In many languages, method invocations require parentheses, but in Sidef the parentheses are optional
when we call a method without any arguments.

For calling a method, we have the following notation:

obj.method_name(arg)

For convenience, methods can also be invoked using the following prefix notation:

method_name(obj, arg)

The prefix and postfix notations can be used interchangeably:

log("string".length) # means: "string".length.log
length("string").log # =//=
log(length("string")) # =//=

This provides very good expressivity, as illustrated with the following 4 statements, which are all equivalent:

grep(1..100, {.is_prime}) # calls Range.grep()
1..100 -> grep {.is_prime} # =//=

grep({.is_prime}, 1..100) # calls Block.grep()
{.is_prime} -> grep(1..100) # =//=

Using the prefix notation, a method can be invoked even when a function with the same name is declared in
the same scope, by preceding the method-name with :: :

func sqrt(n) { "sqrt of #{n} is #{n.sqrt}" }

say sqrt(42) # calls the `sqrt` function defined above
say ::sqrt(42) # calls the `Number.sqrt()` method

By placing :: in front of a method-name, Sidef will parse it as a prefix operator, which allows the
parenthesis to be omitted when invoked on only one object:

Methods

::log 42 # means: log(42)
::sqrt 1+2 # means: sqrt(1+2)

There are two method-invocation operators in Sidef: . and -> :

20 + 5.sqrt # means: 20 + sqrt(5)
20 + 5->sqrt # means: sqrt(20 + 5)

 -> will make everything, from the left-most side of it, a single expression and applies the method on the
result returned by this expression, while . will simply apply the method on the object which precedes the
dot.

Additionally, any alphanumeric method name can be used as an infix operator, by surrounding it with
backticks:

(1 `add` 2) # means: 1.add(2)
(Math `sum` (1,2,3)) # means: Math.sum(1,2,3)

There is also the pipeline operator |> , which is defined for any object, except nil :

25 |> :sqrt |> :say # means: 25.sqrt.say
25 |> (:pow, 2) |> :say # means: 25.pow(2).say

It can also be used for making function-calls in postfix notation:

func increment(n) { n+1 }
func double(n) { 2*n }
func triple(n) { 3*n }

say increment(double(triple(42))) #=> 253
42 |> triple |> double |> increment |> :say #=> 253
42 |> {_*3} |> {_*2} |> {_+1} |> :say #=> 253
42 |> (->(a,b){a*b}, 3) |> {_+_} |> :inc |> :say #=> 253

There is also support for calling a method of which name is not known until at runtime, which can be any
expression that evaluates to a string:

say (50.(["+", "-"].rand)(30)) # prints 20 or 80

If a method is not found for a given object, Sidef will throw a runtime error.

In the current implementation of the language, we have the following built-in classes:

Built-in classes

Math
Math

Object
Enumerator
Lazy
LazyMethod
Object
Convert

Perl
Perl

Sys
Sig
Sys

Time
Date
Time

Types
Array

Array
Pair
Matrix
Vector

Block
Block
Fork
Try

Bool
Bool

Glob
Backtick
Dir
DirHandle
File
FileHandle
Pipe
Socket
SocketHandle
Stat

Hash
Hash

Null
Null

Number
Complex
Number
Fraction

https://github.com/trizen/sidef/tree/master/lib/Sidef/Math
https://github.com/trizen/sidef/blob/master/lib/Sidef/Math/Math.pod
https://github.com/trizen/sidef/tree/master/lib/Sidef/Object
https://github.com/trizen/sidef/blob/master/lib/Sidef/Object/Enumerator.pod
https://github.com/trizen/sidef/blob/master/lib/Sidef/Object/Lazy.pod
https://github.com/trizen/sidef/blob/master/lib/Sidef/Object/LazyMethod.pod
https://github.com/trizen/sidef/blob/master/lib/Sidef/Object/Object.pod
https://github.com/trizen/sidef/blob/master/lib/Sidef/Object/Convert.pod
https://github.com/trizen/sidef/tree/master/lib/Sidef/Perl
https://github.com/trizen/sidef/blob/master/lib/Sidef/Perl/Perl.pod
https://github.com/trizen/sidef/tree/master/lib/Sidef/Sys
https://github.com/trizen/sidef/blob/master/lib/Sidef/Sys/Sig.pod
https://github.com/trizen/sidef/blob/master/lib/Sidef/Sys/Sys.pod
https://github.com/trizen/sidef/tree/master/lib/Sidef/Time
https://github.com/trizen/sidef/blob/master/lib/Sidef/Time/Date.pod
https://github.com/trizen/sidef/blob/master/lib/Sidef/Time/Time.pod
https://github.com/trizen/sidef/tree/master/lib/Sidef/Types
https://github.com/trizen/sidef/tree/master/lib/Sidef/Types/Array
https://github.com/trizen/sidef/blob/master/lib/Sidef/Types/Array/Array.pod
https://github.com/trizen/sidef/blob/master/lib/Sidef/Types/Array/Pair.pod
https://github.com/trizen/sidef/blob/master/lib/Sidef/Types/Array/Matrix.pod
https://github.com/trizen/sidef/blob/master/lib/Sidef/Types/Array/Vector.pod
https://github.com/trizen/sidef/tree/master/lib/Sidef/Types/Block
https://github.com/trizen/sidef/blob/master/lib/Sidef/Types/Block/Block.pod
https://github.com/trizen/sidef/blob/master/lib/Sidef/Types/Block/Fork.pod
https://github.com/trizen/sidef/blob/master/lib/Sidef/Types/Block/Try.pod
https://github.com/trizen/sidef/tree/master/lib/Sidef/Types/Bool
https://github.com/trizen/sidef/blob/master/lib/Sidef/Types/Bool/Bool.pod
https://github.com/trizen/sidef/tree/master/lib/Sidef/Types/Glob
https://github.com/trizen/sidef/blob/master/lib/Sidef/Types/Glob/Backtick.pod
https://github.com/trizen/sidef/blob/master/lib/Sidef/Types/Glob/Dir.pod
https://github.com/trizen/sidef/blob/master/lib/Sidef/Types/Glob/DirHandle.pod
https://github.com/trizen/sidef/blob/master/lib/Sidef/Types/Glob/File.pod
https://github.com/trizen/sidef/blob/master/lib/Sidef/Types/Glob/FileHandle.pod
https://github.com/trizen/sidef/blob/master/lib/Sidef/Types/Glob/Pipe.pod
https://github.com/trizen/sidef/blob/master/lib/Sidef/Types/Glob/Socket.pod
https://github.com/trizen/sidef/blob/master/lib/Sidef/Types/Glob/SocketHandle.pod
https://github.com/trizen/sidef/blob/master/lib/Sidef/Types/Glob/Stat.pod
https://github.com/trizen/sidef/tree/master/lib/Sidef/Types/Hash
https://github.com/trizen/sidef/blob/master/lib/Sidef/Types/Hash/Hash.pod
https://github.com/trizen/sidef/tree/master/lib/Sidef/Types/Null
https://github.com/trizen/sidef/blob/master/lib/Sidef/Types/Null/Null.pod
https://github.com/trizen/sidef/tree/master/lib/Sidef/Types/Number
https://github.com/trizen/sidef/blob/master/lib/Sidef/Types/Number/Complex.pod
https://github.com/trizen/sidef/blob/master/lib/Sidef/Types/Number/Number.pod
https://github.com/trizen/sidef/blob/master/lib/Sidef/Types/Number/Fraction.pod

Gauss
Mod
Quadratic
Quaternion
Polynomial

Range
Range
RangeNumber
RangeString

Regex
Match
Regex

Set
Set
Bag

String
String

Variables are commonly declared using the var keyword:

var num = 42
var str = "42"
var bool = true

In Sidef exists four types of variables: lexical variables, static variables, global variables and local
variables.

This kind of variables are dynamic, but statically block scoped. This is the usual way of declaring variables
in Sidef.

var x = 42 # sets the lexical x to 42
say x # prints the lexical value of x

This type of variables are static, block-scoped and initialized only once.

Variables

Variable types

LEXICAL VARIABLES

STATIC VARIABLES

https://github.com/trizen/sidef/blob/master/lib/Sidef/Types/Number/Gauss.pod
https://github.com/trizen/sidef/blob/master/lib/Sidef/Types/Number/Mod.pod
https://github.com/trizen/sidef/blob/master/lib/Sidef/Types/Number/Quadratic.pod
https://github.com/trizen/sidef/blob/master/lib/Sidef/Types/Number/Quaternion.pod
https://github.com/trizen/sidef/blob/master/lib/Sidef/Types/Number/Polynomial.pod
https://github.com/trizen/sidef/tree/master/lib/Sidef/Types/Range
https://github.com/trizen/sidef/blob/master/lib/Sidef/Types/Range/Range.pod
https://github.com/trizen/sidef/blob/master/lib/Sidef/Types/Range/RangeNumber.pod
https://github.com/trizen/sidef/blob/master/lib/Sidef/Types/Range/RangeString.pod
https://github.com/trizen/sidef/tree/master/lib/Sidef/Types/Regex
https://github.com/trizen/sidef/blob/master/lib/Sidef/Types/Regex/Match.pod
https://github.com/trizen/sidef/blob/master/lib/Sidef/Types/Regex/Regex.pod
https://github.com/trizen/sidef/tree/master/lib/Sidef/Types/Set
https://github.com/trizen/sidef/blob/master/lib/Sidef/Types/Set/Set.pod
https://github.com/trizen/sidef/blob/master/lib/Sidef/Types/Set/Bag.pod
https://github.com/trizen/sidef/tree/master/lib/Sidef/Types/String
https://github.com/trizen/sidef/blob/master/lib/Sidef/Types/String/String.pod

for k in (1..10) {
 static x = 41+k # will assign to x only once, setting it to 41+1
 say x # prints 42
}

Multiple static variables can be declared and initialized, using the syntax:

static (
 a = 42,
 *b = (1,2,3,4), # slurpy array
 :c = (x => 1, y => 2), # slurpy hash
)

say a #=> 42
say b #=> [1,2,3,4]
say c #=> Hash(x => 1, y => 2)

