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2. About this document

TODO: Write about this document.
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3. Conventions

• The function predicting the dependent variable from the input of independent
variables is often called hypothesis funtion and is denoted by the name h.

• Weights in linear regression are called θ (lower case ”theta”).

• Inputs or features are called x.

• Outputs or predictions are called y.

• The number of samples or data points is N .

• The number of features is n.

• The variable i is used as index for samples (data points).

• The index for features of data points is written in brackets. For example the
third feature of the second data point would be written as follows: x2[3]

• An optimization operation is written as follows:

min
θ

where min is the function name and θ takes the place of things, which are
changed during optimization. For this specific case in natual languagewewould
sayminimize over θ, whichmeans look for the values of θ for which the argument
is minimal.
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4. Linear regression

4.1. General advantages
• Linear regression is a rather simple model, whose predictions can be easily
understood by a human.

• It is fast to learn this model from data, compared to some other models.

• When a systems output is truly based on a linear combination of its inputs,
linear regression is probably the perfect model to make predictions for the
system.

4.2. General disadvantages
• Most systems do not have output, which is based on a linear combination of
their inputs, so the model is not applicable in many cases.

4.3. Simple linear regression (univariate linear regression)
Simple linear regression is a useful base case for understanding linear regression

in general. Instead of workingwithmultiple features, there is only one feature towork
with. It tries to make a line fit the data using the following formula:

y = θ0 + θ1 ∗ xi[0]

Where θ0 is the intercept (it intercepts the y-axis) or bias and θ1 is the slope of
the line, which is fit.

4.4. Multiple linear regression
(a.k.a.: multivariate linear regression)

4.4.1. Characteristics
• Multiple linear regression can theoretically work with an arbitrary number of
features.
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• In multiple linear regression we model the data with the following formula:

y = θ0 · xi [0] + θ1 · xi [1] + θ2 · xi [2] + ... = θT · xi

where xi [0] = 1 for all i …

xi =


xi [0]

xi [1]
...

xi [n]

 =


1

xi [1]
...

xi [n]

 ∈ Rn+1

(xi is one data point for each i, a vector of features, where the first element is 1
to represent the intercept.) … so that θ0 is unchanged and represents the intercept.
The hypothesis function thus is:

hθ(x) = θT · xi

4.5. Methods for calculating the error

4.5.1. Ordinary Least Squares (OLS)
(a.k.a.: ”least squared errors regression” or ”least squares”)
Sum the squares (to make it positive) of differences between yi and what the

model predicts for xi for all data points in the training dataset.

Errorθ =
1

N

N∑
i=1

((
yi −

(
θT · xi

))2)
or, if we replace the part of the hypothesis function:

Errorθ =
1

N

N∑
i=1

(
(yi − hθ(xi))

2)
Inside the sum we calculate the difference between a single yi given in the

training data and the value for yi as it was predicted using the weights w and xi[k],
where k is the index for the features and xi is a vector of features. Since the sum is
calculated on all training data points and the error would only increase with more
data points instead of giving a result independent from the number of data points,
we take the mean of the calculated sum instead.

4.6. Learning phase
To get the best fitting model, we will need to create the model, which has the

lowest error. That means we are dealing with a minimization (of the error) problem
and more generally speaking with an optimization problem.



There are multiple ways of minimizing the error of a linear regression model.
For example one could generate random coefficients for the features and calculate
the error. If the error is still too high according to some criteria we have, we could
generate new random coefficients and calculate the error again. This process we
could repeat over and over until we get a satisfactory low error for our coefficients.
Another idea is to use some kind of genetic algorithm to get to a sufficiently low error.
A common way, which we are going to explore in detail, is to use gradient descend to
minimize the error.

4.6.1. Gradient descend for linear regression
The algorithm described herein is sometimes also called ”batch gradient

descent”, because it uses all training data points to update coefficients. There are
other versions, which do not use all training data points in each iteration, for example
stochastic gradient descent.

To get to the lowest error we will calculate the slope of the error function
(gradient) and walk (change parameters of our model, namely θ) towards where
the highest negative slope is, decreasing the error. The slope of a function is its
derivative. We are going to calculate the derivative of the error function by partially
differentiating the error function.