Global variables are declared at the top-level of the current namespace. They can be accessed from
everywhere, anytime. However, it's recommended to avoid them, unless there isn't a better alternative.

global x = 42 # sets global x to 42
say x # prints the global value of x

Local variables (also known as "dynamically scoped variables") are used to localize array/hash lvalues or
global variables to a limited scope.

global x = 42 # sets the global x to 42
do {
 local x = 100 # localizes x inside this block to 100
 say x # prints the local value of x (100)
}
say x # prints the global value of x (42)

All variables, including functions and classes, are block scoped in the following way:

GLOBAL VARIABLES

LOCAL VARIABLES

Variable scoping

var x = 'o'

do {
 say x # o
 var x = 'm'
 say x # m
 do {
 say x # m
 var x = 'b'
 say x # b
 }
 say x # m
}

say x # o

Declaring multiple variables on the same line works like expected:

var (x, y, z) = (3.14, false, "foo")

We can, also, declare variables with default values:

var (x, y=755, z=777) = (666, 655)

say x # prints: 666
say y # prints: 655
say z # prints: 777

It's also possible to omit the second assignment:

var (
 a = 42,
 *b = (1,2,3,4), # slurpy array
 :c = (x => 1, y => 2), # slurpy hash
)

say a #=> 42
say b #=> [1,2,3,4]
say c #=> Hash(x => 1, y => 2)

Additionally, referring to a previously defined variable as a default value is also supported:

var (
 a = 42,
 b = 10+a
)

say a #=> 42
say b #=> 52

Slurpy variables are a special type of variables which can be initialized with a list of values, creating
automatically a container to hold the data.

var *arr = (1,2,3) # creates an Array
say arr # prints: [1,2,3]

var :hash = (a => 1, b => 2) # creates an Hash
say hash # prints: Hash(a => 1, b => 2)

Any method applied to a variable is applied to the object stored inside the variable.

var x = 'sidef'
say x.uc # prints: `SIDEF`
say x # prints: `sidef`

Special ! at the end of a method changes the variable in-place (almost like in Ruby):

var x = 'sidef'
x.uc! # notice the `!`
say x # prints: `SIDEF`

Appending the = sign at the end of arithmetic operators, the variable will be changed in place:

var x = 5
x += 10 # adds 10 to "x"
say x # prints: 15

The special assignment defined-or operator := can be used for changing a variable only when its value is
 nil :

var x = nil
x := 42 # sets x to 42
x := 99 # x is already defined
say x # prints 42

This operator is commonly used in creating an hash of arrays:

var hash = Hash()
hash{:key} := [] << (1,2)
hash{:key} := [] << 3
say hash{:key} #=> [1,2,3]

Additionally, the := operator returns an lvalue:

Slurpy variables

Working with variables

var hash = Hash()
hash{:key} := 0 -> max!(10)
hash{:key} := 0 -> max!(42)
say hash{:key} #=> 42

In addition to := , there is also the defined-or operator \\ , which can be used for checking if a value is
defined:

var x = nil
x \\ say "x is not defined" # prints "x is not defined"

Currently, there are only two predefined variables: ARGV and ENV .

ARGV.each { |arg|
 say arg
}

say ENV{:HOME}

Any identifier can be deleted using the del keyword followed by the name of the identifier.

var foo = 42
del foo
say foo # parse-time error: attempt to use deleted identifier

The special topic variable (_) is declared at compile-time in all the block-objects of a program. Its name
may not be seen very often because it has been overtaken by the elegant unary dot (.) operator:

[25,36,49].map {.sqrt} \
 .each{.log.say}

 .sqrt really means _.sqrt , and .log.say means _.log.say .

The map method iterates over the anonymous array and calls the block for each element of the array,
which gets set to the topic variable _ . When the iteration is complete, the map method will return the
new array, on which we call the each method with another block as the argument.

The each method, as the map method, will iterate over the array and will run the block for each element
of the array, which will get assigned to the topic variable _ , on which we call the log method, followed
by say .

Special variables

Deleting variables

Topic variable

Additionally, same as in Raku, we can lookup an element from an array or an hash stored inside the topic
variable, using the following syntax:

say [[41, 'a'], [42, 'b'], [43, 'c']].map { .[0] } #=> [41, 42, 43]

and

say [Hash(a=>41), Hash(a=>42), Hash(a=>43)].map { .{:a} } #=> [41, 42, 43]

Sidef's magic variables are directly bound to Perl's magic variables.

local $/ = nil # changes the input record separator
local $\ = "\n" # change the output record separator
local $, = "\n" # changes the field record separator
say $^PERL # prints the path to perl executable
say $^SIDEF # prints the path to sidef executable

This constants look like variables, but are actually file-handles.

STDERR.say("Some error!")
STDOUT.say("Some output...")
STDIN.readline() # reads a line from the standard input

Another interesting file-handle is the ARGF which will read lines from argument-files or from standard-input
when no argument has been specified.

Here is the implementation of a very basic cat -like program:

ARGF.each { |line|
 say line
}

Like in Perl, there is also the DATA file-handle which will point to the data stored after the __END__ or
 __DATA__ tokens.

Magic variables

File-handle constants

DATA.each { |line|
 say "=>> #{line.chomp}"
}

__DATA__
here are
some data
lines

Sidef implements three kinds of constants:

The common way of declaring constants in Sidef, is by using the const keyword:

const pi = 3.14
say pi # prints: 3.14
#pi = 3 # runtime error: can't modify non-lvalue constant

This kind of constants are created dynamically at runtime and cannot be changed after initialization.

Multiple constant values can be declared and initialized, using the syntax:

const (
 a = 42,
 *b = (1,2,3,4), # slurpy array
 :c = (x => 1, y => 2), # slurpy hash
)

say a #=> 42
say b #=> [1,2,3,4]
say c #=> Hash(x => 1, y => 2)

When declared inside a function or a class, the constant is created and initialized dynamically, as illustrated
in the following example:

func f(a) {
 const x = a # created dynamically at each function call
 return (x + 2)
}

say f(40) #=> 42
say f(50) #=> 52

This keyword will define a compile-time evaluated constant and will point directly to the object at which it

Constants

const

define

evaluated to.

define PHI = (1.25.sqrt + 0.5)
define IHP = -(1.25.sqrt - 0.5)

say (PHI**12 - IHP**12 / PHI-IHP) #=> 144

The value of a define constant must be a stand-alone constant expression that can be computed at
compile-time.

Multiple constant values can be declared and initialized, using the syntax:

define (
 a = 42,
 *b = (1,2,3,4), # slurpy array
 :c = (x => 1, y => 2), # slurpy hash
)

say a #=> 42
say b #=> [1,2,3,4]
say c #=> Hash(x => 1, y => 2)

Attempting to change a define constant, will result in a compile-time error:

define pi = 3.14
say pi # prints: 3.14
#pi = 3 # compile-time error: Can't modify constant item

This type of constants are the most efficient ones.

 enum will automatically declare and assign a list of constants with ascending numeric values (starting with
0):

enum |Black, White|
say Black # prints: 0
say White # prints: 1

Alternatively, we have the possibility for specifying an initial value, which will get incremented after each
declaration, by calling the method inc .

enum |α="a", β|
say α # prints: 'a'
say β # prints: 'b'

enum

Variable references

Like other programming languages, Sidef is capable of taking references to variables.

var name = "sidef"
var ref = \name
var original = *ref

Variable references are useful when passing them to functions (or methods) for assigning values.

func assign2ref (ref, value) {
 *ref = value
}

var x = 10
assign2ref(\x, 20)
say x # prints: 20

The Ref special type can be used for representing a variable reference.

In Sidef, a block of code is an object which encapsulates one or more expressions. The block is delimited
by a pair of curly braces ({}).

var block = {
 say "Hello, World!"
}

Blocks are also used as arguments to many built-in methods as callback blocks:

{ print "Sidef! " } * 3 # prints "Sidef! Sidef! Sidef! "
5.times {|x| print x } # prints "01234"
[1,2,3].sort {|a,b| b <=> a } # returns a new array: [3,2,1]

Additionally, the following Block methods are also available:

say {|n| n**2 }.map(1..5) #=> [1, 4, 9, 16, 25]
say { .is_odd }.grep([1,2,3,4]) #=> [1, 3]

...and the Block.each method, which is also aliased as << :

{|n| say n**2 }.each(1..5)
{|n| say n**2 } << 1..5

Blocks

Block callbacks

Each of those methods accept more than one argument, which can be any object that accepts the
 .iter() method, as in the following example:

{|n| say n**2 } << (1..3, 101..103, 1001..1003)

For declaring block parameters, Sidef borrows Ruby's way of doing this, by using the |arg1, arg2,
...| special syntax.

{ |a, b|

 say a # prints: 1
 say b # prints: 2

}(1, 2)

We can also specify default values for block parameters. This can be done by using the syntax:
 arg=value .

say { | a=3, b=4 | a + b }(9) # prints the result of: 9 + 4

The default value can be any expression:

say { | a=1/2, b=(a**2) | a + b }(5) # prints the result of: 5 + 5**2

Lazy evaluation is a very common feature in functional programming languages and provides an way to
delay the evaluation of an expression until the result is actually needed.

By default, Sidef is an eagerly evaluated language, but it still supports a form of lazy evaluation, which is
provided by the method Object.lazy() :

say (^Inf -> lazy.grep{ .is_prime }.first(10)) # first 10 primes

The .lazy method returns a Lazy object, which behaves almost like an Array , except that it
executes the methods in a pipeline fashion and dynamically stops when no more elements are required,
without creating any temporary arrays in memory:

Block parameters

Default block parameter values

Lazy evaluation

for line in (DATA.lazy.grep{ _ < 'd' }.map{ print ">> "; .uc }) {
 print line
}

__DATA__
a
b
c
d

Output (which shows that .map{} is really lazy):

>> A
>> B
>> C

This mechanism is generic enough to support any kind of object that implements the .iter() method,
which returns a Block that gives back one element at a time when it's called with no arguments. When the
iteration ends, it must return nil .

class Example(data) {
 method iter {
 var p = 0
 {
 data[p++]
 }
 }
}

var obj = Example([1,2,3,4,5])
say obj.lazy.grep{.is_prime}.to_a # filters all the primes lazily

Currently, the .iter() method is defined in the following built-in classes: Array, String, FileHandle,
DirHandle, RangeString, RangeNumber and Lazy.

A lazy method is an interesting concept of partially applying a method on a given object, delaying the
evaluation until the result is needed.

var lz = 42.method('>') #=> LazyMethod
say lz(41) #=> true (i.e.: 42 > 41)

 Object.method() returns a LazyMethod object which can be called just like any function, producing
the result by calling the method which is stored inside the LazyMethod object.

This allow us to store or pass around partial expressions, which can be evaluated multiple times at any
point in the future:

Lazy methods

var str = "a-b-c"
var lzsplit = str.method(:uc).method(:split)

say lzsplit('') #=> ["A", "-", "B", "-", "C"]
say lzsplit('-') #=> ["A", "B", "C"]

This concept can also be used to create partial virtual functions:

var add1 = 1.method('+')
var eqv2 = 2.method('==')

say (1..100 -> map{ add1(_) }.grep{ eqv2(_) }) #=> [2]

 Object.methods() provides a simple way to find the methods implemented in the class of the self
object. It returns a Hash with the method names as keys and LazyMethod objects as values.

Example:

var methods = (1..10 -> methods)
say methods.keys #=> ["call", "dump", "iter", "new", "prod", "sum"]
say methods{:sum}() #=> 55

Like mathematical functions, Sidef's functions can be recursive, take arguments and return values.

func hello (name) {
 say "Hello, #{name}!"
}

hello("Sidef")

Unlike other programming languages, Sidef requires the arguments to be enclosed in () when calling a
function:

func f(g) {
 g()
}

f({ say "foo" }) # prints "foo"
f { say "bar" } # this does nothing

Method introspection

Functions

By executing the above script with the -r argument, we will see how the code is parsed:

$ sidef -r script.sf

which outputs:

func f(g) { (g->call()) };
f({|_| (say("foo")) });
f;
{|_| (say("bar")) };

Recursive functions:

func factorial (n) {
 if (n > 1) {
 return (n * factorial(n - 1))
 }
 return 1
}

say factorial(5) # prints: 120

Anonymous recursion can be achieved by using the __FUNC__ keyword, which refers to the current
function:

func recmap(repeat, seed, transform, callback) {
 func (repeat, seed) {
 callback(seed)
 repeat > 0 && __FUNC__(repeat-1, transform(seed))
 }(repeat, seed)
}

recmap(6, "0", func(s) { s + s.tr('01', '10') }, func(s) { say s })

Additionally, the __BLOCK__ keyword can be used for referring to the current block:

func fib(n) {
 return NaN if (n < 0)

 {|n|
 n < 2 ? n
 : (__BLOCK__(n-1) + __BLOCK__(n-2))
 }(n)
}

say fib(12) #=> 144

Storing functions in variables:

var f = func (name) {
 say "#{name} says 'Hello!'"
}
f('Sidef')

Function re-declaration:

func f(name) {
 say "Hello, #{name}"
}
f("Sidef")

f = func (name, age) {
 say "Hello, #{name}! You claim to be #{age} years old."
}
f("Sidef", 100)

In Sidef, all functions are first-class objects which can be passed around like any other object. Additionally,
all functions and methods are lexical closures.

func curry(f, *args1) {
 func (*args2) {
 f(args1..., args2...)
 }
}

func add(a, b) {
 a + b
}

var adder = curry(add, 1)
say adder(3) #=> 4

By specifying the cached trait to a function or a method, Sidef will automatically cache it.

func fib(n) is cached {
 return n if (n <= 1)
 fib(n-1) + fib(n-2)
}
say fib(100) # prints: 354224848179261915075

Additionally, the method Block.cache() enables memoization on the self-block, while
 Block.uncache() disables the memoization and also cleans-up the cache.

Closures

Automatically cached functions

func fib(n) {
 n <= 1 ? n : fib(n-1)+fib(n-2)
}

fib.cache # enables memoization
say fib(100) #=> 354224848179261915075
fib.uncache # disables memoization

The parameters of a function can be defined to have a default value when the function is called with a lower
number of arguments than required.

func hello (name="Sidef") {
 say "Hello, #{name}!"
}

hello() # prints: "Hello, Sidef!"
hello("World") # prints: "Hello, World!"

The default value of a parameter is evaluated only when an argument is not provided for that particular
parameter, and it can be any expression:

func foo (a = 1.25.sqrt, b = 1/2) {
 a + b
}

say foo() # prints the result of: sqrt(1.25) + 1/2
say foo(21, 21) # prints: 42

An interesting feature is the possibility of referring to a previously defined parameter as a default value:

func foo(a=10, b=a+1) {
 a + b
}

say foo() # prints: 21 (the result of: 10 + 10+1)
say foo(1) # prints: 3 (the result of: 1 + 1+1)
say foo(21,21) # prints: 42 (the result of: 21 + 21)

This is a very nice feature which allows a function to be called with named parameters, giving us the
flexibility to put the arguments in no specific order:

Function parameters

Named parameters (a.k.a. keyword arguments)

func div(a, b) {
 a / b
}

say div(b: 5, a: 35) # prints: 7

A slurpy variable in the form of *name can be used as a function parameter to collect the remaining
arguments inside an array:

func f(*args) {
 say args #=> [1, 2, 3]
}

f(1, 2, 3)

Alternatively, by using a named variable in the form of :name , the arguments are collected inside an
hash:

func f(:pairs) {
 say pairs #=> Hash(a => 1, b => 2)
}

f(a => 1, b => 2)

A function can be declared with typed parameters, which are checked at runtime.

func concat(String a, String b) {
 a + b
}

Now, the function can only be called with strings as arguments:

say concat("o", "k") # ok
say concat(1, 2) # runtime error

The typed parameters require a specific type of object, but they do not default to anything when no value is
provided.

This means that all the typed-parameters are mandatory, unless a default value is provided:

Variadic functions

Typed parameters

func concat(String a="foo", String b="bar") {
 a + b
}

say concat() # prints: "foobar"
say concat("mini") # prints: "minibar"
say concat(1, 2) # this is still a runtime error

A subset is a definition which specifies the upper limit of inheritance, with optional argument validation.

subset Integer < Number { |n| n.is_int }
subset Natural < Integer { |n| n.is_pos }
subset EvenNatural < Natural { |n| n.is_even }

func foo(n < EvenNatural) {
 say n
}

foo(42) # ok
foo(43) # failed assertion at runtime

In some sense, a subset is the opposite of a type. For example, let's consider the following class hierarchy:

class Hello(name) {
 method greet { say "Hello, #{self.name}!" }
}

class Hi < Hello {
 method greet { say "Hi, #{self.name}!" }
}

class Hey < Hi {
 method greet { say "Hey, #{self.name}!" }
}

If we declare a function that accepts a subset of Hi , it will accept Hello , but it cannot accept Hey :

func greet(obj < Hi) { obj.greet } # `Hi` is the upper limit

greet(Hi("Foo")) # ok
greet(Hello("Bar")) # ok
greet(Hey("Baz")) # fail: `Hey` is too evolved

On the other hand, if we use Hi as a type assertion, it will accept Hey , but not Hello :

Subsets

func greet(Hi obj) { obj.greet } # `Hi` is the lower limit

greet(Hi("Foo")) # ok
greet(Hey("Baz")) # ok
greet(Hello("Bar")) # fail: `Hello` is too primitive

Subsets can also be used for combining multiple types into one type, creating an union type:

subset StrNum < String, Number

func concat(a < StrNum, b < StrNum) {
 a + b
}

say concat("o", "k") # ok
say concat(13, 29) # 42
say concat([41], [42]) # runtime error

Sidef also includes multiple dispatch for functions and methods, based on the number of arguments and
their types:

func test(String a){
 say "Got a string: #{a}"
}

func test(Number n) {
 say "Got a number: #{n}"
}

func test(Number n, Array m) {
 say "Got a number: #{n} and an array: #{m.dump}"
}

func test(String s, Number p) {
 say "Got a string: #{s} and a number: #{p}"
}

test("hello", 21)
test("sidef")
test(12, [1,1])
test(42)

Output:

Got a string: hello and a number: 21
Got a string: sidef
Got a number: 12 and an array: [1, 1]
Got a number: 42

Multiple dispatch

This feature looks like this:

func fib ((0)) { 0 }
func fib ((1)) { 1 }
func fib (n) { fib(n-1) + fib(n-2) }

say fib(12) # prints: 144

We have three functions, where the first two, each have an expression as a parameter. Sidef will check
each expression for equality with a given argument and will call the corresponding function when it passes
the test. Otherwise, it will default to the third function.

Alternatively, we can specify a block instead of an expression:

func fib (Number n { _ <= 1} = 0) {
 return n
}

func fib (Number n) {
 fib(n-1) + fib(n-2)
}

say fib(12) # prints: 144

When a block is specified, the type and the name of the parameter must come before the block, while an
optional default value goes after the block. The types and the default values can be omitted.

The name of the parameters can be omitted as well:

func fib({.is_neg}) { NaN }
func fib({.is_zero}) { 0 }
func fib({.is_one}) { 1 }
func fib(n) { fib(n-1) + fib(n-2) }

say fib(12) # prints: 144

Combining the power of multiple dispatch with subsets and pattern matching, we can achieve impressive
results, as illustrated in the following example, which implements the arithmetic derivative recursively for all
integers and fractions:

Functional pattern matching

https://en.wikipedia.org/wiki/Arithmetic_derivative

subset Integer < Number { .is_int }
subset Positive < Integer { .is_pos }
subset Negative < Integer { .is_neg }
subset Prime < Positive { .is_prime }

func arithmetic_derivative((0)) { 0 }
func arithmetic_derivative((1)) { 1 }

func arithmetic_derivative(_ < Prime) { 1 }

func arithmetic_derivative(n < Negative) {
 -arithmetic_derivative(-n)
}

func arithmetic_derivative(n < Positive) is cached {

 var a = n.lpf
 var b = n/a

 arithmetic_derivative(a)*b + a*arithmetic_derivative(b)
}

func arithmetic_derivative(Number n) {
 var (a, b) = n.nude
 (arithmetic_derivative(a)*b - arithmetic_derivative(b)*a) / b**2
}

printf("(42!)' = %s\n", arithmetic_derivative(42!))