We have the following error function:

Errorθ =
1

N

N∑
i=1

(
(yi − hθ(xi))

2)
which we want to minimize. It does not matter for the optimization result,

whether we multiply the whole expression by a constant factor. With regard to
changing θ the factor 1

N
is a constant. We can also multiply again by 1

2
to simplify

the derivation later:

1

2
· 1

N

N∑
i=1

(
(yi − hθ(xi))

2)
which is the same as:

1

2N

N∑
i=1

(
(yi − hθ(xi))

2)
This function we will call J(θ), our cost function:

J(θ) =
1

2N

N∑
i=1

(
(yi − hθ(xi))

2)
This is the function we will minimize:



min
θ

(J(θ))

The partial derivatives for θk are1:

δ

δθk
J(θ) =

1

N

N∑
i=1

((hθ(xi)− yi) · xi [k])

where x0 is again 1, in order to make θ0 the intercept.

1. Convergence of coefficients

The algorithm to make the coefficients convergence to a local optimum is:

Repeat until convergence2 …

θk := θk − α
δ

δθk
J(θ)

… for all k.

There are one more k than the number of features in the data set, because θ0 is
the intercept and not a coefficient for a feature and the intercept needs to be
updated too.

α is called the learning rate. It influences how far into the direction of steepest
descent the value of θk will step in one iteration. When choosing α, one needs
to keep in mind the following things:

• If α is too high, it might be that the algorithm oversteps the local optimum
at every coefficient update. This would cause the algorithm to not be
able to converge to the optimum and might even diverge. Divergence is
possible, because when the algorithm oversteps the optimum, it might
arrive at a point in the error function landscape, where the slope is higher
than before, so the learning rate might be multiplied with the higher slope
from that new point, which would mean a higher update for the θk. This
could happen an arbitrary number of times, depending on the shape of
the error function landscape, and thus cause divergence.

• If α is too small, gradient descent will need a long time to converge.

• α is always a positive number to enable any learning.

δ
δθk

J(θ) is the derivative of the error function or cost function.

1To see how the derivative of J(θ) is calculated see Appendix: Derivative of the squared error
function.

2Converging in this casemeans, that the values for θ do not changemore than a predefined amount.



• When the slope (derivative) is negative (values become lower towards
higher θk), we substract a negative number from the respective θk, so we
increase θk.

• When the slope is positive (values become higher towards higher θk), we
substract a positive number from θk, so we increase θk.

This means that no matter what kind of slope we have, gradent descent will
move towards the correct direction.

When θk is already at a local optimum, no matter what the value of α is, it will
not change θk, because the slope will be 0 and anything multiplied by 0 will be
0.

Since the learning rate α is multiplied by the slope, α does not necessarily need
to change, in order for gradient descent to converge. The absolute value of the
slope can descrease towards the local optimum and thereby reduce the update
amount for any θk 3.

There is another way of getting to the local optimum, which is called normal
equation method.

2. Implementation

When implementing gradient descent, one needs to be careful to update all
coefficients based on the same (previous) state of coefficients. To update one
coefficient and then use the updated coefficient when calculating the updated
value for another would be a mistake. This means the algorithm needs to hold
the list of previous coefficients for calculation of the updated coefficients and
the updated coefficients themselves in each iteration of the update algorithm.

This is expressed as follows:

θknext := θkprev − α
δ

δθkprev
J(θprev)

This is called updating the θk ”simultaneously”. If we write the actual derivative
in this formula, we get:

θknext := θkprev − α
1

N

N∑
i=1

((hθ(xi)− yi) · xi)

3If the error function landscape was bowl shaped for example, the slope would get smaller the
closer the error moves towards the local (and in this case global) optimum. In the case of linear
regression the landscape is always bowl shaped. This is called a ”convex function”. It only has one
local optimum, which is the global optimum.



min
θ

1

N

N∑
i=1

((
yi −

(
θT · xi

))2)

min
θ

1

2N

N∑
i=1

((
yi −

(
θT · xi

))2)
For simple linear regression the derivations look as follows:

δ

δm
=

2

N

N∑
i=1

(−xi (yi − (mxi + b)))

δ

δb
=

2

N

N∑
i=1

(− (yi − (mxi + b)))

Here is how we get to this result:

4.6.2. Disadvantages
• since the mean is susceptible to outliers, the error metric is susceptible as well

4.6.3. Advantages
• relatively simple to understand

4.6.4. Least median or squares
This method works the same as OLS, except that it takes the median instead of

the mean as error.

4.6.5. Least absolute errors

Errorθ =
1

N

N∑
i=1

∣∣yi − (
wT · xi

)∣∣
4.6.6. Other methods

Todo



5. Polynomial Regression
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6. Appendix

6.1. Derivative of the squared error function
TODO
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