Sidef also has the capability to check the return type of a function and stop the execution of the program if
the returned type doesn't match the type defined in the function declaration.

func ieq(a, b) -> Bool {
 a.lc == b.lc
}

say ieq("Test", "tEsT") # true

On the other hand:

func concat(a, b) -> Array {
 a + b
}

say concat([1,2,3], [4,5,6]) # ok
say concat("123", "456") # runtime error

Multiple return-type checks are supported as well:

Returned type

func foo() -> (Number, String) {
 (42, "foo")
}
var (a, b) = foo()

A function can also be declared by using the fancy unary operator -> , which is synonym with the func
or method keywords, depending on the context where it is used.

-> my_add(a,b) { a + b }

If the function is declared inside a class, it will be defined as a method belonging to that class. However, if
the function is declared inside another method, it will be defined as a lexical function in the scope of that
method, as expected.

The name of the function is optional. If the name is omitted, an anonymous function will be created.

[1,2,3].sort(->(a,b) { b <=> a })

This notation is close to a lambda function, as illustrated in the following declaration of the Y-combinator:

var y = ->(f) {->(g) {g(g)}(->(g) { f(->(*args) {g(g)(args...)})})}

var fib = ->(f) { ->(n) { n < 2 ? n : (f(n-2) + f(n-1)) } }
say 10.of { |i| y(fib)(i) }

Output:

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

Creating loops in Sidef is as simple as it can get. Any loop can be stopped with the break keyword.

Infinite looping with the loop keyword:

loop {
 say "Sidef is looping!"
}

 while loop:

Alternative function declaration

Loops

https://en.wikipedia.org/wiki/Fixed-point_combinator#Fixed_point_combinators_in_lambda_calculus

var x = 123456789
while (x > 0) {
 var (div, mod) = x.divmod(10)
 say mod
 x = div
}

 do-while loop:

var n = 1
do {
 say n
} while (++n <= 10)

 for loop:

for (var i = 0; i <= 10; i++) {
 say i
}

 for-in loop:

for item in (1..5) {
 say item
}

 for each loop:

for (1..5) { |item|
 say item
}

 .each method:

(1..5).each { |i|
 say i**2
}

Repetition block:

{ |n|
 say "Hello there! (#{n})"
} * 10

or:

n.times { ... }

Collecting n items can be done by using the n.of {...} method, which calls the given block with the
values 0 to n-1 and returns an array with the block-values from each call:

say 5.of {|n| 2**n } #=> [1, 2, 4, 8, 16]

Similarly, there is the n.by { ... } method, which returns the first n integers (>= 0) for which the
block evaluates to a true value:

say 5.by { .is_prime } #=> [2, 3, 5, 7, 11]

Recursive block:

{
 say "Hello, World!"
 __BLOCK__.run
}.run

Things to remember: 1. |x,y,z| is used to capture the block arguments in variables. 2. The keyword
 next will skip one interation of the loop. 3. The keyword break will break a loop.

The gather/take construct, borrowed from Raku:

var arr = gather {
 take(1)
 take(2)
 take(3)
}

say arr #=> [1, 2, 3]

The try/catch construct:

try {
 # unsafe code here
}
catch { |msg|
 say "try/catch failed with message: #{msg}"
}

gather/take

try/catch

The value of msg is a String containing the error text produced in the try branch.

Additionally, the catch branch is optional and can be omitted. If omitted and the try branch fails, the
 nil value is returned.

"I am a string"

A string is a group of characters which exists inside the same object.

var new_str = ("a" + "b")
say new_str # prints: "ab"

A Sidef-string have many methods which will really help working with strings in a new exciting way.

Most used methods are:

.uc # uppercase the string

.lc # lowercase the string

.wc # capitalize each word

.tc # capitalize the string

.reverse # reverse the string

.trim # removes leading and trailing whitespace

.length # string size, in characters

.is_empty # true if string has 0 length

.div(N) # divide the string into N chunks

.split(N) # split the string by N characters

.split('str') # split the string by 'str'

.split(/regex/) # split the string by a regular expression

.each{|c| ...} # iterate over string characters

.each_word{|w| ...} # iterate over words

.each_line{|l| ...} # iterate over lines

.char(3) # returns the character at the specified index

.substr(beg, len) # returns a sub-string from position beg

.begins_with('str') # true if string begins with 'str'

.ends_with('str') # true if string ends with 'str'

.contains('str') # returns true if string contains 'str'

.index('str') # returns the position where 'str' begins

.match(/regex/) # returns a Match object

.sub(/regex/, 'str') # regexp substitution (returns a new string)

.gsub(/regex/, 'str') # global regexp substitution (returns a new string)

For more methods, see: String.pod

Strings

String quotes

https://github.com/trizen/sidef/blob/master/lib/Sidef/Types/String/String.pod

Being a new programming language, Sidef has built-in support for Unicode quotes:

var dstr = „double quoted”
var sstr = ‚single quoted’

The difference between double-quoted and single-quoted strings is the following: 1. double-quoted strings
can interpolate code. * example: "code: #{say 'inside string'}" 2. double-quoted strings
understand special escapes. * example: "\n, \t, \Q...\E"

while the single-quoted strings can't do any of this.

say 'single\tquoted' # prints the string as it is
say "double\tquoted" # replaces '\t' with a tab-character

var name = "string"
say 'single quoted #{name}' # prints the string as it is
say "double quoted #{name}" # prints: "double quoted string"

A single word can also be quoted by placing : in front of it. This feature makes things easier when it's
used in hash look-ups and hash literal definitions.

:word == 'word'
:another_word == 'another_word'

Sidef also borrow from Ruby some operator-like quotes and implements some new ones:

var sstr = %q{single {} quoted string}
var dstr = %Q«double «» quoted string»
var arr1 = %w(word1 word2)
var arr2 = %W(double quoted words)
var arr3 = <single <quoted> words>
var arr4 = «double «quoted» words»
var reg = %r「some\h+regxp?」
var file = %f„filename.txt”
var dir = %d‘/my/dir’
var pipe = %p(ls -l)
var tick = %x(uname -r)

Simple HERE-doc support:

var str = <<'EOF'
some
text
EOF

Indented HERE-document (with interpolation):

func hello(arg) {
 return <<-"EOT"
 Hello, #{arg}!
 EOT
}

print hello('Sidef') # prints: 'Hello, Sidef!'

By single-quoting the name of an HERE-document, interpolation will be disabled:

{
 print <<-'EOT'
 Not interpolated: #{1+2}
 EOT
}.run # prints: 'Not interpolated: #{1+2}'

Nested HERE-docs are supported as well:

print(<<'EOF', "- - -\n", <<'EOT' + <<"EOD")
1 2 3
EOF
4 5 6
EOT
7 8 9
EOD

In Sidef, numbers play an important role and are treated correspondingly. The numerical system is
implemented with Math::GMPq, Math::GMPz, Math::MPFR, and Math::MPC, giving us a really good
precision in calculations with an astonishing performance.

say Number.pi # prints: 3.1415926535897932384626433832795
say 2**999 # 535754303593133660474212524530...0214915826312193418602834034688

Additionally, the Number class can be used for constructing new Number objects:

Number("1234.52") # new decimal number
Number("10110111", 2) # new binary number
Number("deadbeef", 16) # new hexadecimal number

Here is 255 written as integer in different bases:

Numbers

Integers

https://metacpan.org/pod/Math::GMPq
https://metacpan.org/pod/Math::GMPz
https://metacpan.org/pod/Math::MPFR
https://metacpan.org/pod/Math::MPC
https://github.com/trizen/sidef/blob/master/lib/Sidef/Types/Number/Number.pod

255 # decimal
0xff # hexadecimal
0377 # octal
0b1111_1111 # binary

In Sidef, decimal literals are always represented in rational form, using Math::GMPz or Math::GMPq.

1.234 # 1.234
.1234 # 0.1234
1234e-5 # 0.01234
12.34e5 # 1234000

Example:

say 1.234.dump #=> 617/500
say (0.1 + 0.2 == 0.3) #=> true

Floating-point values are represented by Math::MPFR with a default precision of 192 bits.

A literal floating-point value is usually returned by some mathematical functions (including sin(x) ,
 log(x) , etc...).

A given number can be explicitly converted to a floating-point value by calling the .float method on it:

1.234.float # floating-point value

Complex numbers are represented by Math::MPC in floating-point form, with a default precision of 192 bits
for each component.

A complex number can be created by using either one of the following ways:

3:4 # 3+4i
3+4i # 3+4i
3+4.i # 3+4i
Complex(3,4) # 3+4i

Complex numbers are deeply integrated into the language and can be used in combination with all the other
Number types (with implicit propagation):

Decimal literals

Floating-point values

Complex numbers

https://metacpan.org/pod/Math::GMPz
https://metacpan.org/pod/Math::GMPq
https://metacpan.org/pod/Math::MPFR
https://metacpan.org/pod/Math::MPC

sqrt(-1) # 1i
log(-1) # 3.14159265358979323846264338327950288419716939938i
4 + sqrt(-1) # 4+i
(3+4i)**2 # -7+24i

The default floating-point precision can be changed with the -P int command-line flag passed to
 sidef , which specifies the number of decimals of precision.

Example:

$ sidef -P100 script.sf # executes "script.sf" with 100 decimals of precision

It's also possible to dynamically change the floating-point precision at runtime, by modifying the
 Num!PREC class variable:

say sqrt(2) #=> 1.41421356237309504880168872420969807856967187538
local Num!PREC = 42.numify # sets the floating-point precision to 42 bits
say sqrt(2) #=> 1.414213562

The Mod class represents a modular operation, similar to PARI/GP's built-in Mod(a,m) class.

Mod(3, 4) # represents 3 mod 4

Example:

var a = Mod(13, 19)

a += 15 # Mod(9, 19)
a *= 99 # Mod(17, 19)
a /= 17 # Mod(1, 19)

say a # Mod(1, 19)
say (a == 1) # true
say (a == 20) # true

a -= 43 # Mod(15, 19)

say a**42 # Mod(11, 19)
say a**(-1) # Mod(14, 19)
say sqrt(a+1) # Mod(4, 19)

say chinese(Mod(43, 19), Mod(13, 41)) # Mod(423, 779)

Floating-point precision

Mod

https://github.com/trizen/sidef/blob/master/lib/Sidef/Types/Number/Mod.pod

The Fraction class represents a generic fraction:

var a = Fraction(3, 4)
var b = Fraction(5, 7)

say a*b #=> Fraction(15, 28)
say a+b #=> Fraction(41, 28)

The Gauss class provides support for rational Gaussian numbers and various operations on these
numbers.

Gauss(3, 4) # represents 3+4i

Example:

say Gauss(3,4)**100
say Mod(Gauss(3,4), 1000001)**100 #=> Mod(Gauss(826585, 77265), 1000001)

var a = Gauss(17,19)
var b = Gauss(43,97)

say a+b #=> Gauss(60, 116)
say a-b #=> Gauss(-26, -78)
say a*b #=> Gauss(-1112, 2466)
say a/b #=> Gauss(99/433, -32/433)

The Quadratic class represents a quadratic integer of the form: a + b*sqrt(w) .

var x = Quadratic(3, 4, 5) # represents: 3 + 4*sqrt(5)
var y = Quadratic(6, 1, 2) # represents: 6 + sqrt(2)

say x**10 #=> Quadratic(29578174649, 13203129720, 5)
say y**10 #=> Quadratic(253025888, 176008128, 2)

say x.powmod(100, 97) #=> Quadratic(83, 42, 5)
say y.powmod(100, 97) #=> Quadratic(83, 39, 2)

The Quaternion class represents a quaternion number of the form a + b*i + c*j + d*k , where a ,

Fraction

Gauss

Quadratic

Quaternion

https://github.com/trizen/sidef/blob/master/lib/Sidef/Types/Number/Fraction.pod
https://en.wikipedia.org/wiki/Fraction
https://github.com/trizen/sidef/blob/master/lib/Sidef/Types/Number/Gauss.pod
https://en.wikipedia.org/wiki/Gaussian_integer
https://github.com/trizen/sidef/blob/master/lib/Sidef/Types/Number/Quadratic.pod
https://en.wikipedia.org/wiki/Quadratic_integer
https://github.com/trizen/sidef/blob/master/lib/Sidef/Types/Number/Quaternion.pod
https://en.wikipedia.org/wiki/Quaternion

 b , c , and d are real numbers; and i , j , and k are the basic quaternions.

var a = Quaternion(1,2,3,4)
var b = Quaternion(5,6,7,8)

say a+b #=> Quaternion(6, 8, 10, 12)
say a-b #=> Quaternion(-4, -4, -4, -4)
say a*b #=> Quaternion(-60, 12, 30, 24)
say b*a #=> Quaternion(-60, 20, 14, 32)
say a/b #=> Quaternion(35/87, 4/87, 0, 8/87)

say a**5 #=> Quaternion(3916, 1112, 1668, 2224)
say a.powmod(43, 97) #=> Quaternion(61, 38, 57, 76)
say a.powmod(-5, 43) #=> Quaternion(11, 22, 33, 1)

The Polynomial class implements support for polynomials.

say Polynomial(5) # monomial: x^5
say Polynomial([1,2,3,4]) # x^3 + 2*x^2 + 3*x + 4
say Polynomial(5 => 3, 2 => 10) # 3*x^5 + 10*x^2

Also aliased as Poly() :

var a = Poly([1,2,3])
var b = Poly([4,5,-6,7])

say a+b #=> 4*x^3 + 6*x^2 - 4*x + 10
say a-b #=> -4*x^3 - 4*x^2 + 8*x - 4
say a*b #=> 4*x^5 + 13*x^4 + 16*x^3 + 10*x^2 - 4*x + 21

say 42-a #=> -x^2 - 2*x + 39
say 42+b #=> 4*x^3 + 5*x^2 - 6*x + 49
say 42*b #=> 168*x^3 + 210*x^2 - 252*x + 294

say a/42 #=> 1/42*x^2 + 1/21*x + 1/14
say b/42 #=> 2/21*x^3 + 5/42*x^2 - 1/7*x + 1/6

A numerical string can be converted into a rational number by using the Number class:

Number("0.75") # "0.75" is parsed and stored in rational form as 3/4
Number("fff/aaa", 36) # parse a base-36 fraction as 4095/2730

The Number method as_rat can be used for getting the rational form of a number:

Polynomial

Numerical conversions

https://github.com/trizen/sidef/blob/master/lib/Sidef/Types/Number/Polynomial.pod
https://en.wikipedia.org/wiki/Polynomial

say 3/4 # 0.75
say as_rat(3/4) # 3/4
say as_rat(1.234, 36) # h5/dw (which is 617/500 in base-10)

The Number.base(b) method provides conversion from numbers into strings in a given base:

1234.base(13) # to string in base 13
1234.base(36) # to string in base 36

var array = [1, 2, 3, 4, 5]

array[0] = 6
array[1] = 7

say array

Arrays are simple objects which can store other objects, and provide a zero-based indexing. In Sidef, an
array can grow as much as the system memory permits it.

Array autovivification:

var array = []
array[3][4] = "hei"
say array

If you're familiar with Perl, you already know about autovivification. It's the feature responsible for the
dynamic creation of data structures.

The Array object has many interesting methods for making it safer and easier to work with arrays in a
pure OO style.

 grep ing some elements from an array:

var new_arr = arr.grep { _ > 10 } # returns a new array containing numbers greater than 10

 map ing an array:

var new_arr = arr.map {|n| 2*n + n**2} # returns a new array with the result returned from the "map" block

Arrays

Array filtering

 sort ing an array:

generic sort
var new_arr = arr.sort

naive string case-insensitive sort
var new_arr arr.sort {|a,b| a.lc <=> b.lc}

efficient string case-insensitive sort
var new_arr arr.sort_by { .lc }

It's a nice metaoperator borrowed from Raku, which unrolls two arrays and applies the operator on each
two element-wise objects, creating a new array with the results. The operator can be a method or any other
valid operator and must be enclosed between » « or >> << .

[1,2,3] »+« [4,5,6] # [1+4, 2+5, 3+6]
%w(a b c) >>cmp<< %w(c b a) # [-1, 0, 1]

Internally, the unroll_operator method is called, which can, also, be implemented in user-defined
classes.

The array map operator works exactly like the Array.map{} method, but it's slightly more efficient and
easier to write. The map operator must be enclosed between » » or >> >> .

[1,2,3] »*» 4 # [1*4, 2*4, 3*4]

Internally, the map_operator method is called.

The pam operator is kind of a reversed mapping of the array ("pam" is "map" spelled backwards), where
the provided argument is used as the first operand to the operator provided. The operator must be enclosed
between « « or << << .

[1,2,3] «/« 10 # [10/1, 10/2, 10/3]

Internally, the pam_operator method is called.

This metaoperator reduces an array to a single element. The operator needs to be enclosed inside « » or
 << >> .

Unroll operator

Map operator

Pam operator

Reduce operator

[1,2,3]«+» # 1 + 2 + 3
[1,2,3]«/» # 1 / 2 / 3

Internally, the reduce_operator method is called.

The metaoperator ~X or ~Xop crosses two arrays and returns a new one.

[1,2] ~X+ [3,4] # [1+3, 1+4, 2+3, 2+4]
[1,2] ~X [3,4] # [[1,3], [1,4], [2,3], [2,4]]

Internally, the cross_operator method is called.

The metaoperator ~Z or ~Zop zips two arrays and returns a new one.

[1,2] ~Z+ [3,4] # [1+3, 2+4]
[1,2] ~Z [3,4] # [[1,3], [2,4]]

Internally, the zip_operator method is called.

Almost equivalent with the zip metaoperator, it does element-wise folding on two arbitrary nested arrays,
where both arrays must have the same structure.

[1,2] ~W [3,4] # [[1,3], [2,4]]
[1,2] ~W+ [3,4] # [1+3, 2+4]
[[[1]],[2]] ~W+ [[[3]],[4]] # [[[1+3]], [2+4]]

Internally, the wise_operator method is called.

The scalar operator applies a given operator to the elements of an arbitrary nested array, where the
provided scalar is used as the second operand to the given operator.

[1,2,3] ~S 5 # [[1,5], [2,5], [3,5]]
[1,2,3] ~S* 5 # [1*5, 2*5, 3*5]
[1,[[2,[3]]]] ~S+ 5 # [1+5, [[2+5, [3+5]]]]

Internally, the scalar_operator method is called.

Cross operator

Zip operator

Wise operator

Scalar operator

The reverse scalar operator uses the given scalar as a first operand to the given operator and is also
defined for arbitrary nested arrays.

[3,4,5] ~RS 1 # [[1,3], [1,4], [1,5]]
[3,4,5] ~RS/ 1 # [1/3, 1/4, 1/5]
[3,[[4,[5]]]] ~RS/ 1 # [1/3, [[1/4, [1/5]]]]

Internally, the rscalar_operator method is called.

The Array.wise_op() method takes two arbitrary nested arrays and an operator, folding each element
(entrywise) with the provided operator, which is also available as a ~Wop b :

say ([1,2,[3,[4]]] ~W+ [42,43,[44,[45]]]) #=> [43, 45, [47, [49]]]

Alternatively:

say wise_op([1,2,[3,[4]]], '+', [42,43,[44,[45]]]) #=> [43, 45, [47, [49]]]

When the provided operator is an empty string (''), the pairwise elements are combined together in a
new array:

say wise_op([1,2,3], '', [4,5,6]) #=> [[1, 4], [2, 5], [3, 6]]
say wise_op([1,2,[3,[4]]], '', [42,43,[44,[45]]]) #=> [[1, 42], [2, 43], [[3, 44], [[4, 45]]]]

Multiple arbitrary nested arrays can be combined together using the Array.combine{...} method,
added in Sidef 3.50:

var a = [[6, 6], [4, 4]]
var b = [[1, 2], [3, 4]]
var c = [[9, 5], [7, 2]]

say [a,b,c].combine{|x,y,z|
 x + y + z
}

Output:

[[16, 13], [14, 10]]

Reverse scalar operator

Entrywise operations

Scalar operations

A `scalar_add` 42 # scalar addition (aliased as `sadd`)
A `scalar_sub` 42 # scalar subtraction (aliased as `ssub`)
A `scalar_mul` 42 # scalar multiplication (aliased as `smul`)
A `scalar_div` 42 # scalar division (aliased as `sdiv`)

This methods are provided by Array.scalar_op() , which, just like Array.wise_op() , also supports
arbitrary nested arrays:

say ([1,2,[3,[4]]] ~S+ 42) #=> [43, 44, [45, [46]]]
say ([1,2,[3,[4]]] ~S* 42) #=> [42, 84, [126, [168]]]

which is equivalent with:

say scalar_op([1,2,[3,[4]]], '+', 42) #=> [43, 44, [45, [46]]]
say scalar_op([1,2,[3,[4]]], '*', 42) #=> [42, 84, [126, [168]]]

The Array operators |>> , |Z> and |X> can be used in a pipeline-fashion to map the elements of an
array, given a list of method names or function objects.

The map pipeline operator |>> maps the array to a given method or function, with optional arguments:

[1,2,3] |>> (:pow, 2) |>> (:mul, 5) |> :say #=> [5, 20, 45]
[1,2,3] |>> { _**2 } |>> { _*5 } |> :say #=> [5, 20, 45]
[1,2,3] |>> ({|a,b| a**b }, 2) |>> ({|a,b| a*b }, 5) |> :say #=> [5, 20, 45]

The zip pipeline operator, |Z> , zips the array over the callback argument list, n -elements at a type,
where n is the number of callbacks:

[1,2,3,4,5,6] |Z> (:exp2, :exp10) |> :say #=> [2, 100, 8, 10000, 32, 1000000]

Each callback that contains arguments, must be enclosed inside an array:

[42, 100, 99, 49] |Z> ([{|a,b| a + b }, 3], :sqrt) |> :say #=> [45, 10, 102, 7]

The cross-product pipeline operator, |X> , maps each element of the array over each element of the
argument list, which is a list of callbacks. Each callback that contains arguments, must be enclosed inside

Pipeline array operators

Map pipeline operator

Zip pipeline operator

Cross-product pipeline operator

an array.

[25, 36, 49] |X> (:sqrt, [{|a,b| a + b }, 3]) |> :say #=> [5, 28, 6, 39, 7, 52]

The pipeline operators can be combined freely in any order:

[25, 36, 49] |X> (:sqrt, [{|a,b| a+b }, 3]) |Z> ({_*_}, [{|a,b| a-b }, 3]) |> :say

The built-in Matrix class (child of the Array class) provides support for defining and working with
matrices:

Matrix(
 [1, 2],
 [3, 4],
)

A subset of Matrix operations are included in the following example:

Matrix

Operations

var A = Matrix(
 [2, -3, 1],
 [1, -2, -2],
 [3, -4, 1],
)

var B = Matrix(
 [9, -3, -2],
 [3, -1, 7],
 [2, -4, -8],
)

say (A + B) # matrix addition
say (A - B) # matrix subtraction
say (A * B) # matrix multiplication
say (A / B) # matrix division

say (A + 42) # matrix-scalar addition
say (A - 42) # matrix-scalar subtraction
say (A * 42) # matrix-scalar multiplication
say (A / 42) # matrix-scalar division

say A**20 # matrix exponentation
say A**-1 # matrix inverse: A^-1
say A**-2 # (A^2)^-1

say B.det # matrix determinant
say B.solve([1,2,3]) # solve a system of linear equations

The extended for-in loop provides built-in iteration over a 2D-array, which is useful in combination with
the cross or zip metaoperators:

for a,b in ([1,2] ~X [3,4]) {
 say "#{a} #{b}"
}

This is equivalent with:

[[1,2], [3,4]].cartesian {|a,b|
 say "#{a} #{b}"
}

and outputs:

1 3
1 4
2 3
2 4

Matrix iteration

The same functionality is also provided by the .each_2d {|a,b,...| ... } Array method.

An array can be converted into a list using the following notations:

var arr = ["a", 1, "b", 2]
say Hash(arr...) # creates an Hash by passing the array as a list of values
say Hash(@|arr) # ==//==

The difference between postfix ... and prefix @| consists in the fact that @| invokes the ...
method only when its argument can respond to this method, while in the first case, the ... method is
invoked unconditionally.

A slice is a sub-array, just like a sub-string is for a string.

var arr = ["foo", "bar", "baz"]

var *slice1 = arr[0, 1] # fetches the first two values

var indices = [-2, -1]
var *slice2 = arr[indices] # automatically unpacks the `indices` and fetches the last two values

say slice1 # prints: ["foo", "bar"]
say slice2 # prints: ["bar", "baz"]

Using slices, it's also possible to change multiple values inside an array:

var arr = ["foo", "bar", "baz"]
arr[0, 1] = ("a", "b") # changes the first two values
say arr # prints: ["a", "b", "baz"]

Alternatively, using indices stored inside an array:

var arr = ["foo", "bar", "baz"]
var indices = [0, 1]
arr[indices] = ("a", "b") # changes the first two values
say arr # prints: ["a", "b", "baz"]

An empty [] , will return the entire array as a list of lvalues:

var arr = ['a', 'b', 'c']
arr[] = ('foo', 'bar') # replaces the entire array
say arr # prints: ['foo', 'bar']

Lists

Slices

A range is a definition of some consecutive values, either in increasing or decreasing order. The main
advantage of a range over an array is that a range can be infinite, while an array can't, and this is because
ranges are lazy.

A range can be created with one of the following operators: .. , ^.. or ..^ ;

Mnemonics: * .. go from left to right (inclusive) * ..^ begin from down and go up (exclusive) * ^..
begin from up (exclusive) and go down

Count from 1 to 10:

for i in (1 .. 10) {
 say i
}

Count from 1 to 9:

for i in (1 ..^ 10) {
 say i
}

Count from 9 to 1:

for i in (10 ^.. 1) {
 say i
}

A range can be shifted (+ , -), stretched (*) and shrank (/):

(1..10) + 2 #=> 3 .. 12
(1..10) - 2 #=> -1 .. 8
(1..10) * 2 #=> 2 .. 20
(1..10) / 2 #=> 0.5 .. 5

Also, ranges can be reversed (.reverse) and granularized (.by):

(1..10).reverse # a new reversed range from 10 down to 1
(1..10).by(0.5) # a range from 1 up to 10, counting by 0.5

Alternatively, ranges can be created with the RangeNum data-type:

var evens = RangeNum(0, Inf, 2) # range of all even numbers
say evens.lazy.first(10) # the first 10 even numbers

Ranges

A negative third argument will create a descending range:

for i in RangeNum(10, 5, -1) { # count from 10 down to 5
 say i
}

The RangeNumber class inherits methods from the Range class, but it also implements some useful
methods for working with numerical ranges, such as:

say sum(1..10, {|n| n**3 }) # sum of the first 10 cubes
say prod(1..10, {|n| n**2 }) # product of the first 10 squares

Hashes are used to quickly locate a data record (e.g., a dictionary definition) given its search key.

var hash = Hash(
 name => 'foo',
 age => 42,
)

Working with hashes is almost the same as working with arrays, but instead of specifying a position index
in square brackets, we now lookup with a string specified in curly brackets.

say hash{:name} # prints the value associated with the "name" key
say hash.{"name"} # ==//==

Changing a hash value:

hash{:age} = 99 # sets the key "age" to value 99
hash.{"age"} = 99 # ==//==

Just like arrays, hashes also support the retrieving of multiple values at once.

Hashes

Multiple values

var hash = Hash(
 a => 1,
 b => 2,
 c => 3,
)

Returns a list of values
var *vals = hash{:a, :b, :c}

Print the values
say vals #=> [1,2,3]

Using the keys defined inside an array
var keys = %w(a b c)
var *vals = hash{keys...}

Print the values
say vals #=> [1,2,3]

An empty {} will return the entire hash as a list of lvalue-pairs:

var hash = Hash(a => 1, b => 2)
hash{} = (c => 3, d => 4) # replaces the entire hash
say hash # prints: Hash(c => 3, d => 4)

Hashes, like everything else, are objects which have many methods built-in, helping in dealing with hash
tables.

Sorting by value:

Sorting in ascending order
var asc_array = hash.sort_by{|_,v| v }

Sorting in descending order
var des_array = hash.sort_by{|_,v| v }.reverse

For lower-level comparisons, the .sort{} method can be used:

Sorting in ascending order
var keys_array = hash.keys.sort{|a,b| hash{a} <=> hash{b} }

Sorting in descending order
var keys_array = hash.keys.sort{|a,b| hash{b} <=> hash{a} }

For more methods, see: Hash.pod

Working with hashes

Sets

https://github.com/trizen/sidef/blob/master/lib/Sidef/Types/Hash/Hash.pod

A set is an unordered collection of objects, with no duplicates.

Set('foo', 'bar', 'baz')

All the set operators, such as intersection, difference, symmetric difference, union and concatenation, are
supported.

var A = Set('foo', 'bar', 'baz', 'foo')
var B = Set('bar', 'foo', 'qux')

Intersection
say (A & B) #=> Set("foo", "bar")

Union
say (A | B) #=> Set("foo", "qux", "bar", "baz")

Difference
say (A - B) #=> Set("baz")
say (B - A) #=> Set("qux")

Symmetric difference
say (A ^ B) #=> Set("baz", "qux")

Concatenation
say (A + B) #=> Set("baz", "bar", "qux", "foo")

The method set.delete(obj) can be used for removing a given object from the set.

A bag (also known as a multi-set) is a unordered collection of objects, similar to a hash table, where each
object has a count number, which represents the number of times it exists in the bag.

Bag('foo', 'bar', 'baz')

The Bag class supports all the set operators, such as intersection, difference, symmetric difference, union
and concatenation.

Operations

Updating

Bags

Operations

var A = Bag('foo', 'bar', 'baz', 'foo')
var B = Bag('bar', 'foo', 'qux')

Count how many times is 'foo' present in the bag A
say A.count('foo') #=> 2

Intersection
say (A & B) #=> Bag("foo", "bar")

Union
say (A | B) #=> Bag("qux", "bar", "baz", "foo", "foo")

Difference
say (A - B) #=> Bag("baz", "foo")
say (B - A) #=> Bag("qux")

Symmetric difference
say (A ^ B) #=> Bag("foo", "qux", "baz")

Concatenation
say (A + B) #=> Bag("foo", "foo", "foo", "bar", "bar", "baz", "qux")

The methods bag.add_pair(obj, count) and bag.update_pair(obj, count) can be used for
efficiently updating a bag in-place.

var A = Bag('foo', 'foo', 'bar')

Add 'bar' with count=2
A.add_pair('baz', 2)

say A #=> Bag("baz", "baz", "bar", "foo", "foo")

Update the count of 'foo'
A.update_pair('foo', 1)

say A #=> Bag("baz", "baz", "bar", "foo")

Furthermore, the method bag.delete(obj) can be used for removing one occurrence of object obj
from the bag, while the .delete_all(obj) can be used for removing all the occurrences of obj from
the bag.

Creating a long chained list in Sidef is as simple as it can get:

var tree = 'root':'child':'grandchild':'end'

Updating

Pairs

The above code creates a pair of pairs, which looks like this:

Pair('root',
 Pair('child',
 Pair('grandchild', 'end')
)
)

For traversing the list, we can use:

loop {
 say tree.first
 tree.second.is_a(Pair) || break
 tree = tree.second
}

This is also useful in creating an array of pairs:

var array_of_pairs = [
 "red": 9,
 "blue": 4,
 "green": 0,
]

Now, each element of the array is a Pair and can be accessed by using the first and second
methods:

array_of_pairs.each { |pair|
 say "#{pair.first} == #{pair.second}"
}

A structure is very similar with a class without methods and can be used as a stricter alternative to hashes.

Structs

struct Person {
 String name,
 Number age,
}

Create a new person
var john = Person(name: "John Smith", age: 42)

Change a value
john.name = "Dr. #{john.name}"

Increment a value
john.age++

say john.name #=> Dr. John Smith
say john.age #=> 43

A File is a built-in type in Sidef, in the same way as a String or an Array is.

Declaring a File object:

var file1 = File('/tmp/abc.txt')
var file2 = %f(/tmp/abc.txt) # same thing

Being an object, it can have some interesting methods, and it does. The following code will simply edit a file
in place:

File('/tmp/abc.txt').edit { |line|
 line.gsub(/this/, 'that') # replaces 'this' with 'that' anywhere inside the file
}

Here is a list with the most important methods which verifies some attributes of the file.

file.exists # true if file exists
file.size # size of the file
file.is_emtpy # true if size is zero
file.is_dir # true if file is a directory
file.is_readable # true if file is readable
file.is_link # true if file is a link
file.is_text # true if file is a text-file

Some more information can be achieved by using the stat or lstat method:

Files

File info

var info = file.stat # or 'lstat'
say info.atime
say info.mtime
say info.ctime
say info.size

Information related to the self object file:

file.name # the original name of the file
file.base # the base name of the file
file.abs # the absolute path the file
file.dir # the parent directory of the file

We can also delete and rename files and do other things to files.

file.rename("new-name.ext") # rename file
file.move("new-name.ext") # rename file safer
file.copy("new-name.ext") # copy file
file.unlink # delete file
file.touch # create file if it doesn't exists
file.chmod(0666) # change the permissions
file.utime(atime, mtime) # change the access and modification times

A File object has a main open method which is directly bound to Perl's open function.

file.open('<:utf8', \var fh, \var err) \
 || die "Can't open file #{file}: #{err}\n"

A simpler interface is provided by the open_* methods:

var fh = file.open_r # open the file for reading
var bool = file.open_r(\var fh) # same thing, but returns a Boolean value

For reading the content of a file into a string, we can use the FileHandle.slurp() method:

var str = fh.slurp # reads the content of the file into a string

Alternatively, the FileHandle.lines() method will return an array will each line from the file:

Manipulating files

Open files

File handles

var arr = fh.lines # reads the content of the file into an array

For reading one line at a time, we can use the FileHandle.each{} method:

fh.each { |line|
 say line
}

Conditional expression are almost the same in most programming languages and Sidef will not make an
exception, so we'll have the classic if , while and for conditional expressions.

The if statement is one of the most basic conditional constructs.

if (bool) {

}
elsif (bool) {

}
else {

}

The with statement behaves almost like the if statement, but instead of testing for trueness, it checks
to see if the given argument is not a nil value.

with (obj) {

}
orwith (obj) {

}
else {

}

In addition to the if statement, it also supports capturing of a defined value in a block variable:

with (some_function()) { |value|
 say value
}

The while statement is almost like the if construct, except that it will keep executing its block as long
the given expression evaluates to a true value.

Conditional expressions

while (bool) {

}

The for statement it's usually used for iteration over collections and for counting.

for (var i = 0; i <= 10; i++) {

}

Also, we have the ternary operator and the case and switch statements:

bool ? (true) : (false)

Given/when is used to compare two values using the rules of the smartmatch operator (~~):

given ('b') {
 when ('a') { say "a" }
 when ('b') { say "b" }
 else { say "Unknown!" }
}

Additionally, to test expressions for trueness, Sidef has the case statement:

given (-1) {
 case (.is_zero) {
 say "Null value!"
 }
 case (.is_neg) {
 say "Negative value!"
 }
 else {
 say "Positive value!"
 }
}

 case and when statements can be mixed together:

given (42) { |value|
 case (value < 0) {
 say "Negative value!"
 }
 when (0) {
 say "Null value!"
 }
 case (value > 1) {
 say "Positive value!"
 }
}

When a value is found, the construct breaks automatically, but we have the continue keyword which will
prevent this.

given (1) {
 when (1) {
 say "true once"
 continue # will fall through
 }
 when (1) {
 say "true twice"
 }
}

An exception is thrown by the die keyword, which, if not caught, it terminates the program with an
appropriate exit code.

try {
 die "I'm dead!" # throws an exception
}
catch { |msg|
 say "msg: #{msg}" # msg: I'm dead! at test.sf line 2.
}

say "I'm alive..."
die "Now I'm dead!" # this line terminates the program
say "Or am I?" # Yes, you are!

Sidef borrows the regular expressions from Perl. Any regular expression is analyzed and compiled by Perl's
regexp engine, so we have all the good stuff we are already familiar with.

var regex = /^my+[regex]?\z/ixmsu

Matching against regular expressions:

var string = 'something'

if (string =~ regex) {
 say "Matches!"
}

Storing and using the captured matches:

Exceptions

Regular expressions

var string = "Sidef <3 Perl"
var match = string.match(/(\w+)\h+<3\h+(\w+)/)

if (match) {
 var captures = match.captures
 say captures[0] # prints: Sidef
 say captures[1] # prints: Perl
}

The returned match object, it's a special object which accepts array indexing of values.

var m = "hello world".match(/^(\w+) (\w+)/)
say m[0] # prints: hello
say m[1] # prints: world

A regex can match multiple times inside a given string, therefore Sidef provides support for global
matching.

var str = "a cat, a dog and a fox"
while (var m = str.match(/\ba\h+(\w+)/g)) {
 say m[0]
}

Alternatively, there is the String.gmatch() method:

var string = 'Sidef <3 regular expressions'
while (var m = string.gmatch(/(\S+)/)) {
 say m[0]
}

The smart-match operator (~~) take two operands and compare them based on their type and their order.

"hello" ~~ /^h/ # true: string matches regex
"oo" ~~ "foobar" # false: "oo" doesn't equal "foobar"
"a" ~~ %w(a b c) # true: item exists in array
/^b/ ~~ %w(foo bar) # true: regex matches an element from array
/^f/ ~~ Hash(foo => 1) # true: regex matches a key from hash

There is also !~ which simply flips the Boolean value returned by ~~ .

/abc/ !~ "abcdef" # false

Global matching

Smart-matching

In Sidef, a module is the declaration of a new namespace:

module Fibonacci {
 func nth(n) {
 n > 1 ? nth(n-2)+nth(n-1) : n
 }
}

say Fibonacci::nth(12) # prints: 144

The default namespace name is main . Variables from other namespaces can be used inside a module by
either importing them, or by specifying their full name, including the namespace:

var foo = 42

module Bar {
 var baz = 99
 say main::foo #=> 42
}

say Bar::baz #=> 99

Importing an identifier in the current namespace, can be done using the syntax import
namespace::identifier_name :

var foo = 42

module Bar {
 import main::foo
 var baz = 2*foo
}

import Bar::baz
say baz #=> 84

A class is a collection of methods and attributes. From classes, we can create objects. When a class is
called, an instance-object of that class is returned, which encapsulates the given data provided at class
initialization. Each individual call to a class, returns a different instance-object.

Modules

Classes

class Person (name, age, address) {
 method position {
 # GPS.locate(self.address)
 }

 method increment_age(amount=1) {
 self.age += amount
 }
}

var obj = Person(name: "Foo", age: 50, address: "St. Bar")
say obj.age # prints: 50
say obj.name # prints: "Foo"
say obj.address # prints: "St. Bar"

obj.name = "Baz" # changes name to "Baz"
say obj.name # prints: "Baz"

obj.increment_age # increments age by 1
say obj.age # prints: 51

Classes in Sidef are a little bit different than classes from other languages. Instance-variables (also known
as attributes) are accessible via a method call which can either get or set a value, as illustrated in the
example above.

The attributes of a class can be either specified as parameters, or declared with the has keyword.

class Example(a, b) {
 has c = 3
 has d = a+c
}

var obj = Example(1, 2)

say obj.a #=> 1
say obj.b #=> 2
say obj.c #=> 3
say obj.d #=> 4

Extra object-initialization setup can be done by defining a method named init , which will be called
automatically called whenever a new instance-object is created.

Class attributes

Class initialization

class Example (a, b) {

 has r = 0

 method init { # called automatically
 r = a+b
 }

 method foo {
 r
 }
}

var obj = Example(3, 4)
say obj.foo #=> 7

A class can inherit methods from other classes by using the special operator < , followed by the name of
the inherited class:

class Animal(String name, Number age) {
 method speak { "..." }
}

class Dog(String color) < Animal {
 method speak { "woof" }
 method ageHumanYears { self.age * 7 }
}

class Cat < Animal {
 method speak { "meow" }
}

var dog = Dog(name: "Sparky", age: 6, color: "white")
var cat = Cat(name: "Mitten", age: 3)

say dog.speak #=> woof
say cat.speak #=> meow
say cat.age #=> 3
say dog.ageHumanYears #=> 42
say dog.color #=> white

Multiple inheritance is declared with the << operator, followed by two or more class names, separated by
commas:

class Camera { }
class MobilePhone { }
class CameraPhone << Camera, MobilePhone { }

Class inheritance

Class variables

The syntax ClassName!var_name can be used for defining, accessing or modifying a class variable.

class Example {

 Example!hidden = 'secret' # global class variable

 method concat (str) {
 str + ' ' + Example!hidden
 }
}

var x = Example()
var y = Example()

say x.concat('foo') #=> 'foo secret'
say y.concat('bar') #=> 'bar secret'

Example!hidden = 'public' # changing the class variable

say x.concat('foo') #=> 'foo public'
say y.concat('bar') #=> 'bar public'

The modification of a class variable can be localized by prefixing the declaration with the local keyword:

local Example!hidden = 'local value'

An interesting feature is the definition of methods at runtime:

var colors = Hash(
 'black' => "000",
 'red' => "f00",
 'green' => "0f0",
 'yellow' => "ff0",
 'blue' => "00f",
 'magenta' => "f0f",
 'cyan' => "0ff",
 'white' => "fff",
)

for color,code in colors {
 String.def_method("in_#{color}", func (self) {
 '' + self + ''
 })
}

say "blue".in_blue
say "red".in_red
say "white".in_white

Output:

Metaprogramming

blue
red
white

Methods can have variable-like names (a , hello , etc...), or operator-like names (+ , ** , etc...).

class Number {
 method ⊕(arg) {
 self + arg
 }
}

say (21 ⊕ 42)

The special method AUTOLOAD is called when a given method is missing.

class Example {
 method foo {
 say "this is foo"
 }
 method bar {
 say "this is bar"
 }
 method AUTOLOAD(_, name, *args) {
 say ("tried to handle unknown method %s" % name)
 if (args.len > 0) {
 say ("it had arguments: %s" % args.join(', '))
 }
 }
}

var example = Example()

example.foo # prints “this is foo”
example.bar # prints “this is bar”
example.grill # prints “tried to handle unknown method grill”
example.ding("dong") # prints “tried to handle unknown method ding”
 # prints “it had arguments: dong”

Sidef has a very basic support for parallel computation, but pretty powerful. There is the Block.ffork()
method which creates a new system process that executes (in parallel) the content of a given block and
returns a new Fork object which accepts the wait (or get) method that waits for the process to
finish and returns the computed value.

To take advantage of this mechanism, fork two or more processes and store the returned objects in
variables or inside an array and get their values at a later time. The process is executed soon after it has
been forked.

Parallel computation

Example for the quicksort algorithm in parallel:

func quicksort(arr {.len <= 1}) { arr }

func quicksort(arr) {

 say arr
 var p = arr.pop_rand

 var forks = [
 quicksort.ffork(arr.grep { _ <= p }),
 quicksort.ffork(arr.grep { _ > p }),
]

 forks[0].wait + [p] + forks[1].wait
}

say quicksort(@("a".."z") -> shuffle)

Alternatively, Sidef provides the Block.thr method, which creates a deprecated Perl thread, or a system
fork if forks is installed.

Sidef can interact with Perl modules in a very easy way. There is the require keyword which will try to
load an object-oriented Perl module.

var lwp = require('LWP::UserAgent')
var ua = lwp.new(show_progress => 1)
var resp = ua.get('http://example.net')

if (resp.is_success) {
 say resp.decoded_content.length
}

For functional Perl modules, the frequire keyword should be used instead to denote that the module is
function-oriented.

var spec = frequire('File::Spec::Functions')
say spec.rel2abs(spec.curdir)

There is also a special syntax for literal names of Perl modules, creating a module-interface object, without
 require -ing the module in the first place.

Interacting with Perl modules

Literal Perl modules

https://metacpan.org/pod/forks

%O<LWP::UserAgent> # object-oriented module
%S<File::Spec::Functions> # subroutine/function oriented module

This allows us to ignore the return value of require and create the module-interface object afterwards.

require('ntheory')
var nt = %S<ntheory> # function-oriented module

if (nt.is_prime(43)) {
 say "43 is prime!"
}

nt.forprimes({|p| say p }, 0, 100)

Due to the fact that we can interact with Perl modules, we can also create graphical interfaces from Sidef,
by using the Gtk3 library.

Perl.eval('use Gtk3 -init')

var gtk3 = %O<Gtk3>
var window = %O<Gtk3::Window>.new
var label = %O<Gtk3::Label>.new('Goodbye, World!')

window.set_title('Goodbye, World!')
window.signal_connect(destroy => { gtk3.main_quit })

window.add(label)
window.show_all

gtk3.main

Deparsing is the reverse process of parsing, which translates the AST back into code. Currently, Sidef
supports deparsing into two languages with the -R lang command-line switch:

 -R perl

Deparses the AST into valid Perl code.
 -R sidef

Deparses the AST into valid Sidef code.

Example:

Graphical interface

Deparsing

$ sidef -Rperl script.sf | perl

The -Rsidef switch (or simply -r) is useful for verifying how the code is parsed.

Example:

$ sidef -r -E '1 + 2/3'

Outputs:

(1)->+((2)->/(3));

By using the PAR::Packer tool, we can create an executable binary from a Sidef script (script.sf), by
executing the following commands:

$ sidef -Rperl script.sf > script.pl
$ pp --execute script.pl

Currently, Sidef code that includes eval() cannot be compiled into an executable.

 Perl.eval() can evaluate arbitrary Perl code and convert the result into a Sidef data structure which can
be used later in the program.

var perl_code = <<'CODE'

sub fact {
 my $p = 1;
 $p *= $_ for 2..$_[0];
 $p;
}

my %data = (
 result => fact(10)
);

\%data; # returned data to Sidef
CODE

var data = Perl.eval(perl_code)
say data{:result} #=> 3628800
say Sys.ref(data{:result}) #=> Sidef::Types::Number::Number

Creating an executable

Inlining Perl code in Sidef

https://metacpan.org/pod/pp

A practical example would be the creation of Sidef blocks which incorporate arbitrary Perl code. Doing so,
the returned object will behave exactly like a native Sidef block:

var perl_code = <<'CODE'

Sidef::Types::Block::Block->new(
 code => sub {
 my ($n) = @_;
 ($n <= 1) ? $n
 : (CORE::__SUB__->($n-1) + CORE::__SUB__->($n-2));
 },
 type => 'func',
 name => 'fib',
 table => {'n' => 0},
 vars => [{name => 'n'}],
);

CODE

var block = Perl.eval(perl_code)
say block(28) # 28-th Fibonacci number

For more examples, see: https://github.com/trizen/sidef-scripts

More examples

https://github.com/trizen/sidef-scripts

	Introduction
	BOOK
	Installation
	Installing from git source
	Linux installation
	Arch Linux
	Debian / Ubuntu / Linux Mint
	Android installation

	Run Sidef without installing it
	Packaging
	Creating the first Sidef script
	Real code

	Syntax
	Keywords
	Prefix operators
	Postfix operators
	Built-in types

	Method invocations
	Methods

	Built-in classes
	Variables
	Variable types
	LEXICAL VARIABLES
	STATIC VARIABLES
	GLOBAL VARIABLES
	LOCAL VARIABLES

	Variable scoping
	Slurpy variables
	Working with variables
	Special variables
	Deleting variables
	Topic variable
	Magic variables
	File-handle constants
	Constants
	const
	define
	enum

	Variable references

	Blocks
	Block callbacks
	Block parameters
	Default block parameter values
	Lazy evaluation
	Lazy methods

	Method introspection
	Functions
	Closures
	Automatically cached functions
	Function parameters
	Named parameters (a.k.a. keyword arguments)
	Variadic functions
	Typed parameters
	Subsets
	Multiple dispatch
	Functional pattern matching
	Returned type
	Alternative function declaration

	Loops
	gather/take
	try/catch

	Strings
	String quotes

	Numbers
	Integers
	Decimal literals
	Floating-point values
	Complex numbers
	Floating-point precision
	Mod
	Fraction
	Gauss
	Quadratic
	Quaternion
	Polynomial
	Numerical conversions

	Arrays
	Array filtering
	Unroll operator
	Map operator
	Pam operator
	Reduce operator
	Cross operator
	Zip operator
	Wise operator
	Scalar operator
	Reverse scalar operator
	Entrywise operations
	Scalar operations
	Pipeline array operators
	Map pipeline operator
	Zip pipeline operator
	Cross-product pipeline operator

	Matrix
	Operations
	Matrix iteration
	Lists
	Slices

	Ranges
	Hashes
	Multiple values
	Working with hashes

	Sets
	Operations
	Updating

	Bags
	Operations
	Updating

	Pairs
	Structs
	Files
	File info
	Manipulating files
	Open files
	File handles

	Conditional expressions
	Exceptions
	Regular expressions
	Global matching

	Smart-matching
	Modules
	Classes
	Class attributes
	Class initialization
	Class inheritance
	Class variables
	Metaprogramming

	Parallel computation
	Interacting with Perl modules
	Literal Perl modules

	Graphical interface
	Deparsing
	Creating an executable
	Inlining Perl code in Sidef
	More examples

